Chapter (1) Real and rational numbers

Definition:

A **field** is a non-empty set F with the operation of addition and multiplication. i.e $(F, +, \cdot)$ is a field if it satisfies the following axioms:

<u>The axiom of real numbers</u>: $\forall a, b, c \in F$ 1) $a + b \in F$ (Additive closure) (Commutative property) 2) a + b = b + a3) (a + b) + c = a + (b + c) (Associative property) 4) \exists an element $0 \in F$ s.t $a + 0 = 0 + a = a \quad \forall a \in F$ 5) $a \in F \exists$ an element $-a \in F$ s.t a + (-a) = -a + a = 0. 6) $a.b \in F$ (Multiply closure) 7) $a \cdot b = b \cdot a$ (Commutative property) 8) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ (Associative property) 9) \exists an element $1 \in F$ s.t $a \cdot 1 = 1, a = a \forall a \in F$ 10) For each $a \in F$ and $a \neq 0$, \exists an element $a^{-1} \in F$ s.t $a + (a^{-1}) =$ $a^{-1} \cdot a = 1$.

11) $a \cdot (b + c) = a \cdot b + a \cdot c$ $(a + b) \cdot c = a \cdot c + b \cdot c$ (Distributive law)

Examples:

- The set of real numbers is a field.
- The set of rational numbers is a field.

Dr. Nuhad S. Al-Mothafar

Ordered Field:

A field $(F, +, \cdot)$ is called **ordered field** iff there is a relation "<" on F s.t $\forall a, b, c \in F$ satisfy the following conditions:

1) Either a = b or a < b or a > b2) If a < b and b < c, then a < c (transitive) 3) If a < b, then a + c < b + c4) If a < b and c > 0, then $a \cdot c < b \cdot c$.

Complete Ordered Field:

When an ordered field is bound above and bound below, then it has a supremum and infimum is called **complete ordered field**.

Supremum of a set:

A set *S* of real numbers is **bounded above** if there is a real number *b* such that $x \le b$ for each $x \in S$. In this case, *b* is an upper bound of *S*. If *b* is an **upper bound** of *S*, then so is any larger number, because of property (2)

If b' is an upper bound of S, but no number less than b', then b' is a **supremum** of S, and we write $b' = \sup(S)$.

Example:

If *S* is the set of negative numbers, then any non-negative number is an upper bound of *S*, and sup(S) = 0.

If S_1 is the set of negative integers, then any number a such that $a \ge -1$ is an upper bound of S, and $\sup(S_1) = -1$

The example shows that a supremum of a set may or may not be in the set since S_1 contains it's supremum but S dose not

Dr. Nuhad S. Al-Mothafar

Infimum of a set:

A set *S* of real numbers is **bounded below** if there is a real number *a* such that, $x \ge a$ for each $x \in S$. In this case *a* is a **lower bound** of *S* so is any smaller number because of property (2). If *a'* is a lower bound of *S* but no number greater than *a'*, then *a'* is an **infimum** of *S*, and we write $a' = \inf(S)$.

Remark:

If S is a non-empty set of real numbers, we write $\sup(S) = \infty$ to indicate that S is unbounded above and $\inf(S) = -\infty$ to indicate that S is unbounded below.

Example:

Let, $S = \{x : x < 2\}$, then $\sup(S) = 2$ and $\inf(S) = -\infty$

Example:

Let, $S = \{x : x \ge 2\}$, then $\sup(S) = \infty$ and $\inf(S) = -2$.

If S is the set of all integers, then $\sup(S) = \infty$ and $\inf(S) = -\infty$

<u>H.W</u>: Find sup(S) and inf(S), state whether they are in S.

$$1-S = \{x: x^2 \le 5\}$$

$$2-S = \{x: x^2 > 9\}$$

 $3-S = \{x: |2x+1| < 7\}.$

Rational Numbers:

The relation between the field of rational numbers and real number

Proposition (1-1):

Every ordered field contains a subfield similar to field of rational numbers.

Dr. Nuhad S. Al-Mothafar

<u>Proof</u>:- Let $(F, +, \cdot)$ be an ordered field $1 \in F$ $(0 \in F, the identity of +)$

 $1 + 1 + 1 + \dots + 1 = n \cdot 1 = n \in F, n \in Z^+$

<u>Claim</u> (1) $n \cdot 1 = 0$ iff n = 0

<u>Proof</u> \Rightarrow) Suppose the result is not true <u>i.e</u> there exists a positive integer $k \ge 1$ and $k \cdot 1 = 0$

It's clear that $k > 1 \Rightarrow k - 1 > 0$ and $(k - 1) \cdot 1 > 0$

 $0 < (k-1) \cdot 1 < k = k \cdot 1 = 0$ C! (since 0 < 0)

Thus the result is not true.

 \Leftarrow)Trivial.

Claim (2) $n \cdot 1 = m \cdot 1$ iff n = m

<u>Proof</u>: \leftarrow) If n = m clearly $n \cdot 1 = m \cdot 1$.

