
 C++ programming Noor muwafak

 First stage

 1

Introduction to C++ Programs

 C was created by Dennis Ritchie at the Bell Telephone Laboratories in 1972. The

language wasn't created for the fun of it, but for a specific purpose: to design the UNIX

operating system (which is used on many computers).

Because C is such a powerful and flexible language, its use quickly spread beyond Bell

Labs. Programmers everywhere began using it to write all sorts of programs.

Now, what about the name? The C language is so named because its predecessor was called

B. The B language was developed by Ken Thompson of Bell Labs. You should be able to

guess why it was called B. it was not derived from language called A ,but from language

called BCLP . so C language was derived from B language , and C++ language was derived

from C language .

You might have heard about C++ and the programming technique called object- oriented

programming. Perhaps you're wondering what the differences are between C and C++ .

 C++ is a superset of C, which means that C++ contains everything C does, plus new

additions for object-oriented programming. If you do go on to learn C++, almost

everything you learn about C will still apply to the C++ superset.

Now the question is Why are there tow pluses in the name C++, the answer is: ++ is an

operation in C and C++ languages, so ++ is used to recognize between the tow languages

and to give a nice pin .

Programs

The word program is used in two ways: to describe individual instructions, or source code,

created by the programmer, and to describe an entire piece of executable software.

New Term: A program can be defined as either a set of written instructions created by a

programmer or an executable piece of software.

Working with systems

There are three systems of numbers :

 The Decimal Number System

 The Binary System

 The Hexadecimal System

Sams%20Teach%20Yourself%20C%20in%2021%20Days,%20Fourth%20Edition/apc.htm#Heading1#Heading1
Sams%20Teach%20Yourself%20C%20in%2021%20Days,%20Fourth%20Edition/apc.htm#Heading2#Heading2
Sams%20Teach%20Yourself%20C%20in%2021%20Days,%20Fourth%20Edition/apc.htm#Heading3#Heading3

 C++ programming Noor muwafak

 First stage

 2

As a computer programmer, you might sometimes be required to work with numbers

expressed in binary and hexadecimal notation.

The Decimal Number System

The decimal system is the base -10 system that you use every day. A number in this system

for example, 342 is expressed as powers of 10. The first digit (counting from the right)

gives 10 to the 0 power , the second digit gives 10 to the 1 power, and so on. Any number to

the 0 power equals 1, and any number to the 1 power equals itself. Thus, continuing with

the example of 342, you have:

3 3 * 102 = 3 * 100 = 300

4 4 * 101 = 4 * 10 = 40

2 2 * 100 = 2 * 1 = 2

 Sum = 342

The base-10 system requires 10 different digits, 0 through 9. The following rules apply to

base 10 and to any other base number system:

 A number is represented as powers of the system's base.

 The system of base n requires n different digits.

Now let's look at the other number system:

The Binary System

The binary number system is base 2 and therefore requires only two digits, 0 and 1. The

binary system is useful for computer programmers, because it can be used to represent the

digital on/off method in which computer chips and memory work. Here's an example of a

binary number and its representation in the decimal notation you're more familiar with,

writing 1011 vertically:

1 1 * 23 = 1 * 8 = 8

0 0 * 22 = 0 * 4 = 0

1 1 * 21 = 1 * 2 = 2

1 1 * 20 = 1 * 1 = 1

 Sum = 11 (decimal)

Binary has one shortcoming: It's cumbersome for representing large numbers

 C++ programming Noor muwafak

 First stage

 3

The Hexadecimal System
The hexadecimal system is base 16. Therefore, it requires 16 digits. The digits 0 through 9

are used, along with the letters A through F, which represent the decimal values 10 through

15. Here is an example of a hexadecimal number and its decimal equivalent:

2 2 * 162 = 2 * 256 = 512

D 13 * 161 = 13 * 16 = 208

A 10 * 160 = 10 * 1 = 10

 Sum = 730 (decimal)

The hexadecimal system (often called the hex system) is useful in computer work because

it's based on powers of 2. Each digit in the hex system is equivalent to a four-digit binary

number, and each two-digit hex number is equivalent to an eight-digit binary number.

The following Table show the Hexadecimal numbers and their decimal and

binary equivalents:

Hexadecimal Digit Decimal Equivalent Binary Equivalent

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

10 16 10000

F0 240 11110000

 C++ programming Noor muwafak

 First stage

 4

FF 255 11111111

The Parts of a C++ Program
C++ programs consist of objects, functions, variables, and other component parts.

 The parts of a C++ program.

 How the parts work together.

 What a function is and what it does.

HELLO.CPP demonstrates the parts of a C++ program.
1: #include <iostream.h>

2:

3: int main()

4: {

5: cout << "Hello World!\n";

6: return 0;

7: }

Hello World!

On line 1, the file iostream.h is included in the file. The first character is the # symbol,

which is a signal to the preprocessor. Each time you start your compiler, the preprocessor

is run.

include is a preprocessor instruction that says, "What follows is a filename. Find that file

and read it in right here." The angle brackets around the filename tell the preprocessor to

look in all the usual places for this file. If your compiler is set up correctly, the angle

brackets will cause the preprocessor to look for the file iostream.h in the directory that

holds all the H files for your compiler. The file iostream.h (Input-Output-Stream) is used

by cin, cout which assists with reading , writing to the screen.

Line 3 begins the actual program with a function named main() . Every C++ program has a

main() function. In general, a function is a block of code that performs one or more actions.

Usually functions are invoked or called by other functions, but main() is special. When

your program starts, main() is called automatically.

main(), like all functions, must state what kind of value it will return. The return value type

for main() in HELLO.CPP is void, which means that this function will not return any value

at all.

All functions begin with an opening brace ({) and end with a closing brace (}). The braces

for the main() function are on lines 4 and 7. Everything between the opening and closing

braces is considered a part of the function.

The object cout is used to print a message to the screen and the object cin is used to read a

value from a screen . The two objects, cout and cin are used in C++ to print and read

strings and values to the screen . A string is just a set of characters.

cout is used: type the word cout, followed by the output redirection operator (<<).

Cin is used : type the word cin , followed by the input redirection operator (>>)

The final two characters, \n, tell cout to put a new line after the words Hello World!

the program declare main() to return an int. This value is "returned" to the operating

system when your program completes. main() will always return 0.

Program Using cout.
1: // program using cout

 C++ programming Noor muwafak

 First stage

 5

2:

3: #include <iostream.h>

4: int main()

5: {

6: cout << "Hello there.\n";

7: cout << "Here is 5: " << 5 << "\n";

8: cout << "The manipulator endl writes a new line to the screen." <<

 endl;

9: cout << "Here is a very big number:\t" << 70000 << endl;

10: cout << "Here is the sum of 8 and 5:\t" << 8+5 << endl;

11: cout << "C++ programmer!\n";

12: return 0;

13: }

output:

Hello there.

Here is 5: 5

The manipulator endl writes a new line to the screen.

Here is a very big number: 70000

Here is the sum of 8 and 5: 13

C++ programmer!

For output , the easiest way of specifying a field width and precision with stream input /

output is by using manipulators (setw() and setprecision()) for which the header file

<iomanip.h>

So,for example, we can write a program :

#include <iostream.h>

#include<iomanip.h>

Void main()

{

Int x,y;

Cin>>x>>y;

Cout<<x<<setw(12)<<y<<setw(12)<<x*y;

}

Comments
When you are writing a program, it is always clear and self-evident what you are trying to

do.

Comments are simply text that is ignored by the compiler.

Types of Comments
C++ comments come in two flavors: the double-slash (//) comment, and the slash-star (/*)

comment. The double-slash comment, which will be referred to as a C++-style comment,

tells the compiler to ignore everything that follows this comment, until the end of the line.

The slash-star comment mark tells the compiler to ignore everything that follows until it

finds a star-slash (*/) comment mark. These marks will be referred to as C-style comments.

Every /* must be matched with a closing */.

HELP.CPP demonstrates comments.
1: #include <iostream.h>

2:

 C++ programming Noor muwafak

 First stage

 6

3: int main()

4: {

5: /* this is a comment

6: and it extends until the closing

7: star-slash comment mark */

8: cout << "Hello World!\n";

9: // this comment ends at the end of the line

10: cout << "That comment ended!\n";

11:

12: // double slash comments can be alone on a line

13: /* as can slash-star comments */

14: return 0;

15: }

Output:

Hello World!

That comment ended!

Variables and Constants
Programs need a way to store the data they use. Variables and constants offer various ways

to represent and manipulate that data.

 How to declare and define variables and constants.

 How to assign values to variables and manipulate those values.

 How to write the value of a variable to the screen.

What Is a Variable?
In C++ a variable is a place to store information. A variable is a location in your

computer's memory in which you can store a value and from which you can later retrieve

that value.

Setting Aside Memory

When you define a variable in C++, you must tell the compiler what kind of variable it is:

an integer, a character, and so forth. This information tells the compiler how much room to

set aside and what kind of value you want to store in your variable.

Table Variable Types:

Type Size Values

unsigned short

int 2 bytes 0 to 65,535

short int 2 bytes -32,768 to 32,767

Unsigned long int 4 bytes 0 to 4,294,967,295

long int 4 bytes -2,147,483,648 to 2,147,483,647

int (16 bit) 2 bytes -32,768 to 32,767

int (32 bit) 4 bytes -2,147,483,648 to 2,147,483,647

 C++ programming Noor muwafak

 First stage

 7

unsigned int (16

bit) 4 bytes 0 to 65,535

unsigned int (32

bit) 2 bytes 0 to 4,294,967,295

Char 1 byte 256 character values

Float 4 bytes 1.2e-38 to 3.4e38

Double 8 bytes 2.2e-308 to 1.8e308

Defining a Variable
You create or define a variable by stating its type, followed by one or more spaces, followed

by the variable name and a semicolon.

Int myAge;

Example 1:
main()

{

 unsigned short x;

 unsigned short y;

 unsigned long z;

 z = x * y;

}

Example 2:
main ()

{

 unsigned short Width;

 unsigned short Length;

 unsigned short Area;

 Area = Width * Length;

}

Assigning Values to the Variables
You assign a value to a variable by using the assignment operator (=). For example, you

would assign 5 to Width by writing
unsigned short Width;

Width = 5;

You can combine these steps and initialize Width when you define it by writing
unsigned short Width = 5;

Example:

program using a variables.
1: // Demonstration of variables

2: #include <iostream.h>

3:

4: int main()

5: {

6: unsigned short int Width = 5, Length;

7: Length = 10;

8:

9: // create an unsigned short and initialize with result

10: // of multiplying Width by Length

11: unsigned short int Area = Width * Length;

12:

 C++ programming Noor muwafak

 First stage

 8

13: cout << "Width:" << Width << "\n";

14: cout << "Length: " << Length << endl;

15: cout << "Area: " << Area << endl;

16: return 0;

17: }

Output: Width:5

Length: 10

Area: 50

typedef
It can become tedious, repetitious, and, most important, error to keep writing unsigned

short int. C++ enables you to create an alias for this phrase by using the keyword

typedef, which stands for type definition.

typedef is used by writing the keyword typedef, followed by the existing type and then the

new name. For example
typedef unsigned short int USHORT

A demonstration of typedef.
1: // *****************

2: // Demonstrates typedef keyword

3: #include <iostream.h>

4:

5: typedef unsigned short int USHORT; //typedef defined

6:

7: void main()

8: {

9: USHORT Width = 5;

10: USHORT Length;

11: Length = 10;

12: USHORT Area = Width * Length;

13: cout << "Width:" << Width << "\n";

14: cout << "Length: " << Length << endl;

15: cout << "Area: " << Area <<endl;

16: }

Output: Width:5

Length: 10

Area: 50

Note: to clear the screen after the execution of the program we can use the function

clrscr()

With the header file <conio.h> .

For example :
#include <iostream.h>

#include<conio.h>

Void main()

{ int x,y ;

Clrscr();

Cout<<x<<setw(12)<<setw(12)<<y;

 C++ programming Noor muwafak

 First stage

 9

}

Characters
Character variables (type char) are typically 1 byte, enough to hold 256 values . A char

can be interpreted as a small number (0-255) or as a member of the ASCII set. ASCII

stands for the American Standard Code for Information Interchange.

The Escape Characters.

Character What it means

\n New line

\t Horizontal Tab (8 column)

\b Backspace (return one space to the back)

\" double quote

\' single quote

\? Question mark

\\ Backslash

\r Return to the beginning of the line

\v Vertical tap (8 row)

Using Character Variables
Like other variables, you must declare chars before using them, and you can initialize them

at the time of declaration. Here are some examples:
char a, b, c; /* Declare three uninitialized char variables */

char code = `x'; /* Declare the char variable named code */

 /* and store the character x there */

code = '!'; /* Store ! in the variable named code */

You can create symbolic character constants by using either the #define directive or the

const keyword:
#define EX `x'

char code = EX; /* Sets code equal to `x' */

const char A = `Z';

Now that you know how to declare and initialize character variables, it's time for a

demonstration. "Fundamentals of Input and Output." The cout can be used to print both

characters and numbers.

The numeric nature of type char variables.
1: /* Demonstrates the numeric nature of char variables */

2:

3: #include <iostream.h>

4:

5: /* Declare and initialize two char variables */

6:

7: char c1 = `a';

 C++ programming Noor muwafak

 First stage

 10

8: char c2 = 90;

9:

10: main()

11: {

12: /* Print variable c1 as a character */

13:

14: cout<<"\n As a character variable c1 is :"<< c1;

15:

16:

17: /* Do the same for variable c2 */

18:

19: cout<<”\n As a character, variable c2 is:"<<c2;

20:

21:

22: return 0;

23: }

As a character, variable c1 is a

As a character, variable c2 is Z

Using Strings
Variables of type char can hold only a single character, so they have limited usefulness.

You also need a way to store strings, which are sequences of characters. Although there is

no special data type for strings, C or C++ handles this type of information with arrays of

characters.

Arrays of Characters
To hold a string of six characters, for example, you need to declare an array of type char

with seven elements. Arrays of type char are declared like arrays of other data types. For

example, the statement
char string[10];

Initializing Character Arrays
character arrays can be initialized when they are declared . Character arrays can be

assigned values element by element, as shown here:
char string[10] = { `A', `l', `a', `b', `a', `m', `a', `\0' };

It's more convenient, however, to use a literal string, which is a sequence of characters

enclosed in double quotes:
char string[10] = "Alabama";

 When you use a literal string in your program , the compiler automatically adds the

terminating null character at the end of the string. If you don't specify the number of

subscripts when you declare an array, the compiler calculates the size of the array for you.

Thus, the following line creates and initializes an eight-element array:
char string[] = "Alabama";

Stream Functions
The C and C++ standard library has a variety of functions that deal with stream input and

output. Most of these functions come in two varieties: one that always uses one of the

standard streams, and one that requires the programmer to specify the stream.

standard library's stream input/output functions.

Uses One of the Standard Streams Description

printf() Formatted output

 C++ programming Noor muwafak

 First stage

 11

puts() String output

putchar() Character output

scanf() Formatted input

gets() String input

getchar() Character input

All these functions require that you include STDLIB.H.

Character Input function
The character input functions read input from a stream one character at a time. When

called, each of these functions returns the next character in the stream.

Some character input functions are buffered. This means that the operating system holds

all characters in a temporary storage space until you press Enter, and then the system

sends the characters to the stdin stream. Others are unbuffered, meaning that each

character is sent to stdin as soon as the key is pressed.

 Some input functions automatically echo each character to stdout as it is received.

Others don't echo; the character is sent to stdin and not stdout. Because stdout is

assigned to the screen, that's where input is echoed.

The uses of buffered, unbuffered, echoing, and nonechoing character input are explained in

the following sections:

The getchar() Function

The function getchar() obtains the next character from the stream stdin. It provides

buffered character input with echo, The use of getchar() is demonstrated in following

program . simply displays a single character on-screen.

The getchar() function.
1: /* Demonstrates the getchar() function. */

2:

3: #include <stdio.h> // header file used for getchar and putchar

4:

5: main()

6: {

7: int ch;

8:

9: ch = getchar()

10: putchar(ch);

11:

12: return 0;

13: }

ANALYSIS: On line 9, the getchar() function is called and waits to receive a character

from stdin. Because getchar() is a buffered input function, no characters are received until

you press Enter. However, each key you press is echoed immediately on the screen.

putchar() function is used to display the input character after pressing the enter

Note: the header file for the above function is <stdio.h>

The getch() Function

 C++ programming Noor muwafak

 First stage

 12

The getch() function provides unbuffered character input without echo. the prototype for

getch() is in the header file <conio.h>, as follows:

Because it is unbuffered, getch() returns each character as soon as the key is pressed,

without waiting for the user to press Enter. Because getch() doesn't echo its input, the

characters aren't displayed on-screen.

Using the getch() function.
1: /* Demonstrates the getch() function. */

2:

3:

4: #include <conio.h> // used for getch and putch

5:

6: main()

7: {

8: int ch;

9:

10: ch = getch();

11: putch(ch);

12:

13: return 0;

14:}

ANALYSIS: When this program runs, getch() returns each character as soon as you press

a key--it doesn't wait for you to press Enter. the only reason that each character is

displayed on-screen by calling the putch(). To get a better understanding of how getch()

works,you will find that nothing you type is echoed to the screen . The getch() function gets

the characters without echoing them to the screen. the characters are being gotten because

the original listing used putch() to display them.

The getche() Function
This is a short section, because getche() is exactly like getch(), except that it echoes each

character to stdout. When the program runs, each key you press is displayed on-screen

twice--once as echoed by getche(), and once as echoed by putch().

Note : the header file for getch,getche,putch is conio.h .

The scanf() Function
The scanf() function takes a variable number of arguments; it requires a minimum of two.

The first argument is a format string that uses special characters to tell scanf() how to

interpret the input. The second and additional arguments are the addresses of the

variable(s) to which the input data is assigned. Here's an example:
scanf("%d", &x);

The first argument, "%d", is the format string. In this case, %d tells scanf() to look for one

signed integer value. The second argument uses the address-of operator (&) to tell scanf()

to assign the input value to the variable x. Now you can look at the format string details.

