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Chapter (1) 
Real and rational numbers 

Definition:  

A field is a non-empty set 𝐹 with the operation of addition and 

multiplication. i.e  (𝐹, +,∙)  is a field if  it  satisfies the following axioms: 

The axiom of real numbers: ∀ 𝑎, 𝑏, 𝑐 ∈  𝐹 

1) 𝑎 + 𝑏 ∈  𝐹                                      (Additive closure) 

2) 𝑎 + 𝑏 = 𝑏 + 𝑎                                (Commutative property) 

3) (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐)           (Associative property) 

4) ∃ an element  0 ∈  𝐹 s.t 𝑎 + 0 = 0 + 𝑎 = 𝑎     ∀ 𝑎 ∈  𝐹 

5) 𝑎 ∈  𝐹 ∃ an element   −𝑎 ∈  𝐹  s. t  𝑎 + (−𝑎) = −𝑎 + 𝑎 = 0. 

6) 𝑎. 𝑏 ∈  𝐹                                                  (Multiply closure) 

7) 𝑎 ∙ 𝑏 = 𝑏 ∙ 𝑎                                                (Commutative property) 

8) (𝑎 ∙ 𝑏) ∙ 𝑐 = 𝑎 ∙ (𝑏 ∙ 𝑐)                              (Associative property) 

9) ∃ an element  1 ∈  𝐹    s.t   𝑎 ∙ 1 = 1. 𝑎 = 𝑎   ∀ 𝑎 ∈  𝐹 

10) For each 𝑎 ∈  𝐹 and 𝑎 ≠ 0 , ∃ an element  𝑎−1 ∈  𝐹 s. t  𝑎 + (𝑎−1) =

𝑎−1. 𝑎 = 1 . 

11) 𝑎 ∙ (𝑏 + 𝑐) = 𝑎 ∙ 𝑏 + 𝑎 ∙ 𝑐        (𝑎 + 𝑏). 𝑐 = 𝑎 ∙ 𝑐 + 𝑏 ∙ 𝑐   (Distributive law) 

 

 Examples: 

   - The set of real numbers is a field. 

- The set of rational numbers is a field. 
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Ordered Field: 

   A  field (𝐹, +,∙) is called ordered field iff  there is a relation “<” on 𝐹 s.t  

∀ 𝑎, 𝑏, 𝑐 ∈  𝐹  satisfy the following conditions: 

1) Either  𝑎 = b   or   𝑎 < 𝑏   or    𝑎 > 𝑏 

2) If 𝑎 < 𝑏   and  𝑏 < 𝑐  , then  𝑎 < 𝑐   (transitive) 

3) If 𝑎 < 𝑏  , then 𝑎 + 𝑐 < 𝑏 + 𝑐    

4) If 𝑎 < 𝑏   and  𝑐 > 0, then 𝑎 ∙ 𝑐 < 𝑏 ∙ 𝑐  . 

 

Complete Ordered Field: 

When an ordered field is bound above and bound below, then it has a 

supremum and infimum is called complete ordered field. 

Supremum of a set:  

    A set 𝑆 of real numbers is bounded above if there is a real number 𝑏 such 

that 𝑥 ≤ 𝑏 for each 𝑥 ∈ 𝑆. In this case, 𝑏 is an upper bound of 𝑆. If 𝑏 is an 

upper bound of 𝑆, then so is any larger number, because of property (2)  

   If 𝑏′ is an upper bound of 𝑆, but no number less than 𝑏′, then 𝑏′ is a 

supremum of 𝑆 , and we write 𝑏′ = sup (𝑆). 

Example:  

   If 𝑆 is the set of negative numbers, then any non-negative number 

is an upper bound of 𝑆, and sup(𝑆) = 0. 

   If 𝑆1 is the set of negative integers, then any number 𝑎 such that 𝑎 ≥ −1 is 

an upper bound of 𝑆, and sup(𝑆1) = −1  

   The example shows that a supremum of a set may or may not be in the 

set since 𝑆1 contains it's supremum but 𝑆 dose not  
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Infimum of a set: 

    A set 𝑆 of real numbers is bounded below if there is a real number 𝑎 such 

that, 𝑥 ≥ 𝑎 for each 𝑥 ∈ 𝑆. In this case 𝑎 is a lower bound of 𝑆 so is any smaller 

number because of property (2). If 𝑎′ is a lower bound of 𝑆 but no number 

greater than 𝑎′, then 𝑎′ is an infimum of 𝑆, and we write 𝑎′ = inf (𝑆). 