 $\Rightarrow) \text{ If } n \cdot 1 = m \cdot 1 \Rightarrow n \cdot 1 + (-m \cdot 1) = 0 \Rightarrow (n + (-m) \cdot 1) = 0.$ Then **by (1)** $n - m = 0 \Rightarrow n = m$. Thus $N \subset F$ (F Contains a copy of Z).

 $\forall n \in F$ (**F** is a group), $\exists -n \in F$ such that n + (-n) = 0, hence $Z \subset F$ (F Contains a copy of Z)

 $\forall n \neq 0, n \in F$ (F is a field), $\exists \frac{1}{n} \in F$ such that $\left(\frac{1}{n}\right) \cdot n = 1$.

 $\forall m \in F$, $\left(\frac{1}{n}\right) \cdot m = \frac{m}{n} \in F$ (Multiply closure).

 $Q \subset F$ (F Contains a copy of Q).

 $\frac{\text{Corollary (1-2)}}{Q \subseteq R}$

 $(R, +, \cdot, \leq)$ orderd field, $1 + 1 + 1 + \dots + 1 = n \cdot 1 = n \in R$.

Q/ Is Q = R.

To answer this question, we beginning by this proposition:

Proposition (1-3):

The equation $x^2 = 2$ has no solution in Q.

Proof: Suppose the result is not true <u>i.e</u> the equation $x^2 = 2$ has a root in Qsay $\frac{a}{b}$, $b \neq 0$, $a, b \in \mathbb{Z}$ and the greatest common divisor (a, b) = 1, $\frac{a^2}{b^2} = 2 \Rightarrow a^2 = 2b^2$.

- If a and b are odd, then $a^2(odd) = 2b^2(even)$ C!.
- If a is odd and b is even, (i. $e \ b = 2m$, $m \in Z$), then $a^2(odd) = 2(2m)^2 = 8m^2 = 2(4m^2)(even)$ C!.
- If a is even and b is odd, (i. e a = 2n, $n \in Z$) (, then $(2n)^2 = 2b^2 \Rightarrow 4n^2 = 2b^2 \Rightarrow 2n^2(even) = b^2(odd)$ C!.
- If a and b are even, (i. e a = 2n, $n \in Z$, b = 2m, $m \in Z$) (,then $4n^2 = 8m^2 \Rightarrow n^2(even) \text{ or } (odd) = 2m^2(even) \text{ C!..}$

So that there is no rational number satisfy this equation.

<u>H.W:</u>

The equation $x^2 = 3$ has no solution in Q.

Proposition (1-4):

The equation $x^2 = 2$ has only one real positive root.

Dr. Nuhad S. Al-Mothafar

Proof: Let $S = \{x \in 0 : x > 0, x^2 < 2\} \neq \emptyset$. $1 \in S$ and S is bounded above. Since R is complete ordered field, then S has a least upper bound say y. $\sup(S) = y$ **Claim:** $y^2 = 2$ If not, then either $y^2 > 2$ or $y^2 < 2$. **1.** If $y^2 < 2$ choose 0 < h < 1, $(y+h)^2 = y^2 + 2hy + h^2 < y^2 + 2hy + h$ $(y+h)^2 < y^2 + h(2y+1)$ Suppose $h < \frac{2-y^2}{2y+1}$ \Rightarrow $y^2 + h(2y + 1) < 2 \Rightarrow (y + h)^2 < 2$ Hence $y + h \in S$ C! Since $\sup(S) = y$ **2.** If $v^2 > 2$ choose 0 < k < 1 $(y-k)^2 = y^2 - 2ky + k^2 > y^2 - 2ky + k$ $(v-k)^2 > v^2 - k(2v+1)$ Suppose $k < \frac{y^2 - 2}{2y + 1}$ $\Rightarrow v^2 - k(2v + 1) > 2 \Rightarrow (v - k)^2 > 2$ Hence $y - k \in S$ C! Since $\sup(S) = y$, and y - k < y**Uniqueness:**

Let $\exists z \in R$ s.t $z^2 = 2$ and $z \neq y$, so either $z < y \Rightarrow z^2 < y^2$ (2 < 2) *C*! or $z > y \Rightarrow z^2 > y^2$ (2 > 2) *C*!. Thus z = y.

Dr. Nuhad S. Al-Mothafar

Corollary (1-5):

Real Analysis (1)

 $Q \subsetneq R$. (The field of rational numbers Q is proper subfield of the field of real numbers R).

<u>Proof</u>: $\sqrt{2} \in R$, from (1.4).

 $\sqrt{2} \notin Q$, from (1.3).

Corollary (1-6):

 ${\it Q}$ is not complete orderd field.

Proof: Let $S = \{x \in Q : x > 0, x^2 < 2\} \subset Q$. *S* is non-empty in *Q* and bounded above. But does not have least appear boned in *Q* since $Sup(S) = \sqrt{2} \notin Q$

Thus Q is not complete orderd field.