The table show the specified characters used in scanf() conversion:

Type Argument Meaning of Type

D int * A decimal integer.

I int * An integer in decimal

O int * An integer in octal notation with or without the leading 0.

U unsigned int An unsigned decimal integer.

 C++ programming Noor muwafak

 First stage

 13

*

X int * A hexadecimal integer with or without the leading 0X or 0x.

C char * One or more characters are read and assigned sequentially to the

memory location indicated by the argument.

S char * A string of nonwhitespace characters is read into the specified memory

location, and a terminating \0 is added.

E,f,g float * A floating-point number. Numbers can be input in decimal or scientific

notation.

Screen Output
Screen output functions are divided into three general categories along the same lines as

the input functions: character output, line output, and formatted output.

Using the putchar() Function
The prototype for putchar(), which is located in STDIO.H, is as follows:
putchar(c);

Using puts() for String Output
If You want to display strings on-screen more often than a single character. The library

function puts() displays strings up to but not including the terminating null character or

spacing. The header file for puts function is STDIO.H

Using the puts() function to display strings.
1: /* Demonstrates puts(). */

2:

3: #include <stdio.h>

4: #include<iostream.h>

5:

6:

7:

8:

9: main()

10: {

11: char c[100];

12:

13: cin>>c;

14: puts(c);

15:

16: puts("And this is the end!");

17:

18: return 0;

19: }

Using printf() for Formatted Output
 the above output functions have displayed characters and strings only. What about

numbers? To display numbers, you must use the formatted output functions, printf(). This

function can also display strings and characters.

Example of the printf() function:
 #include <stdio.h>

 C++ programming Noor muwafak

 First stage

 14

main()

 {

 float d1 = 10000.123;

 int n, f;

 puts("Outputting a number with different field widths.\n");

 printf("%5f\n", d1);

 printf("%10f\n", d1);

 printf("%15f\n", d1);

 printf("%20f\n", d1);

 printf("%25f\n", d1);

 return 0;

 }

Outputting a number with different field widths.

10000.123047

10000.123047

 10000.123047

 10000.123047

 10000.123047

Mathematical functions
 There are a number of functions used In the mathematical operations such as :

 abs ,cos, exp, log, log10, pow, pow10, sin, sqrt, tan.

The header file used to this functions is <math.h> .

1- abs example:

#include <iostream.h>

#include <math.h>

void main()

{

 int number = -1234;

 cout<<number<<abs(number);

 }

2-cos example:

#include <iostream.h>

#include <math.h>

Void main()

{

 double result;

 double x = 0.5;

 result = cos(x);

 cout<<x<< result;

 }

 C++ programming Noor muwafak

 First stage

 15

3-sin example:

#include <iostream.h>

#include <math.h>

void main()

{

 double result, x = 0.5;

 result = sin(x);

 cout<<x<< result;

 }

4-tan example:

#include <iostream.h>

#include <math.h>

void main()

{

 double result, x;

 x = 0.5;

 result = tan(x);

 cout<<x<< result;

 }

5-Exp example:

#include <iostream.h>

#include <math.h>

void main()

{

 double result;

 double x = 4.0;

 result = exp(x);

 cout<<x<<result;

}

 6-log example:

#include <math.h>

#include <iostream.h>

 C++ programming Noor muwafak

 First stage

 16

void main()

{

 double result;

 double x = 8.6872;

 result = log(x);

 cout<<x<< result;

}

7-log10 example:

#include <math.h>

#include <iostream.h>

Void main()

{

 double result;

 double x = 800.6872;

 result = log10(x);

 cout<<x<< result;

}

8-Pow Example:

#include <math.h>

#include <iostream.h>

Void main()

{

 double x = 2.0, y = 3.0;

 cout<<x<<y<< pow(x, y);

 }

 9-Pow10 Example:

#include <math.h>

#include <iostream.h>

void main()

{

 C++ programming Noor muwafak

 First stage

 17

 double p = 3.0;

 cout<<p<< pow10(p);

}

10-Sqrt Example:
 #include <math.h>

 #include <iostream.h>

 void main()

 {

 double x = 4.0, result;

 result = sqrt(x);

 cout<<x<< result;

 }

 C++ programming Noor muwafak

 First stage

 18

Size of Integers
 On any one computer, each variable type takes up a single, unchanging amount of

room. That is, an integer might be two bytes on one machine, and four on another, but on

either computer it is always the same.

A char variable (used to hold characters) is most often one byte long . A short integer is

two bytes on most computers, a long integer is usually four bytes, and an integer (without

the keyword short or long) can be two or four bytes.

 New Term: A character is a single letter, number, or symbol that takes up one byte of

memory.

Determining the size of variable types on your computer.
1: #include <iostream.h>

2:

3: int main()

4: {

5: cout << "The size of an int is:\t\t" << sizeof(int) << " bytes.\n";

6: cout << "The size of a short int is:\t" << sizeof(short) << " bytes.\n";

7: cout << "The size of a long int is:\t" << sizeof(long) << " bytes.\n";

8: cout << "The size of a char is:\t\t" << sizeof(char) << " bytes.\n";

9: cout << "The size of a float is:\t\t" << sizeof(float) << " bytes.\n";

10:cout << "The size of a double is:\t" << sizeof(double) << " bytes.\n";

11:

12: return 0;

13: }

Output:

The size of an int is: 2 bytes.

The size of a short int is: 2 bytes.

The size of a long int is: 4 bytes.

The size of a char is: 1 bytes.

The size of a float is: 4 bytes.

The size of a double is: 8 bytes.

Note: On your computer, the number of bytes presented might be different.

Analysis: The one new feature is the use of the sizeof() function in lines 5 through 10.

sizeof() is provided by your compiler, and it tells you the size of the object you pass in

as a parameter. For example, on line 5 the keyword int is passed into sizeof(). Using
sizeof().

 C++ programming Noor muwafak

 First stage

 19

Constants
 Like variables, constants are data storage locations. Unlike variables, and as the name

implies, constants don't change. You must initialize a constant when you create it, and you

cannot assign a new value later.

C++ has two types of constants: literal and symbolic.

Literal Constants
A literal constant is a value typed directly into your program wherever it is needed.

For example:
int myAge = 39;

myAge is a variable of type int; 39 is a literal constant. You can't assign a value to 39, and its

value can't be changed.

Symbolic Constants
A symbolic constant is a constant that is represented by a name, just as a variable is

represented. Unlike a variable, however, after a constant is initialized, its value can't be

changed. If your program has one integer variable named students and another named

classes, you could compute how many students you have, given a known number of classes,

if you knew there were 15 students per class: students = classes * 15;

Enumerated Constants
Enumerated constants enable you to create new types and then to define variables of those

types whose values are restricted to a set of possible values. For example, you can declare

COLOR to be an enumeration, and you can define that there are five values for COLOR:

RED, BLUE, GREEN, WHITE, and BLACK.

The syntax for enumerated constants is to write the keyword enum, followed by the type

name, an open brace, each of the legal values separated by a comma, and finally a closing

brace and a semicolon. Here's an example:
enum COLOR { RED, BLUE, GREEN, WHITE, BLACK };

This statement performs two tasks:

1.It makes COLOR the name of an enumeration, that is, a new type.

2. It makes RED a symbolic constant with the value 0, BLUE a symbolic

constant with the value 1, GREEN a symbolic constant with the value 2, and so

forth.

Every enumerated constant has an integer value. If you don't specify otherwise, the first

constant will have the value 0, and the rest will count up from there. Any one of the

constants can be initialized with a particular value, however, and those that are not

initialized will count upward from the ones before them. Thus, if you write
enum Color { RED=100, BLUE, GREEN=500, WHITE, BLACK=700 };

 C++ programming Noor muwafak

 First stage

 20

then RED will have the value 100; BLUE, the value 101; GREEN, the value 500; WHITE, the

value 501; and BLACK, the value 700.

You can define variables of type COLOR, but they can be assigned only one of the

enumerated values (in this case, RED, BLUE, GREEN, WHITE, or BLACK, or else 100, 101, 500,

501, or 700). You can assign any color value to your COLOR variable.

 In fact, you can assign any integer value, even if it is not a legal color, although a good

compiler will issue a warning if you do. It is important to realize that enumerator variables

actually are of type unsigned int, and that the enumerated constants equate to integer

variables. It is, however, very convenient to be able to name these values when working

with colors, days of the week, or similar sets of values.

Example:

 A demonstration of enumerated constants.
 #include <iostream.h>

 int main()

 {

 enum Days { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Â_Saturday };

 Days DayOff;

 int x;

 cout << "What day would you like off (0-6)? ";

 cin >> x;

 DayOff = Days(x);

 If (Dayoff == Sunday)

 cout << “the off is at Sunday” ;

 else

 cout<<”the off is not at Sunday”;

 return 0;

 }

Expressions and Statements:
 In C++ a statement controls the sequence of execution, evaluates an expression, or does

nothing (the null statement). All C++ statements end with a semicolon, even the null

statement, which is just the semicolon and nothing else. One of the most common

statements is the following assignment statement:
x = a + b;

New Term: A null statement is a statement that does nothing.

White space:
 White space (tabs, spaces, and new lines) is generally ignored in statements. The

assignment previously discussed could be written as:
x=a + b;

or as
x =a

+ b ;

 C++ programming Noor muwafak

 First stage

 21

New Term: White space characters (spaces, tabs, and new lines) cannot be seen. If

these characters are printed, you see only the white of the paper.

Blocks and Compound Statements:
 Any place you can put a single statement, you can put a compound statement, also called

a block. A block begins with an opening brace ({) and ends with a closing brace (}).

Although every statement in the block must end with a semicolon, the block itself does not

end with a semicolon. For example:
{

 temp = a;

 a = b;

 b = temp;

}

This block of code acts as one statement and swaps the values in the variables a and b.

Expressions:
Anything that evaluates to a value is an expression in C++. An expression is said to return

a value. Thus, 3+2; returns the value 5 and so is an expression. All expressions are

statements.

Program Evaluating complex expressions.
1: #include <iostream.h>

2: int main()

3: {

4: int a=0, b=0, x=0, y=35;

5: cout << "a: " << a << " b: " << b;

6: cout << " x: " << x << " y: " << y << endl;

7: a = 9;

8: b = 7;

9: y = x = a+b;

10: cout << "a: " << a << " b: " << b;

11: cout << " x: " << x << " y: " << y << endl;

12: return 0;

13: }

Output: a: 0 b: 0 x: 0 y: 35

 a: 9 b: 7 x: 16 y: 16

Mathematical Operators:
 There are five mathematical operators: addition (+), subtraction (-), multiplication (*),

division (/), and modulus (%).

Addition and subtraction work as you would expect, although subtraction with unsigned

integers can lead to surprising results.

A demonstration of subtraction and integer overflow.
1: // Listing demonstrates subtraction and

2: // integer overflow

3: #include <iostream.h>

4:

5: int main()

6: {

 C++ programming Noor muwafak

 First stage

 22

7: unsigned int difference;

8: unsigned int bigNumber = 100;

9: unsigned int smallNumber = 50;

10: difference = bigNumber - smallNumber;

11: cout << "Difference is: " << difference;

12: difference = smallNumber - bigNumber;

13: cout << "\nNow difference is: " << difference <<endl;

14: return 0;

15: }

Output: Difference is: 50

Now difference is: 4294967246

Analysis: The subtraction operator is invoked on line 10, and the result is printed

on line 11, much as we might expect. The subtraction operator is called again on line

12, but this time a large unsigned number is subtracted from a small unsigned number.

The result would be negative, but because it is evaluated (and printed) as an unsigned

number, the result is an overflow.

Integer Division and Modulus
Integer division is somewhat different from everyday division. When you divide 21 by 4,

the result is a real number (a number with a fraction). Integers don't have fractions, and so

the "remainder" is lopped off. The answer is therefore 5. To get the remainder, you take 21

modulus 4 (21 % 4) and the result is 1. The modulus operator tells you the remainder after

an integer division.

Mathematical Operators
It is not uncommon to want to add a value to a variable, and then to assign the result back

into the variable. If you have a variable myAge and you want to increase the value by two,

you can write
int myAge = 5;

int temp;

temp = myAge + 2; // add 5 + 2 and put it in temp

myAge = temp; // put it back in myAge

This method, however, is terribly convoluted and wasteful. In C++, you can put the same

variable on both sides of the assignment operator, and thus the preceding becomes
myAge = myAge + 2;

which is much better. In algebra this expression would be meaningless, but in C++ it is

read as "add two to the value in myAge and assign the result to myAge."

xEven simpler to write, but perhaps a bit harder to read is
myAge += 2;

The self-assigned addition operator (+=) adds the r value to the l value and then reassigns

the result into the l value . This operator is pronounced "plus-equals." The statement

would be read "myAge plus-equals two." If myAge had the value 4 to start, it would have 6

after this statement.

There are self-assigned subtraction (-=), division (/=), multiplication (*=), and modulus (%=)

operators as well.

 C++ programming Noor muwafak

 First stage

 23

Increment and Decrement
The most common value to add (or subtract) and then reassign into a variable is 1. In C++,

increasing a value by 1 is called incrementing, and decreasing by 1 is called decrementing.

There are special operators to perform these actions.

The increment operator (++) increases the value of the variable by 1, and the decrement

operator (--) decreases it by 1. Thus, if you have a variable, C, and you want to increment it,

you would use this statement:
C++; // Start with C and increment it.

This statement is equivalent to the more verbose statement
C = C + 1;

which you learned is also equivalent to the moderately verbose statement
C += 1;

Prefix and Postfix
Both the increment operator (++) and the decrement operator(--) come in two varieties:

prefix and postfix. The prefix variety is written before the variable name (++myAge); the

postfix variety is written after (myAge++).

In a simple statement, it doesn't much matter which you use, but in a complex statement,

when you are incrementing (or decrementing) a variable and then assigning the result to

another variable, it matters very much. The prefix operator is evaluated before the

assignment, the postfix is evaluated after.

The semantics of prefix is this: Increment the value and then fetch it. The semantics of

postfix is different: Fetch the value and then increment the original.

This can be confusing at first, but if x is an integer whose value is 5 and you write:
int a = ++x;

you have told the compiler to increment x (making it 6) and then fetch that value and assign

it to a. Thus, a is now 6 and x is now 6.

If, after doing this, you write:
int b = x++;

you have now told the compiler to fetch the value in x (6) and assign it to b, and then go

back and increment x. Thus, b is now 6, but x is now 7.

A demonstration of prefix and postfix operators.
1: // demonstrates use of

2: // prefix and postfix increment and

3: // decrement operators

4: #include <iostream.h>

5: int main()

6: {

7: int myAge = 39; // initialize two integers

8: int yourAge = 39;

9: cout << "I am: " << myAge << " years old.\n";

10: cout << "You are: " << yourAge << " years old\n";

11: myAge++; // postfix increment

12: ++yourAge; // prefix increment

13: cout << "One year passes...\n";

14: cout << "I am: " << myAge << " years old.\n";

15: cout << "You are: " << yourAge << " years old\n";

16: cout << "Another year passes\n";

17: cout << "I am: " << myAge++ << " years old.\n";

18: cout << "You are: " << ++yourAge << " years old\n";

 C++ programming Noor muwafak

 First stage

 24

19: cout << "Let's print it again.\n";

20: cout << "I am: " << myAge << " years old.\n";

21: cout << "You are: " << yourAge << " years old\n";

22: return 0;

23: }

Output:

 I am 39 years old

You are 39 years old

One year passes

I am 40 years old

You are 40 years old

Another year passes

I am 40 years old

You are 41 years old

Let's print it again

I am 41 years old

You are 41 years old

Analysis: On lines 7 and 8, two integer variables are declared, and each is initialized

with the value 39. Their values are printed on lines 9 and 10.

On line 11, myAge is incremented using the postfix increment operator, and on line

12, yourAge is incremented using the prefix increment operator. The results are

printed on lines 14 and 15, and they are identical (both 40). On line 17, myAge is

incremented as part of the printing statement, using the postfix increment operator.

Because it is postfix, the increment happens after the print, and so the value 40 is

printed again. In contrast, on line 18, yourAge is incremented using the prefix

increment operator. Thus, it is incremented before being printed, and the value

displays as 41. Finally, on lines 20 and 21, the values are printed again. Because the

increment statement has completed, the value in myAge is now 41, as is the value in

yourAge.

Precedence:
In the complex statement:
x = 5 + 3 * 8;

which is performed first, the addition or the multiplication? If the addition is performed

first, the answer is 8 * 8, or 64. If the multiplication is performed first, the answer is 5 + 24,

or 29.

"Operator Precedence." Multiplication has higher precedence than addition, and thus the

value of the expression is 29. When two mathematical operators have the same precedence,

they are performed in left-to-right order. Thus x = 5 + 3 + 8 * 9 + 6 * 4;

is evaluated multiplication first, left to right. Thus, 8*9 = 72, and 6*4 = 24.

Now the expression is essentially :x = 5 + 3 + 72 + 24;

Now the addition, left to right, is 5 + 3 = 8; 8 + 72 = 80; 80 + 24 = 104.

Be careful with this. Some operators, such as assignment, are evaluated in right-to-left

order! In any case, what if the precedence order doesn't meet your needs? Consider the

expression:
TotalSeconds = NumMinutesToThink + NumMinutesToType * 60

 C++ programming Noor muwafak

 First stage

 25

In this expression, you do not want to multiply the NumMinutesToType variable by 60 and

then add it to NumMinutesToThink. You want to add the two variables to get the total number

of minutes, and then you want to multiply that number by 60 to get the total seconds.

In this case, you use parentheses to change the precedence order. Items in parentheses are

evaluated at a higher precedence than any of the mathematical operators. Thus
TotalSeconds = (NumMinutesToThink + NumMinutesToType) * 60

Relational Operators:
There are six relational operators: equals (==), less than (<), greater than (>), less than or

equal to (<=), greater than or equal to (>=), and not equals (!=).

The Relational Operators.