Remark:   

   If 𝑆 is a non-empty set of real numbers, we write sup(𝑆) = ∞ to indicate 

that 𝑆 is unbounded above and inf(𝑆) = −∞ to indicate that 𝑆 is unbounded 

below. 

Example: 

Let,  𝑆 = {𝑥: 𝑥 < 2}, then sup(𝑆) = 2 and  inf(𝑆) = −∞ 

Example: 

 Let  ,  𝑆 = {𝑥: 𝑥 ≥ 2}, then sup(𝑆) = ∞ and  inf(𝑆) = −2. 

 If 𝑆 is the set of all integers, then sup(𝑆) = ∞ and  inf(𝑆) = −∞  

H.W: Find sup(𝑆) and  inf(𝑆), state whether they are in 𝑆. 

1- 𝑆 = {𝑥: 𝑥2 ≤ 5} 

2- 𝑆 = {𝑥: 𝑥2 > 9} 

3- 𝑆 = {𝑥: |2𝑥 + 1| < 7}. 

Rational Numbers: 

The relation between the field of rational numbers and real number  

Proposition (1-1): 

Every ordered field contains a subfield similar to field of rational numbers. 
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Proof:- Let (𝐹, +,∙) be an ordered field 1 ∈ 𝐹 (0 ∈ 𝐹, the identity of +) 

 1 + 1 + 1 + ⋯ + 1 = 𝑛 ∙ 1 = 𝑛 ∈ 𝐹,    𝑛 ∈ 𝑍+ 

Claim (1) 𝑛 ∙ 1 = 0   𝑖𝑓𝑓    𝑛 = 0  

Proof ⇒) Suppose the result is not true i.e there exists a positive integer 

𝑘 ≥ 1 and   𝑘 ∙ 1 = 0    

 It's clear that   𝑘 > 1 ⇒ 𝑘 − 1 > 0  and (𝑘 − 1) ∙ 1 > 0 

 0 < (𝑘 − 1) ∙ 1 < 𝑘 = 𝑘 ∙ 1 = 0     𝐂!     ( since  0 < 0( 

Thus the result is not true. 

⇐)Trivial. 

Claim (2)    𝑛 ∙ 1 = 𝑚 ∙ 1     𝑖𝑓𝑓     𝑛 = 𝑚  

Proof  :⇐) If  𝑛 = 𝑚   clearly   𝑛 ∙ 1 = 𝑚 ∙ 1 . 

⇒) If 𝑛 ∙ 1 = 𝑚 ∙ 1  ⇒    𝑛 ∙ 1 + (−𝑚 ∙ 1) = 0    ⇒   ( 𝑛 + (−𝑚) ∙ 1) = 0. 

Then by (1)  𝑛 − 𝑚 = 0  ⇒   𝑛 = 𝑚. Thus  N ⊂ F    (F Contains a copy of Z) . 

∀ n ∈ F  ( 𝐅 is a group), ∃ − 𝑛 ∈ 𝐹 such that  𝑛 + (−𝑛) = 0  , hence Z ⊂ F  

(F Contains a copy of 𝑍) 

∀ n ≠ 0, n ∈ F  (𝐅 is a field),  ∃ 
1

𝑛
∈ 𝐹  such that  (

1

𝑛
) ∙ 𝑛 = 1. 

∀ m ∈ F ,    (
1

𝑛
) ∙ 𝑚 =

𝑚

𝑛
 ∈ F   (Multiply closure). 

Q ⊂ F  (F Contains a copy of Q) . 

Corollary (1-2): 

Q ⊆ R   
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(𝑅, +,∙, ≤) orderd field, 1 + 1 + 1 + ⋯ + 1 = 𝑛 ∙ 1 = 𝑛 ∈ 𝑅  . 

 

Q/  Is 𝑄 = 𝑅. 

   To answer this question, we beginning by this proposition:  

Proposition (1-3): 

The equation 𝑥2 = 2 has no solution in 𝑄. 

