Chapter (1) Real and rational numbers

Definition:

A **field** is a non-empty set F with the operation of addition and multiplication. i.e $(F, +, \cdot)$ is a field if it satisfies the following axioms:

The axiom of real numbers: \forall *a*, *b*, *c* ∈ *F* 1) $a + b \in F$ (Additive closure) 2) $a + b = b + a$ (Commutative property) 3) $(a + b) + c = a + (b + c)$ (Associative property) 4) \exists an element $0 \in F$ s.t $a + 0 = 0 + a = a \quad \forall a \in F$ 5) $a \in F \exists$ an element $-a \in F$ s. t $a + (-a) = -a + a = 0$. 6) $a, b \in F$ (Multiply closure) 7) $a \cdot b = b \cdot a$ (Commutative property) 8) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ (Associative property) 9) \exists an element $1 \in F$ s.t $a \cdot 1 = 1$. $a = a \ \forall a \in F$ 10) For each $a \in F$ and $a \neq 0$, \exists an element $a^{-1} \in F$ s. t $a + (a^{-1}) =$ $a^{-1}. a = 1.$

11) $a \cdot (b + c) = a \cdot b + a \cdot c$ $(a + b) \cdot c = a \cdot c + b \cdot c$ (Distributive law)

Examples:

- **-** The set of real numbers is a field.
- **-** The set of rational numbers is a field.

Real Analysis (1) The Contract of the Contract of the Dr. Nuhad S. Al-Mothafar

Ordered Field:

A field $(F, +, \cdot)$ is called **ordered field** iff there is a relation "<" on F s.t $\forall a, b, c \in F$ satisfy the following conditions:

1) Either $a = b$ or $a < b$ or $a > b$ 2) If $a < b$ and $b < c$, then $a < c$ (transitive) 3) If $a < b$, then $a + c < b + c$ 4) If $a < b$ and $c > 0$, then $a \cdot c < b \cdot c$.

Complete Ordered Field:

When an ordered field is bound above and bound below, then it has a supremum and infimum is called **complete ordered field**.

Supremum of a set:

A set S of real numbers is **bounded above** if there is a real number b such that $x \leq b$ for each $x \in S$. In this case, b is an upper bound of S. If b is an **upper bound** of S, then so is any larger number, because of property (2)

If b' is an upper bound of S, but no number less than b' , then b' is a **supremum** of S, and we write $b' = \sup(S)$.

Example:

If S is the set of negative numbers, then any non-negative number is an upper bound of S, and $\text{sup}(S) = 0$.

If S_1 is the set of negative integers, then any number a such that $a \ge -1$ is an upper bound of S , and $\sup(S_1) = -1$

 The example shows that a supremum of a set may or may not be in the set since S_1 contains it's supremum but S dose not

Infimum of a set:

A set S of real numbers is **bounded below** if there is a real number a such that, $x \ge a$ for each $x \in S$. In this case a is a **lower bound** of S so is any smaller number because of property (2). If a' is a lower bound of S but no number greater than a' , then a' is an **infimum** of S, and we write $a' = \inf(S)$.

Remark:

If S is a non-empty set of real numbers, we write $sup(S) = \infty$ to indicate that S is unbounded above and $\inf(S) = -\infty$ to indicate that S is unbounded below.

Example:

Let, $S = \{x : x < 2\}$, then sup(S) = 2 and inf(S) = $-\infty$

Example:

Let, $S = \{x : x \ge 2\}$, then sup(S) = ∞ and inf(S) = -2.

If S is the set of all integers, then $sup(S) = \infty$ and $inf(S) = -\infty$

H.W: Find sup(S) and $\inf(S)$, state whether they are in S.

$$
1 - S = \{x : x^2 \le 5\}
$$

$$
2-S = \{x: x^2 > 9\}
$$

 $3 - S = \{x: |2x + 1| < 7\}.$

Rational Numbers:

The relation between the field of rational numbers and real number

Proposition (1-1):

Every ordered field contains a subfield similar to field of rational numbers.

Real Analysis (1) **Real Analysis** (1) **Dr. Nuhad S. Al-Mothafar**

Proof:- Let $(F, +, \cdot)$ be an ordered field $1 \in F$ ($0 \in F$, the identity of $+$)

 $1 + 1 + 1 + \cdots + 1 = n \cdot 1 = n \in F$, $n \in Z^+$

Claim (1) $n \cdot 1 = 0$ *iff* $n = 0$

Proof ⇒) Suppose the result is not true i.e there exists a positive integer $k \geq 1$ and $k \cdot 1 = 0$

It's clear that $k > 1 \Rightarrow k - 1 > 0$ and $(k - 1) \cdot 1 > 0$

 $0 < (k-1) \cdot 1 < k = k \cdot 1 = 0$ C! (since $0 < 0$)

Thus the result is not true.