Name Operator Sample Evaluates

Equals == 100 == 50; False

 50 == 50; true

Not Equals != 100 != 50; true

 50 != 50; false

Greater Than > 100 > 50; true

 50 > 50; false

Greater Than >= 100 >= 50; true

Or Equals 50 >= 50; true

Less Than < 100 < 50; false

 50 < 50; false

Less Than <= 100 <= 50; false

Or Equals 50 <= 50; true

DO remember that relational operators return the value 1 (true) or 0 (false).

DON'T confuse the assignment operator (=) with the equals relational

operator (==). This is one of the most common C++ programming mistakes--

be on guard for it.

The if Statement:
Normally, your program flows along line by line in the order in which it appears in your

source code. The if statement enables you to test for a condition (such as whether two

variables are equal) and branch to different parts of your code, depending on the result.

The simplest form of an if statement is this:
if (expression)

 statement;

The expression in the parentheses can be any expression at all, but it usually contains one

of the relational expressions. If the expression has the value 0, it is considered false, and the

 C++ programming Noor muwafak

 First stage

 26

statement is skipped. If it has any nonzero value, it is considered true, and the statement is

executed. Consider the following example:
if (bigNumber > smallNumber)

 bigNumber = smallNumber;

This code compares bigNumber and smallNumber. If bigNumber is larger, the second line sets its

value to the value of smallNumber.

Because a block of statements surrounded by braces is exactly equivalent to a single

statement, the following type of branch can be quite large and powerful:

if (expression)

{

 statement1;

 statement2;

 statement3;

}

Here's a simple example of this usage:

if (bigNumber > smallNumber)

{

 bigNumber = smallNumber;

 cout << "bigNumber: " << bigNumber << "\n";

 cout << "smallNumber: " << smallNumber << "\n";

}

This time, if bigNumber is larger than smallNumber, not only is it set to the value of

smallNumber, but an informational message is printed.

A demonstration of branching based on relational operators.
1: // demonstrates if statement

2: // used with relational operators

3: #include <iostream.h>

4: int main()

5: {

6: int RedSoxScore, YankeesScore;

7: cout << "Enter the score for the Red Sox: ";

8: cin >> RedSoxScore;

9:

10: cout << "\nEnter the score for the Yankees: ";

11: cin >> YankeesScore;

12:

13: cout << "\n";

14:

15: if (RedSoxScore > YankeesScore)

16: cout << "Go Sox!\n";

17:

18: if (RedSoxScore < YankeesScore)

19: {

20: cout << "Go Yankees!\n";

21: cout << "Happy days in New York!\n";

22: }

23:

24: if (RedSoxScore == YankeesScore)

 C++ programming Noor muwafak

 First stage

 27

25: {

26: cout << "A tie? Naah, can't be.\n";

27: cout << "Give me the real score for the Yanks: ";

28: cin >> YankeesScore;

29:

30: if (RedSoxScore > YankeesScore)

31: cout << "Knew it! Go Sox!";

32:

33: if (YankeesScore > RedSoxScore)

34: cout << "Knew it! Go Yanks!";

35:

36: if (YankeesScore == RedSoxScore)

37: cout << "Wow, it really was a tie!";

38: }

39:

40: cout << "\nThanks for telling me.\n";

41: return 0;

42: }

Output:

 Enter the score for the Red Sox: 10

Enter the score for the Yankees: 10

A tie? Naah, can't be

Give me the real score for the Yanks: 8

Knew it! Go Sox!

Thanks for telling me.

Analysis: This program asks for user input of scores for two baseball teams, which

are stored in integer variables. The variables are compared in the if statement on

lines 15, 18, And24. If one score is higher than the other, an informational message

is printed. If the scores are equal, the block of code that begins on line 24 and ends

on line 38 is entered. The second score is requested again, and then the scores are

compared again.

Note that if the initial Yankees score was higher than the Red Sox score, the if

statement on line 15 would evaluate as FALSE, and line 16 would not be invoked. The

test on line 18 would evaluate as true, and the statements on lines 20 and 21 would be

invoked. Then the if statement on line 24 would be tested, and this would be false (if

line 18 was true). Thus, the program would skip the entire block, falling through to

line 39.

Else:
 Often your program will want to take one branch if your condition is true, another if it

is false. The method shown so far, testing first one condition and then the other, The

keyword else can make for far more readable code:

if (expression)

 statement;

else

 statement;

Example:

 C++ programming Noor muwafak

 First stage

 28

Demonstrating the else keyword.
1: // demonstrates if statement

2: // with else clause

3: #include <iostream.h>

4: int main()

5: {

6: int firstNumber, secondNumber;

7: cout << "Please enter a big number: ";

8: cin >> firstNumber;

9: cout << "\nPlease enter a smaller number: ";

10: cin >> secondNumber;

11: if (firstNumber > secondNumber)

12: cout << "\n Thanks!\n";

13: else

14: cout << "\n The second is bigger!";

15:

16: return 0;

17: }

Output:

 Please enter a big number: 10

Please enter a smaller number: 12

The second is bigger!

Analysis: The if statement on line 11 is evaluated. If the condition is true , the

statement on line 12 is run; if it is false, the statement on line 14 is run. If the else

clause on line 13 were removed, the statement on line 14 would run whether or not

the if statement was true. Remember, the if statement ends after line 12. If the else

was not there, line 14 would just be the next line in the program.

Remember that either or both of these statements could be replaced with a block of

code in braces.

The syntax for the if statement is as follows: Form1

if (expression)

 statement;

next statement;

If the expression is evaluated as TRUE, the statement is executed and the program continues

with the next statement. If the expression is not true, the statement is ignored and the

program jumps to the next statement. Remember that the statement can be a single

statement ending with a semicolon or a block enclosed in braces. Form 2

if (expression)

 statement1;

else

 statement2;

next statement;

If the expression evaluates TRUE, statement1 is executed; otherwise, statement2 is executed.

Afterwards, the program continues with the next statement.

Example:
if (SomeValue < 10)

 C++ programming Noor muwafak

 First stage

 29

 cout << "SomeValue is less than 10");

else

 cout << "SomeValue is not less than 10!");

cout << "Done." << endl;

Advanced if Statements
It is worth noting that any statement can be used in an if or else clause, even another if or

else statement. Thus, you might see complex if statements in the following form:

if (expression1)

{

 if (expression2)

 statement1;

 else

 {

 if (expression3)

 statement2;

 else

 statement3;

 }

}

else

 statement4;

This if statement says, "If expression1 is true and expression2 is true, execute statement1.

If expression1 is true but expression2 is not true, then if expression3 is true execute

statement2. If expression1 is true but expression2 and expression3 are false, execute

statement3. Finally, if expression1 is not true, execute statement4.

A complex, nested if statement.
1: // a complex nested

2: // if statement

3: #include <iostream.h>

4: int main()

5: {

6: // Ask for two numbers

7: // Assign the numbers to bigNumber and littleNumber

8: // If bigNumber is bigger than littleNumber,

9: // see if they are evenly divisible

10: // If they are, see if they are the same number

11:

12: int firstNumber, secondNumber;

13: cout << "Enter two numbers.\nFirst: ";

14: cin >> firstNumber;

15: cout << "\nSecond: ";

16: cin >> secondNumber;

17: cout << "\n\n";

18:

19: if (firstNumber >= secondNumber)

20: {

21: if ((firstNumber % secondNumber) == 0) // evenly divisible?

22: {

23: if (firstNumber == secondNumber)

 C++ programming Noor muwafak

 First stage

 30

24: cout << "They are the same!\n";

25: else

26: cout << "They are evenly divisible!\n";

27: }

28: else

29: cout << "They are not evenly divisible!\n";

30: }

31: else

32: cout << "Hey! The second one is larger!\n";

33: return 0;

34: }

Output:

 Enter two numbers.

First: 10

Second: 2

They are evenly divisible!

Analysis: Two numbers are prompted for one at a time, and then compared. The

first if statement, on line 19, checks to ensure that the first number is greater than or

equal to the second. If not, the else clause on line 31 is executed.

If the first if is true, the block of code beginning on line 20 is executed, and the

second if statement is tested, on line 21. This checks to see whether the first number

modulo the second number yields no remainder. If so, the numbers are either evenly

divisible or equal. The if statement on line 23 checks for equality and displays the

appropriate message either way.If the if statement on line 21 fails, the else statement

on line 28 is executed.

Using Braces in Nested if Statements
Although it is legal to leave out the braces on if statements that are only a single statement,

and it is legal to nest if statements, such as

if (x > y) // if x is bigger than y

 if (x < z) // and if x is smaller than z

 x = y; // then set x to the value in z

A demonstration of why braces help clarify which else statement goes with which

if statement.
1: // demonstrates why braces

2: // are important in nested if statements

3: #include <iostream.h>

4: int main()

5: {

6: int x;

7: cout << "Enter a number less than 10 or greater than 100: ";

8: cin >> x;

9: cout << "\n";

10:

11: if (x > 10)

12: if (x > 100)

13: cout << "More than 100, Thanks!\n";

 C++ programming Noor muwafak

 First stage

 31

14: else // not the else intended!

15: cout << "Less than 10, Thanks!\n";

16:

17: return 0;

18: }

Output: Enter a number less than 10 or greater than 100: 20

Less than 10, Thanks!

Analysis: The programmer intended to ask for a number between 10 and 100,

check for the correct value, and then print a thank-you note.

If the if statement on line 11 evaluates TRUE, the following statement (line 12) is

executed. In this case, line 12 executes when the number entered is greater than 10.

Line 12 contains an if statement also. This if statement evaluates TRUE if the number

entered is greater than 100. If the number is not greater than 100, the statement on

line 13 is executed.If the number entered is less than or equal to 10, the if statement

on line 10 evaluates to FALSE. Program control goes to the next line following the if

statement, in this case line 16. If you enter a number less than 10, the output is as

follows:
Enter a number less than 10 or greater than 100: 9

The else clause on line 14 was clearly intended to be attached to the if statement on

line 11, and thus is indented accordingly. the else statement is really attached to the if

statement on line 12, and thus this program has a subtle bug.

demonstration of the proper use of braces with an if statement
1: // demonstrates proper use of braces

2: // in nested if statements

3: #include <iostream.h>

4: int main()

5: {

6: int x;

7: cout << "Enter a number less than 10 or greater than 100: ";

8: cin >> x;

9: cout << "\n";

10:

11: if (x > 10)

12: {

13: if (x > 100)

14: cout << "More than 100, Thanks!\n";

15: }

16: else // not the else intended!

17: cout << "Less than 10, Thanks!\n";

18: return 0;

19: }

Output: Enter a number less than 10 or greater than 100: 20

Analysis: The braces on lines 12 and 15 make everything between them into one

statement, and now the else on line 16 applies to the if on line 11 as intended.

The user typed 20, so the if statement on line 11 is true; however, the if statement on

 C++ programming Noor muwafak

 First stage

 32

line 13 is false, so nothing is printed. It would be better if the programmer put

another else clause after line 14 so that errors would be caught and a message

printed.

The Logical Operators:

Operator Symbol Example

AND && Expression1 && expression2

OR || Expression1 || expression2

NOT ! !expression

Logical AND:
A logical AND statement evaluates two expressions, and if both expressions are true, the

logical AND statement is true as well. If it is true that you are hungry, AND it is true that

you have money, THEN it is true that you can buy lunch. Thus,
if ((x == 5) && (y == 5))

would evaluate TRUE if both x and y are equal to 5, and it would evaluate FALSE if either

one is not equal to 5. Note that both sides must be true for the entire expression to be true.

Note that the logical AND is two && symbols.

Logical OR:
A logical OR statement evaluates two expressions. If either one is true, the expression is

true. If you have money OR you have a credit card, you can pay the bill. You don't need

both money and a credit card; you need only one, although having both would be fine as

well. Thus,
if ((x == 5) || (y == 5))

evaluates TRUE if either x or y is equal to 5, or if both are.

Note that the logical OR is two || symbols.

Logical NOT:
A logical NOT statement evaluates true if the expression being tested is false. Again, if the

expression being tested is false, the value of the test is TRUE! Thus
if (!(x == 5))

is true only if x is not equal to 5. This is exactly the same as writing
if (x != 5)

Relational Precedence
 Relational operators and logical operators, being C++ expressions, each return a value:

1 (TRUE) or 0 (FALSE). Like all expressions, they have a precedence order that determines

which relations are evaluated first. This fact is important when determining the value of

the statement: if (x > 5 && y > 5 || z > 5)

 C++ programming Noor muwafak

 First stage

 33

It might be that the programmer wanted this expression to evaluate TRUE if both x and y

are greater than 5 or if z is greater than 5. On the other hand, the programmer might have

wanted this expression to evaluate TRUE only if x is greater than 5 and if it is also true that

either y is greater than 5 or z is greater than 5. If x is 3, and y and z are both 10, the first

interpretation will be true (z is greater than 5, so ignore x and y), but the second will be

false . Although precedence will determine which relation is evaluated first, parentheses

can both change the order and make the statement clearer:
if ((x > 5) && (y > 5 || z > 5))

Using the values from earlier, this statement is false. Because it is not true that x is greater

than 5, the left side of the AND statement fails, and thus the entire statement is false.

Remember that an AND statement requires that both sides be true--something isn't both

"good tasting" AND "good for you" if it isn't good tasting.

Conditional (Ternary) Operator
The conditional operator (?:) is C++'s only ternary operator; that is, it is the only operator

to take three terms.

The conditional operator takes three expressions and returns a value:
(expression1) ? (expression2) : (expression3)

This line is read as "If expression1 is true, return the value of expression2; otherwise,

return the value of expression3." Typically, this value would be assigned to a variable.

Example demonstrate of the conditional operator.
1: // demonstrates the conditional operator

2: //

3: #include <iostream.h>

4: int main()

5: {

6: int x, y, z;

7: cout << "Enter two numbers.\n";

8: cout << "First: ";

9: cin >> x;

10: cout << "\nSecond: ";

11: cin >> y;

12: cout << "\n";

13:

14: if (x > y)

15: z = x;

16: else

17: z = y;

18:

19: cout << "z: " << z;

20: cout << "\n";

21:

22: z = (x > y) ? x : y;

23:

24: cout << "z: " << z;

25: cout << "\n";

26: return 0;

 C++ programming Noor muwafak

 First stage

 34

27: }

Output:

 Enter two numbers.

First: 5

Second: 8

z: 8

z: 8

Analysis: Three integer variables are created: x, y, and z. The first two are given

values by the user. The if statement on line 14 tests to see which is larger and assigns

the larger value to z. This value is printed on line 19.

The conditional operator on line 22 makes the same test and assigns z the larger

value. It is read like this: "If x is greater than y, return the value of x; otherwise,

return the value of y." The value returned is assigned to z. That value is printed on

line 24. As you can see, the conditional statement is a shorter equivalent to the if...else

statement.

Looping

 Many programming problems are solved by repeatedly acting on the same data.

There are two ways to do this: recursion and iteration. Iteration means doing the same

thing again and again. The principal method of iteration is the loop.

The Roots of Looping goto
 In C++, a label is just a name followed by a colon (:). The label is placed to the left of a

legal C++ statement, and a jump is accomplished by writing goto followed by the label

name.

Looping with the keyword goto.
1: // looping

2: // with goto

3:

4: #include <iostream.h>

5:

6: int main()

7: {

8: int counter = 0; // initialize counter

9: loop: counter ++; // top of the loop

10: cout << "counter: " << counter << "\n";

11: if (counter < 5) // test the value

12: goto loop; // jump to the top

13:

14: cout << "Complete. Counter: " << counter << ".\n";

15: return 0;

16: }

Output: counter: 1

counter: 2

counter: 3

counter: 4

counter: 5

 C++ programming Noor muwafak

 First stage

 35

Complete. Counter: 5.

Analysis: On line 8, counter is initialized to 0. The label loop is on line 9, marking the

top of the loop. Counter is incremented and its new value is printed. The value of

counter is tested on line 11. If it is less than 5, the if statement is true and the goto

statement is executed. This causes program execution to jump back to line 9. The

program continues looping until counter is equal to 5, at which time it "falls

through" the loop and the final output is printed.

The goto Statement
To use the goto statement, you write goto followed by a label name. This causes an

unconditioned jump to the label.

 Example:
if (value > 10) goto end; if (value < 10) goto end; cout << "value is Â10!"; end: cout << "done";

while Loops
A while loop causes your program to repeat a sequence of statements as long as the starting

condition remains true.

while loops.
1: // Looping

2: // with while

3:

4: #include <iostream.h>

5:

6: int main()

7: {

8: int counter = 0; // initialize the condition

9:

10: while(counter < 5) // test condition still true

11: {

12: counter++; // body of the loop

13: cout << "counter: " << counter << "\n";

14: }

15:

16: cout << "Complete. Counter: " << counter << ".\n";

17: return 0;

18: }

Output: counter: 1

counter: 2

counter: 3

counter: 4

counter: 5

Complete. Counter: 5.

Analysis: This simple program demonstrates the fundamentals of the while loop. A

condition is tested, and if it is true, the body of the while loop is executed. In this case,

the condition tested on line 10 is whether counter is less than 5. If the condition is

true, the body of the loop is executed; on line 12 the counter is incremented, and on

line 13 the value is printed. When the conditional statement on line 10 fails (when

 C++ programming Noor muwafak

 First stage

 36

counter is no longer less than 5), the entire body of the while loop (lines 11-14) is

skipped. Program execution falls through to line 15.

The while Statement
The syntax for the while statement is as follows:
while (condition)

statement;

condition is any C++ expression, and statement is any valid C++ statement or block of

statements. When condition evaluates to TRUE (1), statement is executed, and then

condition is tested again. This continues until condition tests FALSE, at which time the while

loop terminates and execution continues on the first line below statement.

Example:
// count to 10

int x = 0;

while (x < 10)

cout << "X: " << x++;

More Complicated while Statements
The condition tested by a while loop can be as complex as any legal C++ expression. This

can include expressions produced using the logical && (AND), || (OR), and ! (NOT)

operators.