<u>Remark (1-7)</u>:

Q' = R - Q, Q' denote the set of irrational numbers, $R = Q \cup Q'$. Q' is complete ordered field. Not that $(\sqrt{2} \in Q') \Rightarrow (Q \neq Q')$.

Now, we study the set Q' and how we distribute the elements of Q and the element of Q' in R. We start by the following theorem:

Theorem (1-8) : (Archimedean property)

For each real numbers a and b, a > 0 there exists a positive integer n such that n. a > b

Proof: Let $S = \{ka: k \in Z^+\} \neq \emptyset$, *S* is bounded above.

Suppose the result is not true i.e. $\forall n \in Z^+$, $n.a \leq b$

Dr. Nuhad S. Al-Mothafar

i.e *b* is upper bounded for *S*, by completeness of real numbers *S* has a least upper bound say *y* i.e y = Sup(S)Since a > 0, then y - a < y $\Rightarrow \exists m \in Z^+$ and $m. a \in S$ such that m. a > y - a $\Rightarrow m. a + a > y$ $\Rightarrow (m + 1). a > y$. but $(m + 1). a \in S$ *C*! since y = Sup(S).

Corollary (1.9):

 $\forall \epsilon > 0$, there exists a positive integer *n* such that $\frac{1}{n} < \epsilon$.

Proof: Take b = 1, $a = \epsilon$. By (1.8) $\exists n \in Z^+$ s.t. $(n, \epsilon > 1) \div n$, Hence $\frac{1}{n} < \epsilon$.

<u>Theorem (1.10)</u>: (The density of rational numbers)

For each real numbers a and b with a < b, there exists at least one rational number r between a and b (a < r < b)

Proof: (1) Suppose 0 < a < b and b - a > 1 (1)

Let $S = \{n \in N : n = n \cdot 1 > a\} \neq \emptyset$, (By Archimedean) and let $k \in S$

Choose k be the smallest positive integer satisfies $k \cdot 1 = k > a$

 $k - 1 \le a < k \qquad \cdots (2)$

From (1) and (2) we get a < k < b

Dr. Nuhad S. Al-Mothafar

 \therefore k is the rational number between a and b. If $0 < b - a \leq 1$ $\exists n \in Z^+$ s. t. n(b-a) = nb - na > 1, (By Archimedean) \Rightarrow From (1) $\exists k \in Z^+$ such that $[na < k < nb] \div n$ $\Rightarrow a < \frac{k}{n} < b$ $\therefore \frac{k}{n}$ is the rational number between a and b. (2) If a < 0 < b $\therefore 0$ is the rational number between a and b. (3) a < b < 0 $\Rightarrow 0 < -b < -a$ By (1) $\exists r \in Q$ s.t -b < r < -a $\Rightarrow a < -r < b$ \therefore *r* is the rational number

Corollary (1-11):

For each real numbers a and b there exists an infinite countable set of rational numbers between a and b

Proof: a < b, by **(1.10)** $\exists r_1 \in Q$ s.t $a < r_1 < b$. $a < r_1$, by (1.10) $\exists r_2 \in Q$ s.t $a < r_2 < b$ And $\exists r'_2 \in Q$ s.t $r_1 < r'_2 < b$ Generally $\exists r_n \in Q$ between a and r_{n-1} and r'_n between r_{n-1} and b.

Thus we have infinite countable set between a and b

Theorem (1.12): (The density of irrational number)

For each real numbers a and b with a < b, there exists an irrational number s between a and b.

<u>Proof</u>: Suppose the result is not true <u>i.e</u> between a and b there is only rational number by **(1.10**), $\exists r_1 \in Q$ s.t (a < r < b)

 $\sqrt{2} \notin Q$, $\sqrt{2} \in Q' \Rightarrow a + \sqrt{2} < b + \sqrt{2} \Rightarrow a + \sqrt{2} < r + \sqrt{2} < b + \sqrt{2}$ $r + \sqrt{2} \in Q'$, If $(r \in Q, s \in Q', then r + s \in Q')$, hence a contradiction

<u>Corollary (1.13)</u>:

For any real numbers *a* and *b* there exists an infinite countable set of irrational numbers between *a* and *b*.

Proof : a < b, by (1.12) $\exists s_1 \in Q' \quad s.t \quad a < s_1 < b$. $a < s_1$, by (1.12) $\exists s_2 \in Q' \quad s.t \quad a < s_2 < b$ And $\exists s'_2 \in Q' \quad s.t \quad s_1 < s'_2 < b$ Generally $\exists s_n \in Q'$ between a and s_{n-1} and s'_n between s_{n-1} and b. we have infinite countable set $\{s_1, s_2, s'_2, \cdots\}$ between a and b **Example:** .1.25 < 1.50 1.50 - 1.25 = 0.25, by Arch., then $\exists n \in Z^+ \quad s.t \quad n(0.25) > 1$ 10(1.25) < k < 10(1.50) (choose n = 10) $\Rightarrow \quad 12.5 < k < 15 \Rightarrow$ k = 13. The number is $\frac{13}{10}$