Proof: Suppose the result is not true i.e the equation 𝑥2 = 2  has a root in 𝑄 

say 
𝑎

𝑏
 , 𝑏 ≠ 0 , 𝑎, 𝑏 ∈ Z and the greatest common divisor (𝑎, 𝑏) = 1 ,

𝑎2

𝑏2 =

2  ⇒  𝑎2 = 2𝑏2. 

 If 𝑎 and 𝑏 are odd, then 𝑎2(𝑜𝑑𝑑) = 2𝑏2(𝑒𝑣𝑒𝑛) C! . 

 If 𝑎 is odd and 𝑏 is even, (𝑖. 𝑒 𝑏 = 2𝑚, 𝑚 ∈ 𝑍 ), then 𝑎2(𝑜𝑑𝑑) =

2(2𝑚)2 = 8𝑚2 = 2(4𝑚2)(𝑒𝑣𝑒𝑛) C! . 

 If 𝑎 is even and 𝑏 is odd, (𝑖. 𝑒 𝑎 = 2𝑛, 𝑛 ∈ 𝑍 ) (, then (2𝑛)2 = 2𝑏2 ⇒

 4𝑛2 = 2𝑏2  ⇒ 2𝑛2(𝑒𝑣𝑒𝑛)  = 𝑏2(𝑜𝑑𝑑) C!. 

 If 𝑎 and 𝑏 are even, (𝑖. 𝑒 𝑎 = 2𝑛, 𝑛 ∈ 𝑍 , 𝑏 = 2𝑚, 𝑚 ∈ 𝑍 ) (,then 

 4𝑛2 = 8𝑚2  ⇒ 𝑛2(𝑒𝑣𝑒𝑛) 𝑜𝑟 (𝑜𝑑𝑑)  = 2𝑚2(𝑒𝑣𝑒𝑛) C!.. 

So that there is no rational number satisfy this equation. 

H.W: 

The equation 𝑥2 = 3 has no solution in 𝑄. 

Proposition (1-4): 

The equation 𝑥2 = 2 has only one real positive root. 
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Proof: Let 𝑆 = {𝑥 ∈ 𝑄: 𝑥 > 0 , 𝑥2 < 2} ≠ ∅. 1 ∈ 𝑆 and 𝑆 is bounded above. 

Since 𝑅 is complete ordered field, then 𝑆 has a least upper bound say 𝑦. 

sup(𝑆) = 𝑦 

Claim:   𝑦2 = 2 

If not, then either 𝑦2 > 2    or   𝑦2 < 2  . 

1. If   𝑦2 < 2    choose    0 < ℎ < 1, 

(𝑦 + ℎ)2 = 𝑦2 + 2ℎ𝑦 + ℎ2 < 𝑦2 + 2ℎ𝑦 + ℎ  

(𝑦 + ℎ)2 < 𝑦2 + ℎ(2𝑦 + 1)  

Suppose       ℎ  <   
2−𝑦2

2𝑦+1
    

⇒  𝑦2 + ℎ(2𝑦 + 1) < 2   ⇒   (𝑦 + ℎ)2 < 2  

Hence 𝑦 + ℎ ∈ 𝑆  𝐶!  Since  sup(𝑆) = 𝑦 

2. If      𝑦2 > 2      choose     0 < 𝑘 < 1 

 (𝑦 − 𝑘)2 = 𝑦2 − 2𝑘𝑦 + 𝑘2 > 𝑦2 − 2𝑘𝑦 + 𝑘  

(𝑦 − 𝑘)2 > 𝑦2 − 𝑘(2𝑦 + 1)  

Suppose     𝑘 <  
𝑦2−2

2𝑦+1
 

⇒  𝑦2 − 𝑘(2𝑦 + 1) > 2  ⇒   (𝑦 − 𝑘)2  > 2   

Hence 𝑦 − 𝑘 ∈ 𝑆  𝐶!  Since  sup(𝑆) = 𝑦, and 𝑦 − 𝑘 < 𝑦 

Uniqueness: 

 Let ∃ 𝑧 ∈ 𝑅    s. t    𝑧2 = 2 and 𝑧 ≠ 𝑦, so either 𝑧 < 𝑦 ⇒   𝑧2 < 𝑦2 (2 < 2) 𝐶!  

or 𝑧 > 𝑦 ⇒  𝑧2 > 𝑦2  (2 > 2)   𝐶!.  Thus    𝑧 = 𝑦. 
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Corollary (1-5): 

   𝑄 ⊊ 𝑅. (The field of rational numbers 𝑄 is proper subfield of the 

field of real numbers 𝑅). 