Complex while loops.
1: // program of

2: // Complex while statements

3:

4: #include <iostream.h>

5:

6: int main()

7: {

8: unsigned short small;

9: unsigned long large;

10: const unsigned short MAXSMALL=65535;

11:

12: cout << "Enter a small number: ";

13: cin >> small;

14: cout << "Enter a large number: ";

15: cin >> large;

16:

17: cout << "small: " << small << "...";

18:

19: // for each iteration, test three conditions

20: while (small < large && large > 0 && small < MAXSMALL)

21:

22: {

23: if (small % 5000 == 0) // write a dot every 5k lines

24: cout << ".";

25:

26: small++;

27:

28: large-=2;

29: }

 C++ programming Noor muwafak

 First stage

 37

30:

31: cout << "\nSmall: " << small << " Large: " << large << endl;

32: return 0;

33: }

Output: Enter a small number: 2

Enter a large number: 100000

small: 2.........

Small: 33335 Large: 33334

Analysis: This program is a game. Enter two numbers, one small and one large.

The smaller number will count up by ones, and the larger number will count down

by twos. The goal of the game is to guess when they'll meet. On lines 12-15, the

numbers are entered. Line 20 sets up a while loop, which will continue only as long

as three conditions are met: small is not bigger than large.large isn't negative.small

doesn't overrun the size of a small integer (MAXSMALL). On line 23, the value in

small is calculated modulo 5,000. This does not change the value in small; however,

it only returns the value 0 when small is an exact multiple of 5,000. Each time it is, a

dot (.) is printed to the screen to show progress. On line 26, small is incremented,

and on line 28, large is decremented by 2.When any of the three conditions in the

while loop fails, the loop ends and execution of the program continues after the

while loop's closing brace on line 29.

continue and break
At times you'll want to return to the top of a while loop before the entire set of statements in

the while loop is executed. The continue statement jumps back to the top of the loop.

At other times, you may want to exit the loop before the exit conditions are met. The break

statement immediately exits the while loop, and program execution resumes after the closing

brace.

Program of break and continue.
1: // program

2: // Demonstrates break and continue

3:

4: #include <iostream.h>

5:

6: int main()

7: {

8: unsigned short small;

9: unsigned long large;

10: unsigned long skip;

11: unsigned long target;

12: const unsigned short MAXSMALL=65535;

13:

14: cout << "Enter a small number: ";

15: cin >> small;

16: cout << "Enter a large number: ";

17: cin >> large;

18: cout << "Enter a skip number: ";

19: cin >> skip;

20: cout << "Enter a target number: ";

21: cin >> target;

 C++ programming Noor muwafak

 First stage

 38

22:

23: cout << "\n";

24:

25: // set up 3 stop conditions for the loop

26: while (small < large && large > 0 && small < 65535)

27:

28: {

29:

30: small++;

31:

32: if (small % skip == 0) // skip the decrement?

33: {

34: cout << "skipping on " << small << endl;

35: continue;

36: }

37:

38: if (large == target) // exact match for the target?

39: {

40: cout << "Target reached!";

41: break;

42: }

43:

44: large-=2;

45: } // end of while loop

46:

47: cout << "\nSmall: " << small << " Large: " << large << endl;

48: return 0;

49: }

Output:

Enter a small number: 2

Enter a large number: 20

Enter a skip number: 4

Enter a target number: 6

skipping on 4

skipping on 8

Small: 10 Large: 8

Analysis: In this play, the user lost; small became larger than large before the

target number of 6 was reached. On line 26, the while conditions are tested. If small

continues to be smaller than large, large is larger than 0, and small hasn't overrun

the maximum value for a small int, the body of the while loop is entered. On line 32,

the small value is taken modulo the skip value. If small is a multiple of skip, the

continue statement is reached and program execution jumps to the top of the loop at

line 26. This effectively skips over the test for the target and the decrement of large.

On line 38, target is tested against the value for large. If they are the same, the user

has won. A message is printed and the break statement is reached. This causes an

immediate break out of the while loop, and program execution resumes on line 46.

The continue Statement
continue; causes a while or for loop to begin again at the top of the loop.

 C++ programming Noor muwafak

 First stage

 39

Example:
if (value > 10)

 goto end;

if (value < 10)

 goto end;

cout << "value is 10!";

end:

cout << "done";

The break Statement
Break ; causes the immediate end of a while or for loop. Execution jumps to the closing brace.

Example:
while (condition)

{

 if (condition2)

 break ;

 // statements;

}

while (1) Loops
 The condition tested in a while loop can be any valid C++ expression. As long as that

condition remains true, the while loop will continue. You can create a loop that will never

end by using the number 1 for the condition to be tested. Since 1 is always true, the loop

will never end, unless a break statement is reached.

while (1) loops.
1: // program

2: // Demonstrates a while true loop

3:

4: #include <iostream.h>

5:

6: int main()

7: {

8: int counter = 0;

9:

10: while (1)

11: {

12: counter ++;

13: if (counter > 10)

14: break;

15: }

16: cout << "Counter: " << counter << "\n";

17: return 0;

18:

Output: Counter: 11

Analysis: On line 10, a while loop is set up with a condition that can never be

false. The loop increments the counter variable on line 12 and then on line 13

tests to see whether counter has gone past 10. If it hasn't, the while loop

iterates. If counter is greater than 10, the break on line 14 ends the while loop,

 C++ programming Noor muwafak

 First stage

 40

and program execution falls through to line 16, where the results are printed.

do...while Loops
It is possible that the body of a while loop will never execute. The while statement checks its

condition before executing any of its statements, and if the condition evaluates false, the

entire body of the while loop is skipped.

the body of the while Loop.
1: // program

2: // Demonstrates skipping the body of

3: // the while loop when the condition is false.

4:

5: #include <iostream.h>

6:

7: int main()

8: {

9: int counter;

10: cout << "How many hellos?: ";

11: cin >> counter;

12: while (counter > 0)

13: {

14: cout << "Hello!\n";

15: counter--;

16: }

17: cout << "Counter is OutPut: " << counter;

18: return 0;

19: }

Output:

How many hellos?: 2

Hello!

Hello!

Counter is OutPut: 0

How many hellos?: 0

Counter is OutPut: 0

Analysis: The user is prompted for a starting value on line 10. This starting

value is stored in the integer variable counter. The value of counter is tested on

line 12, and decremented in the body of the while loop. The first time through

counter was set to 2, and so the body of the while loop ran twice. The second

time through, however, the user typed in 0. The value of counter was tested on

line 12 and the condition was false; counter was not greater than 0. The entire

body of the while loop was skipped, and Hello was never printed.

do...while
The do...while loop executes the body of the loop before its condition is tested and ensures

that the body always executes at least one time.

Program Demonstrates do...while loop.
1: // program

 C++ programming Noor muwafak

 First stage

 41

2: // Demonstrates do while

3:

4: #include <iostream.h>

5:

6: int main()

7: {

8: int counter;

9: cout << "How many hellos? ";

10: cin >> counter;

11: do

12: {

13: cout << "Hello\n";

14: counter--;

15: } while (counter >0);

16: cout << "Counter is: " << counter << endl;

17: return 0;

18: }

Output: How many hellos? 2

Hello

Hello

Counter is: 0

Analysis: The user is prompted for a starting value on line 9, which is stored in the

integer variable counter. In the do...while loop, the body of the loop is entered before

the condition is tested, and therefore the body of the loop is guaranteed to run at

least once. On line 13 the message is printed, on line 14 the counter is decremented,

and on line 15 the condition is tested. If the condition evaluates TRUE, execution

jumps to the top of the loop on line 13; otherwise, it falls through to line 16.

The continue and break statements work in the do...while loop exactly as they do in the

while loop. The only difference between a while loop and a do...while loop is when the

condition is tested.

The do...while Statement
The syntax for the do...while statement is as follows:
do

statement

while (condition);

statement is executed, and then condition is evaluated. If condition is TRUE, the loop is

repeated; otherwise, the loop ends. The statements and conditions are otherwise identical to

the while loop.

 Example 1:
// count to 10

int x = 0;

do

cout << "X: " << x++;

while (x < 10)

Example 2:
// print lowercase alphabet.

 C++ programming Noor muwafak

 First stage

 42

char ch = `a';

do

{

cout << ch << ` `;

ch++;

} while (ch <= `z');

for Loops
 When programming while loops, you'll often find yourself setting up a starting condition,

testing to see if the condition is true, and incrementing or otherwise changing a variable

each time through the loop.

1: // program

2: // Looping with while

3:

4: #include <iostream.h>

5:

6: int main()

7: {

8: int counter = 0;

9:

10: while(counter < 5)

11: {

12: counter++;

13: cout << "Looping! ";

14: }

15:

16: cout << "\nCounter: " << counter << ".\n";

17: return 0;

18: }

Output: Looping! Looping! Looping! Looping! Looping!

Counter: 5.

Analysis: The condition is set on line 8: counter is initialized to 0. On line 10,

counter is tested to see whether it is less than 5. counter is incremented on line

12. On line 16, a simple message is printed, but you can imagine that more

important work could be done for each increment of the counter.

A for loop combines three steps into one statement. The three steps are

initialization, test, and increment. A for statement consists of the keyword for

followed by a pair of parentheses. Within the parentheses are three

statements separated by semicolons.

Demonstrating the for loop.
1: // program

2: // Looping with for

3:

4: #include <iostream.h>

5:

6: int main()

7: {

8: int counter;

 C++ programming Noor muwafak

 First stage

 43

9: for (counter = 0; counter < 5; counter++)

10: cout << "Looping! ";

11:

12: cout << "\nCounter: " << counter << ".\n";

13: return 0;

14: }

Output: Looping! Looping! Looping! Looping! Looping!

Counter: 5.

Analysis: The for statement on line 8 combines the initialization of counter,

the test that counter is less than 5, and the increment of counter all into one

line. The body of the for statement is on line 9.

The for Statement
The syntax for the for statement is as follows:
for (initialization; test; action)

statement;

The initialization statement is used to initialize the state of a counter, or to otherwise

prepare for the loop.

 Example 1:
// print Hello ten times

for (int i = 0; i<10; i++)

cout << "Hello! ";

Example 2:
for (int i = 0; i < 10; i++)

{

 cout << "Hello!" << endl;

 cout << "the value of i is: " << i << endl;

}

Advanced for Loops
 for statements are powerful and flexible. The three independent statements

(initialization, test, and action) lend themselves to a number of variations.

A for loop works in the following sequence:

1. Performs the operations in the initialization.

2. Evaluates the condition.

3. If the condition is TRUE, executes the action statement and the loop.

After each time through, the loop repeats steps 2 and 3. Multiple Initialization and

Increments It is not uncommon to initialize more than one variable, to test a compound

logical expression, and to execute more than one statement. The initialization and the

action may be replaced by multiple C++ statements, each separated by a comma.

Demonstrating multiple statements in for loops.
1: //program

2: // demonstrates multiple statements in

 C++ programming Noor muwafak

 First stage

 44

3: // for loops

4:

5: #include <iostream.h>

6:

7: int main()

8: {

9: for (int i=0, j=0; i<3; i++, j++)

10: cout << "i: " << i << " j: " << j << endl;

11: return 0;

12: }

Output:

 i: 0 j: 0

i: 1 j: 1

i: 2 j: 2

Analysis: On line 9, two variables, i and j, are each initialized with the value 0. The

test (i<3) is evaluated, and because it is true, the body of the for statement is

executed, and the values are printed. Finally, the third clause in the for statement is

executed, and i and j are incremented.Once line 10 completes, the condition is

evaluated again, and if it remains true the actions are repeated (i and j are again

incremented), and the body of loop is executed again. This continues until the test

fails, in which case the action statement is not executed, and control falls out of the

loop. Null Statements in for Loops Any or all of the statements in a for loop can be

null. To accomplish this, use the semicolon to mark where the statement would have

been. To create a for loop that acts exactly like a while loop, leave out the first and

third statements.

The Null statements in for loops.
1: // program

2: // For loops with null statements

3:

4: #include <iostream.h>

5:

6: int main()

7: {

8: int counter = 0;

9:

10: for(; counter < 5;)

11: {

12: counter++;

13: cout << "Looping! ";

14: }

15:

16: cout << "\nCounter: " << counter << ".\n";

17: return 0;

18: }

 C++ programming Noor muwafak

 First stage

 45

output: Looping! Looping! Looping! Looping! Looping!

Counter: 5.

Analysis: You may recognize this as exactly like the while loop illustrated

On line 8, the counter variable is initialized. The for statement on line 10 does

not initialize any values, but it does include a test for counter < 5. There is no

increment statement, so this loop behaves exactly as if it had been written:
while (counter < 5)

Illustrating empty for loop statement.
1: //program

2: //empty for loop statement

3:

4: #include <iostream.h>

5:

6: int main()

7: {

8: int counter=0; // initialization

9: int max;

10: cout << "How many hellos?";

11: cin >> max;

12: for (;;) // a for loop that doesn't end

13: {

14: if (counter < max) // test

15: {

16: cout << "Hello!\n";

17: counter++; // increment

18: }

19: else

20: break;

21: }

22: return 0;

23: }

Output:

How many hellos?3

Hello!

Hello!

Hello!

Analysis: The for loop has now been pushed to its absolute limit. Initialization, test,

and action have all been taken out of the for statement. The initialization is done on

line 8, before the for loop begins. The test is done in a separate if statement on line

14, and if the test succeeds, the action, an increment to counter, is performed on line

17. If the test fails, breaking out of the loop occurs on line 20.

While this particular program is somewhat absurd, there are times when a for(;;)

loop or a while (1) loop is just what you'll want. You'll see an example of a more

reasonable use of such loops when switch statements are discussed later today.

Empty for Loops

 C++ programming Noor muwafak

 First stage

 46

 So much can be done in the header of a for statement, there are times you won't need

the body to do anything at all. In that case, be sure to put a null statement (;) as the body of

the loop. The semicolon can be on the same line as the header, but this is easy to overlook.

Illustrates the null statement in a for loop.
1: //program

2: //Demonstrates null statement

3: // as body of for loop

4:

5: #include <iostream.h>

6: int main()

7: {

8: for (int i = 0; i<5; cout << "i: " << i++ << endl)

9: ;

10: return 0;

11: }

Output:

 i: 0

i: 1

i: 2

i: 3

i: 4

Analysis: The for loop on line 8 includes three statements: the initialization

statement establishes the counter i and initializes it to 0. The condition statement

tests for i<5, and the action statement prints the value in i and increments it.

There is nothing left to do in the body of the for loop, so the null statement (;) is used.

Note that this is not a well-designed for loop: the action statement is doing far too

much. This would be better rewritten as
8: for (int i = 0; i<5; i++)

9: cout << "i: " << i << endl;

Nested Loops
Loops may be nested, with one loop sitting in the body of another. The inner loop will be

executed in full for every execution of the outer loop.

Program Illustrates nested for loops.
1: //program

2: //Illustrates nested for loops

3:

4: #include <iostream.h>

5:

6: int main()

7: {

8: int rows, columns;

9: char theChar;

10: cout << "How many rows? ";

11: cin >> rows;

12: cout << "How many columns? ";

13: cin >> columns;

14: cout << "What character? ";

15: cin >> theChar;

16: for (int i = 0; i<rows; i++)

17: {

 C++ programming Noor muwafak

 First stage

 47

18: for (int j = 0; j<columns; j++)

19: cout << theChar;

20: cout << "\n";

21: }

22: return 0;

23: }

Output: How many rows? 4

How many columns? 12

What character? x

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

Analysis: The user is prompted for the number of rows and columns and for a

character to print. The first for loop, on line 16, initializes a counter (i) to 0, and then

the body of the outer for loop is run. On line 18, the first line of the body of the outer

for loop, another for loop is established. A second counter (j) is also initialized to 0,

and the body of the inner for loop is executed. On line 19, the chosen character is

printed, and control returns to the header of the inner for loop. Note that the inner

for loop is only one statement (the printing of the character). The condition is tested

(j < columns) and if it evaluates true, j is incremented and the next character is

printed. This continues until j equals the number of columns. Once the inner for loop

fails its test, in this case after 12 Xs are printed, execution falls through to line 20,

and a new line is printed. The outer for loop now returns to its header, where its

condition (i < rows) is tested. If this evaluates true, i is incremented and the body of

the loop is executed. In the second iteration of the outer for loop, the inner for loop is

started over. Thus, j is reinitialized to 0 and the entire inner loop is run again.

switch Statements
 switch statements allow you to branch on any of a number of different values. The

general form of the switch statement is:
switch (expression)

{

case valueOne: statement;

 break;

case valueTwo: statement;

 break;

....

case valueN: statement;

 break;

default: statement;

}

expression is any legal C++ expression, and the statements are any legal C++ statements or

block of statements. switch evaluates expression and compares the result to each of the case

values. If one of the case values matches the expression, execution jumps to those statements

and continues to the end of the switch block, unless a break statement is encountered.

Demonstrating the switch statement.

 C++ programming Noor muwafak

 First stage

 48

1: //program

2: // Demonstrates switch statement

3:

4: #include <iostream.h>

5:

6: int main()

7: {

8: unsigned short int number;

9: cout << "Enter a number between 1 and 5: ";

10: cin >> number;

11: switch (number)

12: {

13: case 0: cout << "Too small, sorry!";

14: break;

15: case 5: cout << "Good job!\n"; // fall through

16: case 4: cout << "Nice Pick!\n"; // fall through

17: case 3: cout << "Excellent!\n"; // fall through

18: case 2: cout << "Masterful!\n"; // fall through

19: case 1: cout << "Incredible!\n";

20: break;

21: default: cout << "Too large!\n";

22: break;

23: }

24: cout << "\n\n";

25: return 0;

26: }

Output:

Enter a number between 1 and 5: 3

Excellent!

Masterful!

Incredible!

Output:

Enter a number between 1 and 5: 8

Too large!

Analysis: The user is prompted for a number. That number is given to the

switch statement. If the number is 0, the case statement on line 13 matches, the

message Too small, sorry! is printed, and the break statement ends the switch. If

the value is 5, execution switches to line 15 where a message is printed, and

then falls through to line 16, another message is printed, and so forth until

hitting the break on line 20. The net effect of these statements is that for a

number between 1 and 5, that many messages are printed. If the value of

number is not 0-5, it is assumed to be too large, and the default statement is

invoked on line 21.