 \Leftarrow)Trivial.

Claim (2) $n \cdot 1 = m \cdot 1$ *iff* $n = m$

Proof : \Leftarrow) If $n = m$ clearly $n \cdot 1 = m \cdot 1$.

 \Rightarrow) If $n \cdot 1 = m \cdot 1 \Rightarrow n \cdot 1 + (-m \cdot 1) = 0 \Rightarrow (n + (-m) \cdot 1) = 0.$ Then **by** (1) $n - m = 0 \Rightarrow n = m$. Thus $N \subset F$ (F Contains a copy of Z).

 \forall n ∈ F **(F** is a group), $\exists -n \in F$ such that $n + (-n) = 0$, hence $Z \subset F$ (F Contains a copy of Z)

 \forall n \neq 0, n \in F (**F** is a field), $\exists \frac{1}{n}$ $\frac{1}{n} \in F$ such that $\left(\frac{1}{n}\right)$ $\frac{1}{n}$) · $n=1$.

 $\forall m \in F$, $\left(\frac{1}{n}\right)$ $\left(\frac{1}{n}\right) \cdot m = \frac{m}{n}$ $\frac{m}{n} \in F$ (Multiply closure).

 $Q \subset F$ (F Contains a copy of Q).

Corollary (1-2): $Q \subseteq R$

 $(R, +, \cdot, \leq)$ orderd field, $1 + 1 + 1 + \cdots + 1 = n \cdot 1 = n \in R$.

Q/ Is $Q = R$.

To answer this question, we beginning by this proposition:

Proposition (1-3):

The equation $x^2=2$ has no solution in Q .

Proof: Suppose the result is not true <u>i.e</u> the equation $x^2 = 2$ has a root in Q say $\frac{a}{b}$ $\frac{a}{b}$, $b \neq 0$, $a, b \in \mathbb{Z}$ and the greatest common divisor $(a, b) = 1$, $\frac{a^2}{b^2}$ $\frac{a}{b^2} =$ $2 \Rightarrow a^2 = 2b^2$.

- If a and b are odd, then $a^2(odd) = 2b^2(even)$ C!.
- If a is odd and b is even, (i. e $b = 2m$, $m \in \mathbb{Z}$), then $a^2(odd) =$ $2(2m)^2 = 8m^2 = 2(4m^2)(even)$ C!.
- If a is even and b is odd, $(i.e a = 2n, n \in \mathbb{Z})$ (, then $(2n)^2 = 2b^2 \Rightarrow$ $4n^2 = 2b^2 \Rightarrow 2n^2(even) = b^2(odd)$ C!.
- If a and b are even, (i. e $a = 2n$, $n \in \mathbb{Z}$, $b = 2m$, $m \in \mathbb{Z}$) (then $4n^2 = 8m^2 \Rightarrow n^2(even) \text{ or } (odd) = 2m^2(even) \text{ C!}...$

So that there is no rational number satisfy this equation.

H.W:

The equation $x^2=3$ has no solution in $Q.$

Proposition (1-4):

The equation $x^2 = 2$ has only one real positive root.

Real Analysis (1) The Contract of the Contract of the Dr. Nuhad S. Al-Mothafar

Proof: Let $S = \{x \in Q : x > 0, x^2 < 2\} \neq \emptyset$. $1 \in S$ and S is bounded above. Since R is complete ordered field, then S has a least upper bound say y . $\sup(S) = y$ **Claim:** $y^2 = 2$ If not, then either $y^2 > 2$ or $y^2 < 2$. **1.** If $y^2 < 2$ choose $0 < h < 1$, $(y+h)^2 = y^2 + 2hy + h^2 < y^2 + 2hy + h$ $(y+h)^2 < y^2 + h(2y+1)$ Suppose $h < \frac{2-y^2}{3y+1}$ $2y+1$ \Rightarrow $y^2 + h(2y + 1) < 2 \Rightarrow (y + h)^2 < 2$ Hence $y + h \in S$ C! Since sup(S) = y **2.** If $y^2 > 2$ choose $0 < k < 1$ $(y-k)^2 = y^2 - 2ky + k^2 > y^2 - 2ky + k$ $(y-k)^2 > y^2 - k(2y+1)$ Suppose $k < \frac{y^2-2}{2x+1}$ $2y+1$ \Rightarrow $y^2 - k(2y + 1) > 2 \Rightarrow (y - k)^2 > 2$ Hence $y - k \in S$ C! Since sup(S) = y, and $y - k < y$ **Uniqueness:**

Let $\exists z \in R$ s. t $z^2 = 2$ and $z \neq y$, so either $z < y \Rightarrow z^2 < y^2$ (2 < 2) C! or $z > y \Rightarrow z^2 > y^2$ $(2 > 2)$ $C!$. Thus $z = y$.