Proof:  √2 ∈ 𝑅, from (1.4). 

√2 ∉ 𝑄, from (1.3). 

Corollary (1-6): 

   𝑄 is not complete orderd field. 

Proof: Let 𝑆 = {𝑥 ∈ 𝑄: 𝑥 > 0 , 𝑥2 < 2} ⊂ 𝑄. 𝑆 is non-empty in 𝑄 and 

bounded above. But does not have least appear boned in 𝑄 since 𝑆𝑢𝑝(𝑆) =

√2 ∉ 𝑄 

Thus 𝑄 is not complete orderd field. 

Remark (1-7): 

   𝑄′ = 𝑅 − 𝑄 , 𝑄′denote the set of irrational numbers, 𝑅 = 𝑄⋃𝑄′. 𝑄′ is 

complete ordered field. Not that (√2 ∈ 𝑄′)  ⇒   (𝑄 ≠ 𝑄′). 

 

   Now, we study the set 𝑄′ and how we distribute the elements of 𝑄 and 

the element of 𝑄′ in 𝑅. We start by the following theorem: 

Theorem (1-8) : (Archimedean property) 

   For each real numbers 𝑎 and 𝑏, 𝑎 > 0  there exists a positive integer 𝑛 

such that 𝑛. 𝑎 > 𝑏  

Proof: Let  𝑆 = {𝑘𝑎:    𝑘 ∈ 𝑍+} ≠ ∅ ,  𝑆 is bounded above.  

Suppose the result is not true i.e.    ∀ 𝑛 ∈ 𝑍+ , 𝑛. 𝑎 ≤ 𝑏 
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   i.e  𝑏  is upper bounded for 𝑆,  by completeness of real numbers 𝑆 has a 

least upper bound say 𝑦   i.e  𝑦 = 𝑆𝑢𝑝(𝑆)  

Since   𝑎 > 0, then    𝑦 − 𝑎 < 𝑦  

⇒ ∃ 𝑚 ∈ 𝑍+ and 𝑚. 𝑎 ∈ 𝑆  such  that   𝑚. 𝑎 > 𝑦 − 𝑎   

⇒  𝑚. 𝑎 + 𝑎 > 𝑦   

 ⇒ (𝑚 + 1). 𝑎 > 𝑦  . but  (𝑚 + 1). 𝑎 ∈ 𝑆  𝐶!   since 𝑦 = 𝑆𝑢𝑝(𝑆) .  

 

Corollary (1.9): 

   ∀𝜖 > 0, there exists a positive integer  𝑛  such that  
1

𝑛
 <  𝜖. 

Proof: Take  𝑏 = 1  , 𝑎 = 𝜖 . By (1.8)  ∃ 𝑛 ∈ 𝑍+ s. t.   (𝑛. 𝜖 > 1) ÷ 𝑛, 

Hence   
1

𝑛
< 𝜖. 

Theorem (1.10): (The density of rational numbers) 

   For each real numbers 𝑎 and 𝑏 with 𝑎 < 𝑏, there exists at least one rational 

number 𝑟 between 𝑎 and 𝑏 (𝑎 < 𝑟 < 𝑏)  

                                                         

Proof: )1( Suppose     0 < 𝑎 < 𝑏   and    𝑏 − 𝑎 > 1      ⋯ (1)             

  Let  𝑆 = {𝑛 ∈ 𝑁: 𝑛 = 𝑛 ∙ 1 > 𝑎} ≠ ∅,      (By Archimedean) and let 𝑘 ∈ 𝑆 

Choose 𝑘 be the smallest positive integer satisfies 𝑘 ∙ 1 = 𝑘 > 𝑎   

  𝑘 − 1 ≤ 𝑎 < 𝑘             ⋯ (2) 

From  (1 ) and (2) we get   𝑎 < 𝑘 <  𝑏 
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∴ 𝑘 is the rational number between 𝑎 and 𝑏.                                                   

If   0 < 𝑏 − 𝑎 ≤ 1  

∃ 𝑛 ∈ 𝑍+  s. t.  𝑛(𝑏 − 𝑎) = 𝑛𝑏 − 𝑛𝑎 > 1  , (By Archimedean)  

⇒ From (1)   ∃ 𝑘 ∈ 𝑍+ such that    [𝑛𝑎 < 𝑘 < 𝑛𝑏 ] ÷ 𝑛  

⇒ 𝑎 <  
𝑘

𝑛
< 𝑏     

 ∴   
𝑘

𝑛
      is the rational number between 𝑎 and 𝑏. 