The switch Statement
The syntax for the switch statement is as follows:
switch (expression)

 C++ programming Noor muwafak

 First stage

 49

{

case valueOne: statement;

case valueTwo: statement;

....

case valueN: statement

default: statement;

}

The switch statement allows for branching on multiple values of expression. The expression

is evaluated, and if it matches any of the case values, execution jumps to that line. Execution

continues until either the end of the switch statement or a break statement is encountered. If

expression does not match any of the case statements, and if there is a default statement,

execution switches to the default statement, otherwise the switch statement ends.

 Example 1:

switch (choice)

{

case 0:

 cout << "Zero!" << endl;

 break

case 1:

 cout << "One!" << endl;

 break;

case 2:

 cout << "Two!" << endl;

default:

 cout << "Default!" << endl;

Example 2:

switch (choice)

{

choice 0:

choice 1:

choice 2:

 cout << "Less than 3!";

 break;

choice 3:

 cout << "Equals 3!";

 break;

default:

 cout << "greater than 3!";

}

 C++ programming Noor muwafak

 First stage

 50

Using Numeric Arrays
Arrays are a type of data storage that you often use in C++ programs. You had a brief

introduction to arrays :

 What an array is

 The definition of single- and multidimensional numeric arrays

 How to declare and initialize arrays

What Is an Array?
An array is a collection of data storage locations, each having the same data type and the

same name. Each storage location in an array is called an array element. Why do you need

arrays in your programs? This question can be answered with an example. If you're

keeping track of your business expenses for 2006 and filing your receipts by month, you

could have a separate folder for each month's receipts, but it would be more convenient to

have a single folder with 12 compartments.

Extend this example to computer programming. Imagine that you're designing a program

to keep track of your business expenses. The program could declare 12 separate variables,

one for each month's expense total. This approach is analogous to having 12 separate

folders for your receipts. Good programming practice, however, would utilize an array

with 12 elements, storing each month's total in the corresponding array element. This

approach is comparable to filing your receipts in a single folder with 12 compartments. The

figure below illustrates the difference between using individual variables and an array.

 C++ programming Noor muwafak

 First stage

 51

Variables are like individual folders, where as an array is like a single folder with many

compartments.

Declaring Arrays
 Arrays can have any legal variable name, but they cannot have the same name as

another variable or array within their scope. Therefore ,you cannot have an array named

myCats[5] and a variable named myCats at the same time.

Single-Dimensional Arrays
 A single-dimensional array has only a single subscript. A subscript is a number in

brackets that follows an array's name. This number can identify the number of individual

elements in the array. An example should make this clear. For the business expenses

program, you could use the following line to declare an array of type float:
 float expenses[12];

The array is named expenses, and it contains 12 elements. Each of the 12 elements is the

exact equivalent of a single float variable. All of C++ data types can be used for arrays.

C++ array elements are always numbered starting at 0, so the 12 elements of expenses are

numbered 0 through 11.

 When you declare an array, the compiler sets aside a block of memory large enough to

hold the entire array. Individual array elements are stored in sequential memory locations,

as shown in Figure below .

 C++ programming Noor muwafak

 First stage

 52

 Array elements are stored in sequential memory locations.

 The location of array declarations in your source code is important. As with non array

variables, the declaration's location affects how your program can use the array.

An array element can be used in your program anywhere a non array variable of the same

type can be used. Individual elements of the array are accessed by using the array name

followed by the element subscript enclosed in square brackets. For example, the following

statement stores the value 89.95 in the second array element (remember, the first array

element is expenses[0], not expenses[1]):
expenses[1] = 89.95;

Likewise, the statement
expenses[10] = expenses[11];

assigns a copy of the value that is stored in array element expenses[11] into array element

expenses[10]. When you refer to an array element, the array subscript can be a literal

constant, as in these examples. However, your programs might often use a subscript that is

a C++ integer variable or expression, or even another array element. Here are some

examples:
float expenses[100];

int a[10];

/* additional statements go here */

expenses[i] = 100; /* i is an integer variable */

expenses[2 + 3] = 100; /* equivalent to expenses[5] */

expenses[a[2]] = 100; /* a[] is an integer array */

 That last example might need an explanation. If, for instance, you have an integer array

named a[] and the value 8 is stored in element a[2], writing expenses[a[2]]

has the same effect as writing expenses[8];

When you use arrays, keep the element numbering scheme in mind: In an array of n

elements, the allowable subscripts range from 0 to n-1. If you use the subscript value n, you

might get program errors. The C++ compiler doesn't recognize whether your program uses

an array subscript that is out of bounds. Your program compiles and links, but out-of-

range subscripts generally produce erroneous results.

WARNING: Remember that array elements start with 0, not 1. Also remember that the

last element is one less than the number of elements in the array. For example, an array

with 10 elements contains elements 0 through 9.

Sometimes you might want to treat an array of n elements as if its elements were numbered

1 through n. For instance, in the previous example, a more natural method might be to

store January's expense total in expenses[1], February's in expenses[2], and so on. The

simplest way to do this is to declare the array with one more element than needed, and

ignore element 0. In this case, you would declare the array as follows. You could also store

some related data in element 0 (the yearly expense total, perhaps).
float expenses[13];

 C++ programming Noor muwafak

 First stage

 53

The following program EXPENSES.Cpp demonstrates the use of an array. This is a simple

program with no real practical use; it's for demonstration purposes only.

Program demonstrates the use of an array.
1: /* EXPENSES.Cpp - Demonstrates use of an array */

2:

3: #include <conio.h>

4:

5: /* Declare an array to hold expenses, and a counter variable */

6:

7: float expenses[13];

8: int count;

9:

10: main()

11: {

12: /* Input data from keyboard into array */

13:

14: for (count = 1; count < 13; count++)

15: {

16: cout<<"Enter expenses for month : "<<count);

17: cin>>expenses[count];

18: }

19:

20: /* Print array contents */

21:

22: for (count = 1; count < 13; count++)

23: {

24: cout<<"Month = \n"<< count<<”\t”<<expenses[count];

25: }

26: return 0;

27: }

Output:

Enter expenses for month 1: 100

Enter expenses for month 2: 200.12

Enter expenses for month 3: 150.50

Enter expenses for month 4: 300

Enter expenses for month 5: 100.50

Enter expenses for month 6: 34.25

Enter expenses for month 7: 45.75

Enter expenses for month 8: 195.00

Enter expenses for month 9: 123.45

Enter expenses for month 10: 111.11

Enter expenses for month 11: 222.20

Enter expenses for month 12: 120.00

Month 1 = $100.00

Month 2 = $200.12

Month 3 = $150.50

Month 4 = $300.00

Month 5 = $100.50

Month 6 = $34.25

Month 7 = $45.75

 C++ programming Noor muwafak

 First stage

 54

Month 8 = $195.00

Month 9 = $123.45

Month 10 = $111.11

Month 11 = $222.20

Month 12 = $120.00

ANAALYSIS: When you run EXPENSES.Cpp , the program prompts you to enter

expenses for months 1 through 12. The values you enter are stored in an array. You must

enter a value for each month. After the 12th value is entered, the array contents are

displayed on-screen.

The flow of the program is similar to listings you've seen before. Line 1 starts with a

comment that describes what the program does. Notice that the name of the program,

EXPENSES.Cpp, is included. When the name of the program is included in a comment,

you know which program you're viewing. This is helpful when you're reviewing printouts

of a listing.

Line 5 contains an additional comment explaining the variables that are being declared. In

line 7, an array of 13 elements is declared. In this program, only 12 elements are needed,

one for each month, but 13 have been declared. The for loop in lines 14 through 18 ignores

element 0. This lets the program use elements 1 through 12, which relate directly to the 12

months. Going back to line 8, a variable, count, is declared and is used throughout the

program as a counter and an array index.

The program's main() function begins on line 10. As stated earlier, this program uses a for

loop to print a message and accept a value for each of the 12 months. Notice that in line 17,

the cin function uses an array element. In line 7, the expenses array was declared as float.

Lines 22 through 25 contain a second for loop that prints the values just entered. An

additional formatting command has been added to the cout function so that the expenses

values print in a more orderly fashion.

DON'T forget that array subscripts start at element 0.

DO use arrays instead of creating several variables that store the same thing. For example,

if you want to store total sales for each month of the year, create an array with 12 elements

to hold sales rather than creating a sales variable for each month.

Initializing Arrays
 You can initialize a simple array of built-in types, such as integers and characters, when

you first declare the array. After the array name, you put an equal sign (=) and a list of

comma-separated values enclosed in braces. For example,
int IntegerArray[5] = { 10, 20, 30, 40, 50 };

declares IntegerArray to be an array of five integers. It assigns IntegerArray[0] the value 10,

IntegerArray[1] the value 20, and so forth.

If you omit the size of the array, an array just big enough to hold the initialization is

created. Therefore, if you write int IntegerArray[] = { 10, 20, 30, 40, 50 };

 C++ programming Noor muwafak

 First stage

 55

you will create exactly the same array as you did in the previous example.

If you need to know the size of the array, you can ask the compiler to compute it for you.

For example,
const USHORT IntegerArrayLength;

IntegerArrayLength = sizeof(IntegerArray)/sizeof(IntegerArray[0]);

sets the constant USHORT variable IntegerArrayLength to the result obtained from dividing

the size of the entire array by the size of each individual entry in the array. That quotient is

the number of members in the array.

You cannot initialize more elements than you've declared for the array. Therefore,

 Int IntegerArray[5] = { 10, 20, 30, 40, 50, 60};

generates a compiler error because you've declared a five-member array and initialized six

values. It is legal, however, to write:
int IntegerArray[5] = { 10, 20};

Although uninitialized array members have no guaranteed values, actually, aggregates will

be initialized to 0. If you don't initialize an array member, its value will be set to 0.

DO let the compiler set the size of initialized arrays. DON'T write past the end of the array.

DO give arrays meaningful names, as you would with any variable.DO remember that the

first member of the array is at offset 0.

You can dimension the array size with a const or with an enumeration.

Program Using consts and enums in arrays.
1: // program

2: // Dimensioning arrays with consts and enumerations

3:

4: #include <iostream.h>

5: int main()

6: {

7: enum WeekDays { Sun, Mon, Tue,

8: Wed, Thu, Fri, Sat, DaysInWeek };

9: int ArrayWeek[DaysInWeek] = { 10, 20, 30, 40, 50, 60, 70 };

10:

11: cout << "The value at Tuesday is: " << ArrayWeek[Tue];

12: return 0;

13: }

Output: The value at Tuesday is: 30

Analysis: Line 7 creates an enumeration called WeekDays. It has eight

members. Sunday is equal to 0, and DaysInWeek is equal to 7.

Line 11 uses the enumerated constant Tue as an offset into the array.

Because Tue evaluates to 2, the third element of the array,

DaysInWeek[2], is returned and printed in line 11.

Array Elements
You access each of the array elements by referring to an offset from the array name. Array

elements are counted from zero. Therefore, the first array element is arrayName[0]. In the

LongArray example, LongArray[0] is the first array element, LongArray[1] the second, and so

forth.

This can be somewhat confusing. The array SomeArray[3] has three elements. They are

SomeArray[0], SomeArray[1], and SomeArray[2]. More generally, SomeArray[n] has n elements

that are numbered SomeArray[0] through SomeArray[n-1].

 C++ programming Noor muwafak

 First stage

 56

Therefore, LongArray[25] is numbered from LongArray[0] through LongArray[24].

Program Using an integer array.

1: //program using integer Arrays

2: #include <iostream.h>

3:

4: int main()

5: {

6: int myArray[5];

7: int i;

8: for (i=0; i<5; i++) // 0-4

9: {

10: cout << "Value for myArray[" << i << "]: ";

11: cin >> myArray[i];

12: }

13: for (i = 0; i<5; i++)

14: cout << i << ": " << myArray[i] << "\n";

15: return 0;

16: }

Output:

Value for myArray[0]: 3

Value for myArray[1]: 6

Value for myArray[2]: 9

Value for myArray[3]: 12

Value for myArray[4]: 15

0: 3

1: 6

2: 9

3: 12

4: 15

Analysis: Line 6 declares an array called myArray, which holds five integer

variables. Line 8 establishes a loop that counts from 0 through 4, which is the

proper set of offsets for a five-element array. The user is prompted for a

value, and that value is saved at the correct offset into The array. The first

value is saved at myArray[0], the second at myArray[1], and so forth. The second

for loop prints each value to the screen.

NOTE: Arrays count from 0, not from 1. This is the cause of many bugs in programs

written by C++ novices. Whenever you use an array, remember that an array with 10

elements counts from ArrayName[0] to ArrayName[9]. There is no ArrayName[10].

Multidimensional Arrays
A multidimensional array has more than one subscript. A two-dimensional array has two

subscripts, a three-dimensional array has three subscripts, and so on. There is no limit to

the number of dimensions a C++ array can have. (There is a limit on total array size).

For example, you might write a program that plays checkers. The checkerboard contains

64 squares arranged in eight rows and eight columns. Your program could represent the

board as a two-dimensional array, as follows:
int checker[8][8];

 C++ programming Noor muwafak

 First stage

 57

The resulting array has 64 elements: checker[0][0], checker[0][1],

checker[0][2]...checker[7][6], checker[7][7]. The structure of this two-dimensional array is

illustrated in the figure below.

two-dimensional array has a row-and-column structure.

Similarly, a three-dimensional array could be thought of as a cube. Four-dimensional

arrays (and higher) are probably best left to your imagination. All arrays, no matter how

many dimensions they have, are stored sequentially in memory.

Initializing Multidimensional Arrays
You can initialize multidimensional arrays. You assign the list of values to array elements

in order, with the last array subscript changing while each of the former holds steady.

Therefore, if you have an array:
int theArray[5][3]

the first three elements go into theArray[0]; the next three into theArray[1]; and so forth.

You initialize this array by writing
int theArray[5][3] = { 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 }

For the sake of clarity, you could group the initializations with braces. For example,
int theArray[5][3] = { {1,2,3},

{4,5,6},

{7,8,9},

{10,11,12},

{13,14,15} };

The compiler ignores the inner braces, which make it easier to understand how the

numbers are distributed.

Each value must be separated by a comma, without regard to the braces. The entire

initialization set must be within braces, and it must end with a semicolon.

The following program Listing a two-dimensional array. The first dimension is the set of

numbers from 0 to 5. The second dimension consists of the double of each value in the first

dimension.

Program Creating a multidimensional array.

1: #include <iostream.h>

2: int main()

3: {

4: int SomeArray[5][2] = { {0,0}, {1,2}, {2,4}, {3,6}, {4,8}};

5: for (int i = 0; i<5; i++)

6: for (int j=0; j<2; j++)

7: {

 C++ programming Noor muwafak

 First stage

 58

8: cout << "SomeArray[" << i << "][" << j << "]: ";

9: cout << SomeArray[i][j]<< endl;

10: }

11:

12: return 0;

13: }

Output:

SomeArray[0][0]: 0

SomeArray[0][1]: 0

SomeArray[1][0]: 1

SomeArray[1][1]: 2

SomeArray[2][0]: 2

SomeArray[2][1]: 4

SomeArray[3][0]: 3

SomeArray[3][1]: 6

SomeArray[4][0]: 4

SomeArray[4][1]: 8

Analysis: Line 4 declares SomeArray to be a two-dimensional array. The first dimension

consists of five integers; the second dimension consists of two integers. This creates a 5x2

grid, as Figure shown below.

The values are initialized in pairs, although they could be computed as well. Lines 5 and 6

create a nested for loop. The outer for loop ticks through each member of the first

dimension. For every member in that dimension, the inner for loop ticks through each

member of the second dimension. This is consistent with the printout. SomeArray[0][0] is

followed by SomeArray[0][1]. The first dimension is incremented only after the second

dimension is incremented by 1. Then the second dimension starts over.

Now look at an example that demonstrates the advantages of arrays. creates a 1,00-

element, two-dimensional array and fills it with random numbers. The program then

displays the array elements on-screen. Imagine how many lines of source code you would

need to perform the same task with non array variables.

You see a new library function, getch(), in this program. The getch() function reads a single

character from the keyboard. getch() pauses the program until the user presses a key.

Program RANDOM..CPP creates a multidimensional array.
1: /* RANDOM.Cpp - Demonstrates using a multidimensional array */

2:

3: #include <stdio.h>

Teach%20Yourself%20C++%20In%2021%20Days,%20Second%20Edition/art/ch11/11zcp04.jpg
Teach%20Yourself%20C++%20In%2021%20Days,%20Second%20Edition/art/ch11/11zcp04.jpg

 C++ programming Noor muwafak

 First stage

 59

4: #include <stdlib.h>

5: /* Declare a two-dimensional array with 1000 elements */

6:

7: int random_array[10][10];

8: int a, b;

9:

10: main()

11: {

12: /* Fill the array with random numbers. The C++ library */

13: /* function rand() returns a random number. Use one */

14: /* for loop for each array subscript. */

15:

16: for (a = 0; a < 10; a++)

17: {

18: for (b = 0; b < 10; b++)

19: {

20:

21:

22: random_array[a][b] = rand();

23:

24: }

25: }

26:

27: /* Now display the array elements 10 at a time */

28:

29: for (a = 0; a < 10; a++)

30: {

31: for (b = 0; b < 10; b++)

32: {

33:

34:

35:

36: cout<<random_array[a][b];

37: }

38: cout<<"\nPress Enter to continue”;

39:

40: getchar();

41: }

42:

43: return 0;

44: } /* end of main() */

random_array[0][0] = 346

random_array[0][1] = 130

random_array[0][2] = 10982

random_array[0][3] = 1090

random_array[0][4] = 11656

random_array[0][5] = 7117

random_array[0][6] = 17595

random_array[0][7] = 6415

random_array[0][8] = 22948

random_array[0][9] = 31126

Press Enter to continue

random_array[1][0] = 9004

 C++ programming Noor muwafak

 First stage

 60

random_array[1][1] = 14558

random_array[1][2] = 3571

random_array[1][3] = 22879

random_array[1][4] = 18492

random_array[1][5] = 1360

random_array[1][6] = 5412

random_array[1][7] = 26721

random_array[1][8] = 22463

random_array[1][9] = 25047

Press Enter to continue

... ...

random_array[9][0] = 6287

random_array[9][1] = 26957

random_array[9][2] = 1530

random_array[9][3] = 14171

random_array[9][4] = 6951

random_array[9][5] = 213

random_array[9][6] = 14003

random_array[9][7] = 29736

random_array[9][8] = 15028

random_array[9][9] = 18968

ANALYSIS: this program has two nested for loops. Before you look at the for statements in

detail, note that lines 7 and 8 declare four variables. The first is an array named

random_array, used to hold random numbers. random_array is a two dimensional type int

array that is 10-by-10, giving a total of 1,00 type int elements (10 * 10). Imagine coming up

with 1,00 unique variable names if you couldn't use arrays! Line 8 then declares three

variables, a and b, used to control the for loops.

This program also includes the header file STDLIB.H (for standard library) on line 4. It is

included to provide the prototype for the rand() function used on line 22.

The bulk of the program is contained in two nests of for statements. The first is in lines 16

through 25, and the second is in lines 29 through 42. Both for nests have the same

structure. They work just like the loops , but they go one level deeper. In the first set of for

statements, line 22 is executed repeatedly. Line 22 assigns the return value of a function,

rand(), to an element of the random_array array, where rand() is a library function that

returns a random number.

Going backward through the listing, Line 18 loops through b, the middle subscript of the

random array. Each time b changes. Line 16 increments variable a, which loops through

the farthest left subscript. Each time this subscript changes, it loops through all 10 values

of subscript b. This loop initializes every value in the random array to a random number.

Lines 29 through 42 contain the second nest of for statements. These work like the previous

for statements, but this loop prints each of the values assigned previously. After 10 are

displayed, line 38 prints a message and waits for Enter to be pressed. Line 40 takes care of

the keypress using getchar(). If Enter hasn't been pressed, getchar() waits until it is. Run

this program and watch the displayed values.

Char Arrays
A string is a series of characters. The only strings you've seen until now have been

unnamed string constants used in cout statements, such as: cout << "hello world.\n";

 C++ programming Noor muwafak

 First stage

 61

In C++ a string is an array of chars ending with a null character. You can declare and

initialize a string just as you would any other array. For example,
Char Greeting[] ={ `H', `e', `l', `l', `o', ` `, `W','o','r','l','d', `\0' };

The last character, `\0', is the null character, which many C++ functions recognize as the

terminator for a string. Although this character-by-character approach works, it is

difficult to type and admits too many opportunities for error. C++ enables you to use a

shorthand form of the previous line of code. It is char Greeting[] = "Hello World";

You should note two things about this syntax:

 Instead of single quoted characters separated by commas and surrounded by

braces, you have a double-quoted string, no commas, and no braces.

 You don't need to add the null character because the compiler adds it for you.

The string Hello World is 12 bytes. Hello is 5 bytes, the space 1, World 5, and the null

character 1.

You can also create un initialized character arrays. As with all arrays, it is important to

ensure that you don't put more into the buffer than there is room for.

A program demonstrates the use of an un initialized buffer.

Listing Filling an array.
1: //program Listing char array buffers

2:

3: #include <iostream.h>

4:

5: int main()

6: {

7: char buffer[80];

8: cout << "Enter the string: ";

9: cin >> buffer;

10: cout << "Here's the buffer: " << buffer << endl;

11: return 0;

12: }

Output:

Enter the string: Hello World

Here's the buffer: Hello

Analysis: On line 7, a buffer is declared to hold 80 characters. This is large

enough to hold a 79-character string and a terminating null character.

On line 8, the user is prompted to enter a string, which is entered into buffer

on line 9. It is the syntax of cin to write a terminating null to buffer after it

writes the string.

There are two problems with the program . First, if the user enters more

than 79 characters, cin writes past the end of the buffer. Second, if the user

enters a space, cin thinks that it is the end of the string, and it stops writing to

the buffer.

To solve these problems, you must call a special method on cin: get(). cin.get()

takes three parameters:The buffer to fill The maximum number of

characters to get The delimiter that terminates input. The default delimiter is

newline.

program Filling an array.

 C++ programming Noor muwafak

 First stage

 62

1: // program Listing using cin.get()

2:

3: #include <iostream.h>

4:

5: int main()

6: {

7: char buffer[80];

8: cout << "Enter the string: ";

9: cin.get(buffer, 79); // get up to 79 or newline

10: cout << "Here's the buffer: " << buffer << endl;

11: return 0;

12: }

Output:

 Enter the string: Hello World

Here's the buffer: Hello World

Analysis: Line 9 calls the method get() of cin. The buffer declared in line 7 is passed

in as the first argument. The second argument is the maximum number of

characters to get. In this case, it must be 79 to allow for the terminating null. There is

no need to provide a terminating character because the default value of newline is

sufficient.

Copying Strings

strcpy() and strncpy()
 C++ inherits from C a library of functions for dealing with strings. Among the many

functions provided are two for copying one string into another: strcpy() and strncpy(). strcpy()

copies the entire contents of one string into a designated buffer.

program Using strcpy().

 C++ programming Noor muwafak

 First stage

 63

1: #include <iostream.h>

2: #include <string.h>

3: int main()

4: {

5: char String1[] = "No man is an island";

6: char String2[80];

7:

8: strcpy(String2,String1);

9:

10: cout << "String1: " << String1 << endl;

11: cout << "String2: " << String2 << endl;

12: return 0;

13: }

Output:

String1: No man is an island

String2: No man is an island

Analysis: The header file string.h is included in line 2. This file contains the prototype of the

strcpy() function. strcpy() takes two character arrays--a destination followed by a source. If

the source were larger than the destination, strcpy() would overwrite past the end of the

buffer.

To protect against this, the standard library also includes strncpy(). This variation takes a

maximum number of characters to copy. strncpy() copies up to the first null character or the

maximum number of characters specified into the destination buffer.

program Using strncpy().
1: #include <iostream.h>

2: #include <string.h>

3: int main()

4: {

5: const int MaxLength = 80;

6: char String1[] = "No man is an island";

7: char String2[MaxLength+1];

8:

9:

10: strncpy(String2,String1,MaxLength);

11:

12: cout << "String1: " << String1 << endl;

13: cout << "String2: " << String2 << endl;

14: return 0;

15: }

Output:

String1: No man is an island

String2: No man is an island

Analysis: In line 10, the call to strcpy() has been changed to a call to strncpy(), which

takes a third parameter: the maximum number of characters to copy. The buffer

String2 is declared to take MaxLength+1 characters. The extra character is for the null,

which both strcpy() and strncpy() automatically add to the end of the string.

Concatenating Strings

 C++ programming Noor muwafak

 First stage

 64

If you're not familiar with the term concatenation, you might be asking, "What is it?" and

"Is it legal?" Well, it means to join two strings--to tack one string onto the end of another--

and, in most states, it is legal. The C++ standard library contains two string concatenation

functions--strcat() and strncat()--both of which require the header file STRING.H.

The strcat() Function
The prototype of strcat() is
char *strcat (char *str1, char *str2);

The function appends a copy of str2 onto the end of str1, moving the terminating null

character to the end of the new string. You must allocate enough space for str1 to hold the

resulting string. The return value of strcat() is a pointer to str1.

Listing Using strcat() to concatenate strings.

1: /* The strcat() function. */

2:

3: #include <stdio.h>

4: #include <string.h>

5:

6: char str1[27] = "a";

7: char str2[2];

8:

9: main()

10: {

11: int n;

12:

13: /* Put a null character at the end of str2[]. */

14:

15: str2[1] = `\0';

16:

17: for (n = 98; n< 123; n++)

18: {

19: str2[0] = n;

20: strcat(str1, str2);

21: puts(str1);

22: }

23: return(0);

24: }

Output:

ab

abc

abcd

abcde

abcdef

abcdefg

abcdefgh

abcdefghi

 C++ programming Noor muwafak

 First stage

 65

abcdefghij

abcdefghijk

abcdefghijkl

abcdefghijklm

abcdefghijklmn

abcdefghijklmno

abcdefghijklmnop

abcdefghijklmnopq

abcdefghijklmnopqr

abcdefghijklmnopqrs

abcdefghijklmnopqrst

abcdefghijklmnopqrstu

abcdefghijklmnopqrstuv

abcdefghijklmnopqrstuvw

abcdefghijklmnopqrstuvwx

abcdefghijklmnopqrstuvwxy

abcdefghijklmnopqrstuvwxyz

ANALYSIS: The ASCII codes for the letters b through z are 98 to 122. This program uses

these ASCII codes in its demonstration of strcat(). The for loop on lines 17 through 22

assigns these values in turn to str2[0]. Because str2[1] is already the null character (line 15),

the effect is to assign the strings "b", "c", and so on to str2. Each of these strings is

concatenated with str1 (line 20), and then str1 is displayed on-screen (line 21).

The strncat() Function

The library function strncat() also performs string concatenation, but it lets you specify

how many characters of the source string are appended to the end of the destination string.

The prototype is
char *strncat(char *str1, char *str2, size_t n);

If str2 contains more than n characters, the first n characters are appended to the end of

str1. If str2 contains fewer than n characters, all of str2 is appended to the end of str1. In

either case, a terminating null character is added at the end of the resulting string. You

must allocate enough space for str1 to hold the resulting string. The function returns a

pointer to str1.

Listing Using the strncat() function to concatenate strings.

1: /* The strncat() function. */

2:

3: #include <stdio.h>

4: #include <string.h>

 C++ programming Noor muwafak

 First stage

 66

5:

6: char str2[] = "abcdefghijklmnopqrstuvwxyz";

7:

8: main()

9: {

10: char str1[27];

11: int n;

12:

13: for (n=1; n< 27; n++)

14: {

15: strcpy(str1, "");

16: strncat(str1, str2, n);

17: puts(str1);

18: }

19: }

Output:

a

ab

abc

abcd

abcde

abcdef

abcdefg

abcdefgh

abcdefghi

abcdefghij

abcdefghijk

abcdefghijkl

abcdefghijklm

abcdefghijklmn

abcdefghijklmno

abcdefghijklmnop

abcdefghijklmnopq

abcdefghijklmnopqr

abcdefghijklmnopqrs

abcdefghijklmnopqrst

abcdefghijklmnopqrstu

abcdefghijklmnopqrstuv

abcdefghijklmnopqrstuvw

abcdefghijklmnopqrstuvwx

abcdefghijklmnopqrstuvwxy

abcdefghijklmnopqrstuvwxyz

ANALYSIS: You might wonder about the purpose of line 15, strcpy(str1, "");. This line

copies to str1 an empty string consisting of only a single null character. The result is that

the first character in str1--str1[0]--is set equal to 0 (the null character). The same thing

could have been accomplished with the statements str1[0] = 0; or str1[0] = `\0';.

Comparing Strings

Strings are compared to determine whether they are equal or unequal. If they are unequal,

one string is "greater than" or "less than" the other. Determinations of "greater" and

 C++ programming Noor muwafak

 First stage

 67

"less" are made with the ASCII codes of the characters. In the case of letters, this is

equivalent to alphabetical order, with the one seemingly strange exception that all

uppercase letters are "less than" the lowercase letters. This is true because the uppercase

letters have ASCII codes 65 through 90 for A through Z, while lowercase a through z are

represented by 97 through 122. Thus, "ZEBRA" would be considered to be less than

"apple" by these C functions.

The ANSI C library contains functions for two types of string comparisons: comparing two

entire strings, and comparing a certain number of characters in two strings.

Comparing Two Entire Strings

The function strcmp() compares two strings character by character. Its prototype is
int strcmp(char *str1, char *str2);

The arguments str1 and str2 are pointers to the strings being compared. The function's

return values are given in the Table that demonstrates strcmp().

Table of The values returned by strcmp().

Return Value Meaning

< 0 str1 is less than str2.

0 str1 is equal to str2.

> 0 str1 is greater than str2.

Listing Using strcmp() to compare strings.

1: /* The strcmp() function. */

2: #include<iostream.h>

3: #include <stdio.h>

4: #include <string.h>

5:

6: main()

7: {

8: char str1[80], str2[80];

9: int x;

10:

11: while (1)

12: {

13:

14: /* Input two strings. */

15:

16: cout<<"\n\n Input the first string, a blank to exit: ";

17: gets(str1);

18:

19: if (strlen(str1) == 0)

20: break;

21:

22: cout<<"\n Input the second string: ";

23: gets(str2);

 C++ programming Noor muwafak

 First stage

 68

24:

25: /* Compare them and display the result. */

26:

27: x = strcmp(str1, str2);

28:

29: cout<<"\n strcmp”<<str1<<” “<<str2<<” returns:"<<x;

30: }

31: return(0);

32: }

Input the first string, a blank to exit: First string

Input the second string: Second string

Strcmp First string Second string returns -1

Input the first string, a blank to exit: test string

Input the second string: test string

Strcmp test string test string returns 0

Input the first string, a blank to exit: zebra

Input the second string: aardvark

Strcmp zebra aardvark returns 1

Input the first string, a blank to exit:

ANALYSIS: This program demonstrates strcmp(), prompting the user for two strings

(lines 16, 17, 22, and 23) and displaying the result returned by strcmp() on line 29.

Experiment with this program to get a feel for how strcmp() compares strings. Try

entering two strings that are identical except for case, such as Smith and SMITH. You'll

see that strcmp() is case-sensitive, meaning that the program considers uppercase and

lowercase letters to be different.

Comparing Partial Strings

The library function strncmp() compares a specified number of characters of one string to

another string. Its prototype is

int strncmp(char *str1, char *str2, size_t n);

The function strncmp() compares n characters of str2 to str1. The comparison proceeds

until n characters have been compared or the end of str1 has been reached. The method of

comparison and return values are the same as for strcmp(). The comparison is case-

sensitive.

Listing Comparing parts of strings with strncmp().

 C++ programming Noor muwafak

 First stage

 69

1: /* The strncmp() function. */

2: #include<iostream.h>

3: #include <stdio.h>

4: #include<string.h>

5:

6: char str1[] = "The first string.";

7: char str2[] = "The second string.";

8:

9: main()

10: {

11: int n, x;

12:

13: puts(str1);

14: puts(str2);

15:

16: while (1)

17: {

18: puts("\n\nEnter number of characters to compare, 0 to exit.");

19: cin>>n;

20:

21: if (n <= 0)

22: break;

23:

24: x = strncmp(str1, str2, n);

25:

26: cout<<"\nComparing “<<n<<” characters, strncmp() returns “<<x;

27: }

28: return(0);

29: }

Output:

The first string.

The second string.

Enter number of characters to compare, 0 to exit.

3

Comparing 3 characters, strncmp() returns 0

Enter number of characters to compare, 0 to exit.

6

Comparing 6 characters, strncmp() returns -1.

Enter number of characters to compare, 0 to exit.

0

ANALYSIS: This program compares two strings defined on lines 6 and 7. Lines 13 and 14

print the strings to the screen so that the user can see what they are. The program executes

a while loop on lines 16 through 27 so that multiple comparisons can be done. If the user

asks to compare zero characters on lines 18 and 19, the program breaks on line 22;

otherwise, a strncmp() executes on line 24, and the result is printed on line 26.

 C++ programming Noor muwafak

 First stage

 70

Functions

 What a function is and what its parts are.

 How to declare and define functions.

 How to pass parameters into functions.

 How to return a value from a function.

What Is a Function?

A function is, in effect, a subprogram that can act on data and return a value. Every C++

program has at least one function, main(). When your program starts, main() is called

automatically. main() might call other functions, some of which might call still others.

Each function has its own name, and when that name is encountered, the execution of the

program branches to the body of that function. When the function returns, execution

resumes on the next line of the calling function. This flow is illustrated in the Figure below

.

Figure Illustration of flow

When a program calls a function, execution switches to the function and then resumes at

the line after the function call. Well-designed functions perform a specific and easily

understood task. Complicated tasks should be broken down into multiple functions, and

then each can be called in turn.

Functions come in two varieties: user-defined and built-in. Built-in functions are part of

your compiler package--they are supplied by the manufacturer for your use.

Teach%20Yourself%20C++%20in%2021%20Days%20Second%20Edition/art/ch05/05zcp01.jpg

 C++ programming Noor muwafak

 First stage

 71

Declaring and Defining Functions

Using functions in your program requires that you first declare the function and that you

then define the function. The declaration tells the compiler the name, return type, and

parameters of the function. The definition tells the compiler how the function works. No

function can be called from any other function that hasn't first been declared. The

declaration of a function is called its prototype.

Declaring the Function

There are three ways to declare a function:

 Write your prototype into a file, and then use the #include directive to include it in

your program.

 Write the prototype into the file in which your function is used.

 Define the function before it is called by any other function. When you do this, the

definition acts as its own declaration.

Although you can define the function before using it, and thus avoid the necessity of

creating a function prototype, this is not good programming practice for three reasons.

First, it is a bad idea to require that functions appear in a file in a particular order. Doing

so makes it hard to maintain the program as requirements change.

Second, it is possible that function A() needs to be able to call function B(), but function

B() also needs to be able to call function A() under some circumstances. It is not possible to

define function A() before you define function B() and also to define function B() before

you define function A(), so at least one of them must be declared in any case.

Third, function prototypes are a good and powerful debugging technique. If your

prototype declares that your function takes a particular set of parameters, or that it

returns a particular type of value, and then your function does not match the prototype,

the compiler can flag your error instead of waiting for it to show itself when you run the

program.

Function Prototypes

Many of the built-in functions you use will have their function prototypes already written

in the files you include in your program by using #include. For functions you write

yourself, you must include the prototype.

The function prototype is a statement, which means it ends with a semicolon. It consists of

the function's return type, name, and parameter list.

The parameter list is a list of all the parameters and their types, separated by commas.

 C++ programming Noor muwafak

 First stage

 72

The function prototype and the function definition must agree exactly about the return

type, the name, and the parameter list. If they do not agree, you will get a compile-time

error. Note, however, that the function prototype does not need to contain the names of the

parameters, just their types. A prototype that looks like this is perfectly legal:

long Area(int, int);

This prototype declares a function named Area() that returns a long and that has two

parameters, both integers. Although this is legal, it is not a good idea. Adding parameter

names makes your prototype clearer. The same function with named parameters might be

long Area(int length, int width);

It is now obvious what this function does and what the parameters are.