 (2) If   𝑎 <  0 < 𝑏     

 ∴  0    is the rational number between 𝑎 and 𝑏. 

(3)    𝑎 <  𝑏 < 0    

 ⇒  0 < − 𝑏 < −𝑎    

By (1)  ∃  𝑟 ∈ 𝑄      s.t       –  𝑏 < 𝑟 < −𝑎    

⇒  𝑎 <  − 𝑟 <  𝑏    

∴ 𝑟 is the rational number  

Corollary (1-11): 

    For each real numbers 𝑎 and 𝑏 there exists an infinite countable set of 

rational numbers between 𝑎 and  𝑏  

Proof:  𝑎 < 𝑏 , by (1.10 (  ∃ 𝑟1 ∈ 𝑄    𝑠. 𝑡    𝑎 < 𝑟1 < 𝑏 . 

𝑎 < 𝑟1  , by (1.10 (   ∃ 𝑟2 ∈ 𝑄    𝑠. 𝑡    𝑎 < 𝑟2 < 𝑏 

 And ∃ 𝑟2
′ ∈ 𝑄    𝑠. 𝑡    𝑟1 < 𝑟2

′ < 𝑏 

Generally ∃ 𝑟𝑛 ∈ 𝑄 between 𝑎 and 𝑟𝑛−1 and  𝑟𝑛
′  between 𝑟𝑛−1 and 𝑏. 
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Thus we have infinite countable set between 𝑎 and 𝑏  

 Theorem (1.12): (The density of irrational number) 

    For each real numbers 𝑎 and 𝑏 with 𝑎 < 𝑏, there exists an irrational number 

𝑠 between 𝑎 and 𝑏. 

Proof: Suppose the result is not true i.e between 𝑎 and 𝑏 there is only rational 

number by (1.10), ∃ 𝑟1 ∈ 𝑄    s.t    ( 𝑎 < 𝑟 < 𝑏) 

 √2 ∉ 𝑄   ,   √2 ∈ 𝑄′   ⇒   𝑎 + √2  < 𝑏 + √2    ⇒ 𝑎 + √2   < 𝑟 + √2 < 𝑏 + √2   

𝑟 + √2  ∈ 𝑄′, If  (𝑟 ∈ 𝑄 , 𝑠 ∈ 𝑄′, 𝑡ℎ𝑒𝑛 𝑟 + 𝑠 ∈ 𝑄′), hence a contradiction  

Corollary (1.13): 

  For any real numbers 𝑎 and 𝑏 there exists an infinite countable set of irrational 

numbers between 𝑎 and 𝑏. 

Proof  : 𝑎 < 𝑏 , by (1.12 (  ∃    𝑠1 ∈ 𝑄′    𝑠. 𝑡    𝑎 < 𝑠1 < 𝑏 . 

𝑎 < 𝑠1 , by (1.12 (   ∃    𝑠2 ∈ 𝑄′    𝑠. 𝑡    𝑎 < 𝑠2 < 𝑏 

 And   ∃    𝑠2
′ ∈ 𝑄′    𝑠. 𝑡    𝑠1 < 𝑠2

′ < 𝑏 

Generally ∃   𝑠𝑛 ∈ 𝑄′ between 𝑎 and 𝑠𝑛−1 and 𝑠𝑛
′  between 𝑠𝑛−1 and 𝑏. 

we have infinite countable set {𝑠1 , 𝑠2, 𝑠2
′ , ⋯ } between 𝑎 and 𝑏  

Example: .1.25 < 1.50 

1.50 − 1.25 = 0.25, by Arch., then ∃ 𝑛 ∈ 𝑍+    𝑠. 𝑡   𝑛( 0.25) > 1 

10( 1.25) < 𝑘 < 10(1.50)    (𝑐ℎ𝑜𝑜𝑠𝑒 𝑛 = 10) ⇒    12.5 < 𝑘 < 15 ⇒

  𝑘 = 13. The number is   
13
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