Note that all functions have a return type. If none is explicitly stated, the return type

defaults to int. Your programs will be easier to understand, however, if you explicitly

declare the return type of every function, including main(). Listing demonstrates a

program that includes a function prototype for the Area() function.

Listing A function declaration and the definition and use of that function.

1: // Listing - demonstrates the use of function prototypes

2:

3: typedef unsigned short USHORT;

4: #include <iostream.h>

5: USHORT FindArea(USHORT length, USHORT width); //function prototype

6:

7: int main()

8: {

9: USHORT lengthOfYard;

10: USHORT widthOfYard;

11: USHORT areaOfYard;

12:

13: cout << "\nHow wide is your yard? ";

14: cin >> widthOfYard;

15: cout << "\nHow long is your yard? ";

16: cin >> lengthOfYard;

17:

18: areaOfYard= FindArea(lengthOfYard,widthOfYard);

19:

20: cout << "\nYour yard is ";

21: cout << areaOfYard;

22: cout << " square feet\n\n";

23: return 0;

24: }

25:

26: USHORT FindArea(USHORT l, USHORT w)

27: {

28: return l * w;

29: }

Output: How wide is your yard? 100

 C++ programming Noor muwafak

 First stage

 73

How long is your yard? 200

Your yard is 20000 square feet

Analysis: The prototype for the FindArea() function is on line 5. Compare the prototype

with the definition of the function on line 26. Note that the name, the return type, and the

parameter types are the same. If they were different, a compiler error would have been

generated. In fact, the only required difference is that the function prototype ends with a

semicolon and has no body.

Also note that the parameter names in the prototype are length and width, but the

parameter names in the definition are l and w. As discussed, the names in the prototype are

not used; they are there as information to the programmer. When they are included, they

should match the implementation when possible. This is a matter of good programming

style and reduces confusion, but it is not required, as you see here.

The arguments are passed in to the function in the order in which they are declared and

defined, but there is no matching of the names. Had you passed in widthOfYard, followed

by lengthOfYard, the FindArea() function would have used the value in widthOfYard for

length and lengthOfYard for width. The body of the function is always enclosed in braces,

even when it consists of only one statement, as in this case.

Defining the Function

The definition of a function consists of the function header and its body. The header is

exactly like the function prototype, except that the parameters must be named, and there is

no terminating semicolon.

The body of the function is a set of statements enclosed in braces.

Functions

Function Prototype Syntax

return_type function_name ([type [parameterName]]...);

Function Definition Syntax

return_type function_name ([type parameterName]...)

{

 statements;

}

A function prototype tells the compiler the return type, name, and parameter list. Func-

tions are not required to have parameters, and if they do, the prototype is not required to

list their names, only their types. A prototype always ends with a semicolon (;). A function

definition must agree in return type and parameter list with its prototype. It must provide

names for all the parameters, and the body of the function definition must be surrounded

 C++ programming Noor muwafak

 First stage

 74

by braces. All statements within the body of the function must be terminated with

semicolons, but the function itself is not ended with a semicolon; it ends with a closing

brace. If the function returns a value, it should end with a return statement, although

return statements can legally appear anywhere in the body of the function. Every function

has a return type. If one is not explicitly designated, the return type will be int. Be sure to

give every function an explicit return type. If a function does not return a value, its return

type will be void.

Function Prototype Examples

long FindArea(long length, long width); // returns long, has two parameters

void PrintMessage(int messageNumber); // returns void, has one parameter

int GetChoice(); // returns int, has no parameters

BadFunction(); // returns int, has no parameters

Function Definition Examples
long Area(long l, long w)

{

 return l * w;

}

void PrintMessage(int whichMsg)

{

 if (whichMsg == 0)

 cout << "Hello.\n";

 if (whichMsg == 1)

 cout << "Goodbye.\n";

 if (whichMsg > 1)

 cout << "I'm confused.\n";

}

Execution of Functions

When you call a function, execution begins with the first statement after the opening brace

({). Branching can be accomplished by using the if statement. Functions can also call other

functions and can even call themselves.

Local Variables

Not only can you pass in variables to the function, but you also can declare variables within

the body of the function. This is done using local variables, so named because they exist

only locally within the function itself. When the function returns, the local variables are no

longer available.

 C++ programming Noor muwafak

 First stage

 75

Local variables are defined like any other variables. The parameters passed in to the

function are also considered local variables and can be used exactly as if they had been

defined within the body of the function. Listing is an example of using parameters and

locally defined variables within a function.

Listing The use of local variables and parameters.

1: #include <iostream.h>

2:

3: float Convert(float);

4: int main()

5: {

6: float TempFer;

7: float TempCel;

8:

9: cout << "Please enter the temperature in Fahrenheit: ";

10: cin >> TempFer;

11: TempCel = Convert(TempFer);

12: cout << "\nHere's the temperature in Celsius: ";

13: cout << TempCel << endl;

14: return 0;

15: }

16:

17: float Convert(float TempFer)

18: {

19: float TempCel;

20: TempCel = ((TempFer - 32) * 5) / 9;

21: return TempCel;

22: }

Output: Please enter the temperature in Fahrenheit: 212

Here's the temperature in Celsius: 100

Please enter the temperature in Fahrenheit: 32

Here's the temperature in Celsius: 0

Please enter the temperature in Fahrenheit: 85

Here's the temperature in Celsius: 29.4444

Analysis: On lines 6 and 7, two float variables are declared, one to hold the temperature

in Fahrenheit and one to hold the temperature in degrees Celsius. The user is prompted to

enter a Fahrenheit temperature on line 9, and that value is passed to the function

Convert().

Execution jumps to the first line of the function Convert() on line 19, where a local

variable, also named TempCel, is declared. Note that this local variable is not the same as

the variable TempCel on line 7. This variable exists only within the function Convert(). The

value passed as a parameter, TempFer, is also just a local copy of the variable passed in by

main().

 C++ programming Noor muwafak

 First stage

 76

This function could have named the parameter FerTemp and the local variable CelTemp,

and the program would work equally well. You can enter these names again and recompile

the program to see this work.

The local function variable TempCel is assigned the value that results from subtracting 32

from the parameter TempFer, multiplying by 5, and then dividing by 9. This value is then

returned as the return value of the function, and on line 11 it is assigned to the variable

TempCel in the main() function. The value is printed on line 13.

The program is run three times. The first time, the value 212 is passed in to ensure that the

boiling point of water in degrees Fahrenheit (212) generates the correct answer in degrees

Celsius (100). The second test is the freezing point of water. The third test is a random

number chosen to generate a fractional result.

As an exercise, try entering the program again with other variable names as illustrated

here:

1: #include <iostream.h>

2:

3: float Convert(float);

4: int main()

5: {

6: float TempFer;

7: float TempCel;

8:

9: cout << "Please enter the temperature in Fahrenheit: ";

10: cin >> TempFer;

11: TempCel = Convert(TempFer);

12: cout << "\nHere's the temperature in Celsius: ";

13: cout << TempCel << endl;

14: }

15:

16: float Convert(float Fer)

17: {

18: float Cel;

19: Cel = ((Fer - 32) * 5) / 9;

20: return Cel;

21: }

You should get the same results.

New Term: A variable has scope, which determines how long it is available to your

program and where it can be accessed. Variables declared within a block are scoped

to that block; they can be accessed only within that block and "go out of existence"

when that block ends. Global variables have global scope and are available

anywhere within your program.

Normally scope is obvious, but there are some tricky exceptions. Currently, variables

declared within the header of a for loop (for int i = 0; i<SomeValue; i++) are scoped

 C++ programming Noor muwafak

 First stage

 77

to the block in which the for loop is created, but there is talk of changing this in the official

C++ standard.

None of this matters very much if you are careful not to reuse your variable names within

any given function.

Global Variables

Variables defined outside of any function have global scope and thus are available from

any function in the program, including main().

Local variables with the same name as global variables do not change the global variables.

A local variable with the same name as a global variable hides the global variable, however.

If a function has a variable with the same name as a global variable, the name refers to the

local variable--not the global--when used within the function. Listing illustrates these

points.

Listing Demonstrating global and local variables.

1: #include <iostream.h>

2: void myFunction(); // prototype

3:

4: int x = 5, y = 7; // global variables

5: int main()

6: {

7:

8: cout << "x from main: " << x << "\n";

9: cout << "y from main: " << y << "\n\n";

10: myFunction();

11: cout << "Back from myFunction!\n\n";

12: cout << "x from main: " << x << "\n";

13: cout << "y from main: " << y << "\n";

14: return 0;

15: }

16:

17: void myFunction()

18: {

19: int y = 10;

20:

21: cout << "x from myFunction: " << x << "\n";

22: cout << "y from myFunction: " << y << "\n\n";

23: }

Output: x from main: 5

y from main: 7

x from myFunction: 5

y from myFunction: 10

Back from myFunction!

x from main: 5

 C++ programming Noor muwafak

 First stage

 78

y from main: 7

Analysis: This simple program illustrates a few key, and potentially confusing, points about

local and global variables. On line 1, two global variables, x and y, are declared. The global

variable x is initialized with the value 5, and the global variable y is initialized with the

value 7.

On lines 8 and 9 in the function main(), these values are printed to the screen. Note that the

function main() defines neither variable; because they are global, they are already

available to main().

When myFunction() is called on line 10, program execution passes to line 18, and a local

variable, y, is defined and initialized with the value 10. On line 21, myFunction() prints the

value of the variable x, and the global variable x is used, just as it was in main(). On line

22, however, when the variable name y is used, the local variable y is used, hiding the

global variable with the same name.

The function call ends, and control returns to main(), which again prints the values in the

global variables. Note that the global variable y was totally unaffected by the value

assigned to myFunction()'s local y variable.

More on Local Variables

Variables declared within the function are said to have "local scope." That means, as

discussed, that they are visible and usable only within the function in which they are

defined. In fact, in C++ you can define variables anywhere within the function, not just at

its top. The scope of the variable is the block in which it is defined. Thus, if you define a

variable inside a set of braces within the function, that variable is available only within that

block. Listing illustrates this idea.

Listing Variables scoped within a block.

1: // Listing - demonstrates variables

2: // scoped within a block

3:

4: #include <iostream.h>

5:

6: void myFunc();

7:

8: int main()

9: {

10: int x = 5;

11: cout << "\nIn main x is: " << x;

12:

13: myFunc();

14:

15: cout << "\nBack in main, x is: " << x;

16: return 0;

 C++ programming Noor muwafak

 First stage

 79

17: }

18:

19: void myFunc()

20: {

21:

22: int x = 8;

23: cout << "\nIn myFunc, local x: " << x << endl;

24:

25: {

26: cout << "\nIn block in myFunc, x is: " << x;

27:

28: int x = 9;

29:

30: cout << "\nVery local x: " << x;

31: }

32:

33: cout << "\nOut of block, in myFunc, x: " << x << endl;

34: }

Output: In main x is: 5

In myFunc, local x: 8

In block in myFunc, x is: 8

Very local x: 9

Out of block, in myFunc, x: 8

Back in main, x is: 5

Analysis: This program begins with the initialization of a local variable, x, on line 10, in

main(). The printout on line 11 verifies that x was initialized with the value 5.

MyFunc() is called, and a local variable, also named x, is initialized with the value 8 on line

22. Its value is printed on line 23.

A block is started on line 25, and the variable x from the function is printed again on line

26. A new variable also named x, but local to the block, is created on line 28 and initialized

with the value 9.

The value of the newest variable x is printed on line 30. The local block ends on line 31, and

the variable created on line 28 goes "out of scope" and is no longer visible.

When x is printed on line 33, it is the x that was declared on line 22. This x was unaffected

by the x that was defined on line 28; its value is still 8.

On line 34, MyFunc() goes out of scope, and its local variable x becomes unavailable.

Execution returns to line 15, and the value of the local variable x, which was created on line

10, is printed. It was unaffected by either of the variables defined in MyFunc().

Needless to say, this program would be far less confusing if these three variables were given

unique names!

 C++ programming Noor muwafak

 First stage

 80

Function Statements

There is virtually no limit to the number or types of statements that can be in a function

body. Although you can't define another function from within a function, you can call a

function, and of course main() does just that in nearly every C++ program. Functions can

even call themselves, which is discussed soon, in the section on recursion.

Although there is no limit to the size of a function in C++, well-designed functions tend to

be small. Many programmers advise keeping your functions short enough to fit on a single

screen so that you can see the entire function at one time. This is a rule of thumb, often

broken by very good programmers, but a smaller function is easier to understand and

maintain.

Each function should carry out a single, easily understood task. If your functions start

getting large, look for places where you can divide them into component tasks.

Function Arguments

Function arguments do not have to all be of the same type. It is perfectly reasonable to

write a function that takes an integer, two longs, and a character as its arguments.

Any valid C++ expression can be a function argument, including constants, mathematical

and logical expressions, and other functions that return a value.

Using Functions as Parameters to Functions

Although it is legal for one function to take as a parameter a second function that returns a

value, it can make for code that is hard to read and hard to debug.

As an example, say you have the functions double(), triple(), square(), and cube(),

each of which returns a value. You could write

Answer = (double(triple(square(cube(myValue)))));

This statement takes a variable, myValue, and passes it as an argument to the function

cube(), whose return value is passed as an argument to the function square(), whose

return value is in turn passed to triple(), and that return value is passed to double().

The return value of this doubled, tripled, squared, and cubed number is now passed to

Answer.

It is difficult to be certain what this code does (was the value tripled before or after it was

squared?), and if the answer is wrong it will be hard to figure out which function failed.

An alternative is to assign each step to its own intermediate variable:

 C++ programming Noor muwafak

 First stage

 81

unsigned long myValue = 2;

unsigned long cubed = cube(myValue); // cubed = 8

unsigned long squared = square(cubed); // squared = 64

unsigned long tripled = triple(squared); // tripled = 196

unsigned long Answer = double(tripled); // Answer = 392

Now each intermediate result can be examined, and the order of execution is explicit.

Parameters Are Local Variables

The arguments passed in to the function are local to the function. Changes made to the

arguments do not affect the values in the calling function. This is known as passing by

value, which means a local copy of each argument is made in the function. These local

copies are treated just like any other local variables. Listing illustrates this point.

Listing A demonstration of passing by value.

1: // Listing - demonstrates passing by value

2:

3: #include <iostream.h>

4:

5: void swap(int x, int y);

6:

7: int main()

8: {

9: int x = 5, y = 10;

10:

11: cout << "Main. Before swap, x: " << x << " y: " << y << "\n";

12: swap(x,y);

13: cout << "Main. After swap, x: " << x << " y: " << y << "\n";

14: return 0;

15: }

16:

17: void swap (int x, int y)

18: {

19: int temp;

20:

21: cout << "Swap. Before swap, x: " << x << " y: " << y << "\n";

22:

23: temp = x;

24: x = y;

25: y = temp;

26:

27: cout << "Swap. After swap, x: " << x << " y: " << y << "\n";

28:

29: }

Output: Main. Before swap, x: 5 y: 10

Swap. Before swap, x: 5 y: 10

Swap. After swap, x: 10 y: 5

Main. After swap, x: 5 y: 10

 C++ programming Noor muwafak

 First stage

 82

Analysis: This program initializes two variables in main() and then passes them to the

swap() function, which appears to swap them. When they are examined again in main(),

however, they are unchanged!

The variables are initialized on line 9, and their values are displayed on line 11. swap() is

called, and the variables are passed in.

Execution of the program switches to the swap() function, where on line 21 the values are

printed again. They are in the same order as they were in main(), as expected. On lines 23

to 25 the values are swapped, and this action is confirmed by the printout on line 27.

Indeed, while in the swap() function, the values are swapped.

Execution then returns to line 13, back in main(), where the values are no longer swapped.

As you've figured out, the values passed in to the swap() function are passed by value,

meaning that copies of the values are made that are local to swap(). These local variables

are swapped in lines 23 to 25, but the variables back in main() are unaffected.

On Days 8 and 10 you'll see alternatives to passing by value that will allow the values in

main() to be changed.

Return Values

Functions return a value or return void. Void is a signal to the compiler that no value will

be returned.

To return a value from a function, write the keyword return followed by the value you

want to return. The value might itself be an expression that returns a value. For example:

return 5;

return (x > 5);

return (MyFunction());

These are all legal return statements, assuming that the function MyFunction() itself

returns a value. The value in the second statement, return (x > 5), will be zero if x is not

greater than 5, or it will be 1. What is returned is the value of the expression, 0 (false) or 1

(true), not the value of x.

When the return keyword is encountered, the expression following return is returned as

the value of the function. Program execution returns immediately to the calling function,

and any statements following the return are not executed.

It is legal to have more than one return statement in a single function. Listing illustrates

this idea.

 C++ programming Noor muwafak

 First stage

 83

Listing A demonstration of multiple return statements.

1: // Listing - demonstrates multiple return

2: // statements

3:

4: #include <iostream.h>

5:

6: int Doubler(int AmountToDouble);

7:

8: int main()

9: {

10:

11: int result = 0;

12: int input;

13:

14: cout << "Enter a number between 0 and 10,000 to double: ";

15: cin >> input;

16:

17: cout << "\nBefore doubler is called... ";

18: cout << "\ninput: " << input << " doubled: " << result << "\n";

19:

20: result = Doubler(input);

21:

22: cout << "\nBack from Doubler...\n";

23: cout << "\ninput: " << input << " doubled: " << result << "\n";

24:

25:

26: return 0;

27: }

28:

29: int Doubler(int original)

30: {

31: if (original <= 10000)

32: return original * 2;

33: else

34: return -1;

35: cout << "You can't get here!\n";

36: }

Output: Enter a number between 0 and 10,000 to double: 9000

Before doubler is called...

input: 9000 doubled: 0

Back from doubler...

input: 9000 doubled: 18000

Enter a number between 0 and 10,000 to double: 11000

Before doubler is called...

input: 11000 doubled: 0

Back from doubler...

input: 11000 doubled: -1

 C++ programming Noor muwafak

 First stage

 84

Analysis: A number is requested on lines 14 and 15, and printed on line 18, along with the

local variable result. The function Doubler() is called on line 20, and the input value is

passed as a parameter. The result will be assigned to the local variable result, and the

values will be reprinted on lines 22 and 23.

On line 31, in the function Doubler(), the parameter is tested to see whether it is greater

than 10,000. If it is not, the function returns twice the original number. If it is greater than

10,000, the function returns -1 as an error value.

The statement on line 35 is never reached, because whether or not the value is greater than

10,000, the function returns before it gets to line 35, on either line 32 or line 34. A good

compiler will warn that this statement cannot be executed, and a good programmer will

take it out!

Default Parameters

For every parameter you declare in a function prototype and definition, the calling

function must pass in a value. The value passed in must be of the declared type. Thus, if

you have a function declared as

long myFunction(int);

the function must in fact take an integer variable. If the function definition differs, or if you

fail to pass in an integer, you will get a compiler error.

The one exception to this rule is if the function prototype declares a default value for the

parameter. A default value is a value to use if none is supplied. The preceding declaration

could be rewritten as

long myFunction (int x = 50);

This prototype says, "myFunction() returns a long and takes an integer parameter. If an

argument is not supplied, use the default value of 50." Because parameter names are not

required in function prototypes, this declaration could have been written as

long myFunction (int = 50);

The function definition is not changed by declaring a default parameter. The function

definition header for this function would be

long myFunction (int x)

If the calling function did not include a parameter, the compiler would fill x with the

default value of 50. The name of the default parameter in the prototype need not be the

same as the name in the function header; the default value is assigned by position, not

name.

 C++ programming Noor muwafak

 First stage

 85

Any or all of the function's parameters can be assigned default values. The one restriction

is this: If any of the parameters does not have a default value, no previous parameter may

have a default value.

If the function prototype looks like

long myFunction (int Param1, int Param2, int Param3);

you can assign a default value to Param2 only if you have assigned a default value to

Param3. You can assign a default value to Param1 only if you've assigned default values to

both Param2 and Param3. Listing demonstrates the use of default values.

Listing A demonstration of default parameter values.

1: // Listing demonstrates use

2: // of default parameter values

3:

4: #include <iostream.h>

5:

6: int AreaCube(int length, int width = 25, int height = 1);

7:

8: int main()

9: {

10: int length = 100;

11: int width = 50;

12: int height = 2;

13: int area;

14:

15: area = AreaCube(length, width, height);

16: cout << "First area equals: " << area << "\n";

17:

18: area = AreaCube(length, width);

19: cout << "Second time area equals: " << area << "\n";

20:

21: area = AreaCube(length);

22: cout << "Third time area equals: " << area << "\n";

23: return 0;

24: }

25:

26: AreaCube(int length, int width, int height)

27: {

28:

29: return (length * width * height);

30: }

Output: First area equals: 10000

Second time area equals: 5000

Third time area equals: 2500

Analysis: On line 6, the AreaCube() prototype specifies that the AreaCube() function takes

three integer parameters. The last two have default values.

This function computes the area of the cube whose dimensions are passed in. If no width is

 C++ programming Noor muwafak

 First stage

 86

passed in, a width of 25 is used and a height of 1 is used. If the width but not the height is

passed in, a height of 1 is used. It is not possible to pass in the height without passing in a

width.

On lines 10-12, the dimensions length, height, and width are initialized, and they are

passed to the AreaCube() function on line 15. The values are computed, and the result is

printed on line 16.

Execution returns to line 18, where AreaCube() is called again, but with no value for

height. The default value is used, and again the dimensions are computed and printed.

Execution returns to line 21, and this time neither the width nor the height is passed in.

Execution branches for a third time to line 27. The default values are used. The area is

computed and then printed.

DO remember that function parameters act as local variables within the function. DON'T

try to create a default value for a first parameter if there is no default value for the second.

DON'T forget that arguments passed by value can not affect the variables in the calling

function. DON'T forget that changes to a global variable in one function change that

variable for all functions.

Overloading Functions

C++ enables you to create more than one function with the same name. This is called

function overloading. The functions must differ in their parameter list, with a different

type of parameter, a different number of parameters, or both. Here's an example:

int myFunction (int, int);

int myFunction (long, long);

int myFunction (long);

myFunction() is overloaded with three different parameter lists. The first and second

versions differ in the types of the parameters, and the third differs in the number of

parameters.

The return types can be the same or different on overloaded functions. You should note

that two functions with the same name and parameter list, but different return types,

generate a compiler error.

New Term: Function overloading i s also called function polymorphism. Poly means

many, and morph means form: a polymorphic function is many-formed.

 C++ programming Noor muwafak

 First stage

 87

Function polymorphism refers to the ability to "overload" a function with more than one

meaning. By changing the number or type of the parameters, you can give two or more

functions the same function name, and the right one will be called by matching the

parameters used. This allows you to create a function that can average integers, doubles,

and other values without having to create individual names for each function, such as

AverageInts(), AverageDoubles(), and so on.

Suppose you write a function that doubles whatever input you give it. You would like to be

able to pass in an int, a long, a float, or a double. Without function overloading, you

would have to create four function names:

int DoubleInt(int);

long DoubleLong(long);

float DoubleFloat(float);

double DoubleDouble(double);

With function overloading, you make this declaration:

int Double(int);

long Double(long);

float Double(float);

double Double(double);

This is easier to read and easier to use. You don't have to worry about which one to call;

you just pass in a variable, and the right function is called automatically. Listing illustrates

the use of function overloading.

Listing A demonstration of function polymorphism.

1: // Listing - demonstrates

2: // function polymorphism

3:

4: #include <iostream.h>

5:

6: int Double(int);

7: long Double(long);

8: float Double(float);

9: double Double(double);

10:

11: int main()

12: {

13: int myInt = 6500;

14: long myLong = 65000;

15: float myFloat = 6.5F;

16: double myDouble = 6.5e20;

17:

18: int doubledInt;

19: long doubledLong;

20: float doubledFloat;

21: double doubledDouble;

22:

23: cout << "myInt: " << myInt << "\n";

 C++ programming Noor muwafak

 First stage

 88

24: cout << "myLong: " << myLong << "\n";

25: cout << "myFloat: " << myFloat << "\n";

26: cout << "myDouble: " << myDouble << "\n";

27:

28: doubledInt = Double(myInt);

29: doubledLong = Double(myLong);

30: doubledFloat = Double(myFloat);

31: doubledDouble = Double(myDouble);

32:

33: cout << "doubledInt: " << doubledInt << "\n";

34: cout << "doubledLong: " << doubledLong << "\n";

35: cout << "doubledFloat: " << doubledFloat << "\n";

36: cout << "doubledDouble: " << doubledDouble << "\n";

37:

38: return 0;

39: }

40:

41: int Double(int original)

42: {

43: cout << "In Double(int)\n";

44: return 2 * original;

45: }

46:

47: long Double(long original)

48: {

49: cout << "In Double(long)\n";

50: return 2 * original;

51: }

52:

53: float Double(float original)

54: {

55: cout << "In Double(float)\n";

56: return 2 * original;

57: }

58:

59: double Double(double original)

60: {

61: cout << "In Double(double)\n";

62: return 2 * original;

63: }

Output: myInt: 6500

myLong: 65000

myFloat: 6.5

myDouble: 6.5e+20

In Double(int)

In Double(long)

In Double(float)

In Double(double)

DoubledInt: 13000

DoubledLong: 130000

DoubledFloat: 13

DoubledDouble: 1.3e+21

Analysis: The Double()function is overloaded with int, long, float, and double. The

prototypes are on lines 6-9, and the definitions are on lines 41-63.

In the body of the main program, eight local variables are declared. On lines 13-16, four of

 C++ programming Noor muwafak

 First stage

 89

the values are initialized, and on lines 28-31, the other four are assigned the results of

passing the first four to the Double() function. Note that when Double() is called, the

calling function does not distinguish which one to call; it just passes in an argument, and

the correct one is invoked.

The compiler examines the arguments and chooses which of the four Double() functions to

call. The output reveals that each of the four was called in turn, as you would expect.

Inline Functions

When you define a function, normally the compiler creates just one set of instructions in

memory. When you call the function, execution of the program jumps to those instructions,

and when the function returns, execution jumps back to the next line in the calling

function. If you call the function 10 times, your program jumps to the same set of

instructions each time. This means there is only one copy of the function, not 10.

There is some performance overhead in jumping in and out of functions. It turns out that

some functions are very small, just a line or two of code, and some efficiency can be gained

if the program can avoid making these jumps just to execute one or two instructions. When

programmers speak of efficiency, they usually mean speed: the program runs faster if the

function call can be avoided.

If a function is declared with the keyword inline, the compiler does not create a real

function: it copies the code from the inline function directly into the calling function. No

jump is made; it is just as if you had written the statements of the function right into the

calling function.

Note that inline functions can bring a heavy cost. If the function is called 10 times, the

inline code is copied into the calling functions each of those 10 times. The tiny improvement

in speed you might achieve is more than swamped by the increase in size of the executable

program. Even the speed increase might be illusory. First, today's optimizing compilers do

a terrific job on their own, and there is almost never a big gain from declaring a function

inline. More important, the increased size brings its own performance cost.

What's the rule of thumb? If you have a small function, one or two statements, it is a

candidate for inline. When in doubt, though, leave it out. Listing demonstrates an inline

function.

Listing Demonstrates an inline function.

1: // Listing - demonstrates inline functions

2:

3: #include <iostream.h>

4:

5: inline int Double(int);

6:

7: int main()

 C++ programming Noor muwafak

 First stage

 90

8: {

9: int target;

10:

11: cout << "Enter a number to work with: ";

12: cin >> target;

13: cout << "\n";

14:

15: target = Double(target);

16: cout << "Target: " << target << endl;

17:

18: target = Double(target);

19: cout << "Target: " << target << endl;

20:

21:

22: target = Double(target);

23: cout << "Target: " << target << endl;

24: return 0;

25: }

26:

27: int Double(int target)

28: {

29: return 2*target;

30: }

Output: Enter a number to work with: 20

Target: 40

Target: 80

Target: 160

Analysis: On line 5, Double() is declared to be an inline function taking an int

parameter and returning an int. The declaration is just like any other prototype

except that the keyword inline is prepended just before the return value.

This compiles into code that is the same as if you had written the following:

target = 2 * target;

everywhere you entered

target = Double(target);

By the time your program executes, the instructions are already in place.

NOTE: Inline is a hint to the compiler that you would like the function to be inlined. The

compiler is free to ignore the hint and make a real function call.

 C++ programming Noor muwafak

 First stage

 91

Recursion

A function can call itself. This is called recursion, and recursion can be direct or indirect. It

is direct when a function calls itself; it is indirect recursion when a function calls another

function that then calls the first function.

Some problems are most easily solved by recursion, usually those in which you act on data

and then act in the same way on the result. Both types of recursion, direct and indirect,

come in two varieties: those that eventually end and produce an answer, and those that

never end and produce a runtime failure. Programmers think that the latter is quite funny

(when it happens to someone else).

It is important to note that when a function calls itself, a new copy of that function is run.

The local variables in the second version are independent of the local variables in the first,

and they cannot affect one another directly, any more than the local variables in main()

can affect the local variables in any function it calls, as was illustrated in Listing .

To illustrate solving a problem using recursion, consider the Fibonacci series:

1,1,2,3,5,8,13,21,34...

Each number, after the second, is the sum of the two numbers before it. A Fibonacci

problem might be to determine what the 12th number in the series is.

One way to solve this problem is to examine the series carefully. The first two numbers are

1. Each subsequent number is the sum of the previous two numbers. Thus, the seventh

number is the sum of the sixth and fifth numbers. More generally, the nth number is the

sum of n - 2 and n - 1, as long as n > 2.

Recursive functions need a stop condition. Something must happen to cause the program to

stop recursing, or it will never end. In the Fibonacci series, n < 3 is a stop condition.

The algorithm to use is this:

1. Ask the user for a position in the series.

2. Call the fib() function with that position, passing in the value the user entered.

3. The fib() function examines the argument (n). If n < 3 it returns 1; otherwise,

fib() calls itself (recursively) passing in n-2, calls itself again passing in n-1, and

returns the sum.

If you call fib(1), it returns 1. If you call fib(2), it returns 1. If you call fib(3), it returns

the sum of calling fib(2) and fib(1). Because fib(2) returns 1 and fib(1) returns 1,

fib(3) will return 2.

 C++ programming Noor muwafak

 First stage

 92

If you call fib(4), it returns the sum of calling fib(3) and fib(2). We've established that

fib(3) returns 2 (by calling fib(2) and fib(1)) and that fib(2) returns 1, so fib(4) will

sum these numbers and return 3, which is the fourth number in the series.

Taking this one more step, if you call fib(5), it will return the sum of fib(4) and fib(3).

We've established that fib(4) returns 3 and fib(3) returns 2, so the sum returned will be

5.

This method is not the most efficient way to solve this problem (in fib(20) the fib()

function is called 13,529 times!), but it does work. Be careful: if you feed in too large a

number, you'll run out of memory. Every time fib() is called, memory is set aside. When it

returns, memory is freed. With recursion, memory continues to be set aside before it is

freed, and this system can eat memory very quickly. Listing 5.10 implements the fib()

function.

WARNING: When you run Listing , use a small number (less than 15). Because this uses

recursion, it can consume a lot of memory.

Listing Demonstrates recursion using the Fibonacci series.

1: // Listing - demonstrates recursion

2: // Fibonacci find.

3: // Finds the nth Fibonacci number

4: // Uses this algorithm: Fib(n) = fib(n-1) + fib(n-2)

5: // Stop conditions: n = 2 || n = 1

6:

7: #include <iostream.h>

8:

9: int fib(int n);

10:

11: int main()

12: {

13:

14: int n, answer;

15: cout << "Enter number to find: ";

16: cin >> n;

17:

18: cout << "\n\n";

19:

20: answer = fib(n);

21:

22: cout << answer << " is the " << n << "th Fibonacci number\n";

23: return 0;

24: }

25:

26: int fib (int n)

27: {

28: cout << "Processing fib(" << n << ")... ";

29:

 C++ programming Noor muwafak

 First stage

 93

30: if (n < 3)

31: {

32: cout << "Return 1!\n";

33: return (1);

34: }

35: else

36: {

37: cout << "Call fib(" << n-2 << ") and fib(" << n-1 << ").\n";

38: return(fib(n-2) + fib(n-1));

39: }

40: }

Output: Enter number to find: 5

Processing fib(5)... Call fib(3) and fib(4).

Processing fib(3)... Call fib(1) and fib(2).

Processing fib(1)... Return 1!

Processing fib(2)... Return 1!

Processing fib(4)... Call fib(2) and fib(3).

Processing fib(2)... Return 1!

Processing fib(3)... Call fib(1) and fib(2).

Processing fib(1)... Return 1!

Processing fib(2)... Return 1!

5 is the 5th Fibonacci number

Analysis: The program asks for a number to find on line 15 and assigns that number to

target. It then calls fib() with the target. Execution branches to the fib() function,

where, on line 28, it prints its argument.

The argument n is tested to see whether it equals 1 or 2 on line 30; if so, fib() returns.

Otherwise, it returns the sums of the values returned by calling fib() on n-2 and n-1.

In the example, n is 5 so fib(5) is called from main(). Execution jumps to the fib()

function, and n is tested for a value less than 3 on line 30. The test fails, so fib(5) returns

the sum of the values returned by fib(3) and fib(4). That is, fib() is called on n-2 (5 - 2

= 3) and n-1 (5 - 1 = 4). fib(4) will return 3 and fib(3) will return 2, so the final answer

will be 5.

Because fib(4) passes in an argument that is not less than 3, fib() will be called again,

this time with 3 and 2. fib(3) will in turn call fib(2) and fib(1). Finally, the calls to

fib(2) and fib(1) will both return 1, because these are the stop conditions.

The output traces these calls and the return values. Compile, link, and run this program,

entering first 1, then 2, then 3, building up to 6, and watch the output carefully. Then, just

for fun, try the number 20. If you don't run out of memory, it makes quite a show!

Recursion is not used often in C++ programming, but it can be a powerful and elegant tool

for certain needs.

 C++ programming Noor muwafak

 First stage

 94

NOTE: Recursion is a very tricky part of advanced programming. It is presented here

because it can be very useful to understand the fundamentals of how it works, but don't

worry too much if you don't fully understand all the details.

The Stack and Functions

Here's what happens when a program, running on a PC under DOS, branches to a

function:

1. The address in the instruction pointer is incremented to the next instruction past

the function call. That address is then placed on the stack, and it will be the return

address when the function returns.

2. Room is made on the stack for the return type you've declared. On a system with

two-byte integers, if the return type is declared to be int, another two bytes are

added to the stack, but no value is placed in these bytes.

3. The address of the called function, which is kept in a special area of memory set

aside for that purpose, is loaded into the instruction pointer, so the next instruction

executed will be in the called function.

4. The current top of the stack is now noted and is held in a special pointer called

the stack frame. Everything added to the stack from now until the function returns

will be considered

"local" to the function.

5. All the arguments to the function are placed on the stack.

6. The instruction now in the instruction pointer is executed, thus executing the first

instruction in the function.

7. Local variables are pushed onto the stack as they are defined.

When the function is ready to return, the return value is placed in the area of the stack

reserved at step 2. The stack is then popped all the way up to the stack frame pointer,

which effectively throws away all the local variables and the arguments to the function.

The return value is popped off the stack and assigned as the value of the function call itself,

and the address stashed away in step 1 is retrieved and put into the instruction pointer. The

program thus resumes immediately after the function call, with the value of the function

retrieved.

 C++ programming Noor muwafak

 First stage

 95

Some of the details of this process change from compiler to compiler, or between

computers, but the essential ideas are consistent across environments. In general, when you

call a function, the return address and the parameters are put on the stack. During the life

of the function, local variables are added to the stack. When the function returns, these are

all removed by popping the stack.

In coming days we'll look at other places in memory that are used to hold data that must

persist beyond the life of the function.