Real Analysis (1) **Real Analysis** (1) **Dr. Nuhad S. Al-Mothafar**

Corollary (1-5):

 $Q \subseteq R$. (The field of rational numbers Q is proper subfield of the field of real numbers R).

Proof: $\sqrt{2} \in R$, from (1.4).

 $\sqrt{2} \notin Q$, from (1.3).

Corollary (1-6):

 O is not complete orderd field.

Proof: Let $S = \{x \in Q : x > 0, x^2 < 2\} \subset Q$. S is non-empty in Q and bounded above. But does not have least appear boned in Q since $Sup(S)$ = $\sqrt{2} \notin O$

Thus Q is not complete orderd field.

Remark (1-7):

 $Q' = R - Q$, Q'denote the set of irrational numbers, $R = Q \cup Q'$. Q' is complete ordered field. Not that $\left(\sqrt{2} \in Q'\right) \,\Rightarrow\, \,\, (Q \neq Q').$

Now, we study the set Q' and how we distribute the elements of Q and the element of Q' in R . We start by the following theorem:

Theorem (1-8) : (Archimedean property)

For each real numbers a and b, $a > 0$ there exists a positive integer n such that $n, a > b$

Proof: Let $S = \{ka: k \in Z^+\} \neq \emptyset$, S is bounded above.

Suppose the result is not true i.e. $\forall n \in \mathbb{Z}^+$, $n.a \leq b$

Real Analysis (1) The Contract of the Contract of the Dr. Nuhad S. Al-Mothafar

i.e b is upper bounded for S, by completeness of real numbers S has a least upper bound say y i.e $y = Sup(S)$ Since $a > 0$, then $y - a < y$ \Rightarrow $\exists m \in Z^+$ and m . $a \in S$ such that m . $a > y - a$ \Rightarrow m.a + a > y \Rightarrow $(m + 1)$. $a > y$. but $(m + 1)$. $a \in S$ C! since $y = Sup(S)$.

Corollary (1.9):

 $\forall \epsilon > 0$, there exists a positive integer n such that $\frac{1}{n} < \epsilon$.

Proof: Take $b = 1$, $a = \epsilon$. By (1.8) $\exists n \in \mathbb{Z}^+$ s. t. $(n, \epsilon > 1) \div n$, Hence $\frac{1}{n}$ $\frac{1}{n} < \epsilon$.

Theorem (1.10): (The density of rational numbers)

For each real numbers a and b with $a < b$, there exists at least one rational number r between a and b $(a < r < b)$

<u>Proof:</u> (1) Suppose $0 < a < b$ and $b - a > 1$ …(1)

Let $S = \{ n \in N : n = n \cdot 1 > a \} \neq \emptyset$, (By Archimedean) and let $k \in S$

Choose k be the smallest positive integer satisfies $k \cdot 1 = k > a$

 $k - 1 \le a \le k$ … (2)

From (1) and (2) we get $a < k < b$

Real Analysis (1) **Real Analysis** (1) **Dr. Nuhad S. Al-Mothafar**

 \therefore k is the rational number between a and b. If $0 < b - a \leq 1$ $\exists n \in \mathbb{Z}^+$ s. t. $n(b-a) = nb - na > 1$, (By Archimedean) \Rightarrow From (1) $\exists k \in \mathbb{Z}^+$ such that $[na < k < nb] \div n$ $\Rightarrow a < \frac{k}{a}$ $\frac{n}{n}$ < b ∴ $\frac{k}{n}$ $\frac{\kappa}{n}$ is the rational number between a and b . **(2)** If $a < 0 < b$ ∴ 0 is the rational number between α and β . **(3)** $a < b < 0$ $\Rightarrow 0 < -b < -a$ By (1) $\exists r \in Q$ s.t $-b < r < -a$ $\Rightarrow a < -r < b$ \therefore r is the rational number

Corollary (1-11):

For each real numbers a and b there exists an infinite countable set of rational numbers between a and b

<u>Proof:</u> $a < b$, by (1.10) $\exists r_1 \in Q$ s.t $a < r_1 < b$. $a < r_1$, by (1.10) $\exists r_2 \in Q$ s.t $a < r_2 < b$ And $\exists r'_2 \in Q$ s.t $r_1 < r'_2 < b$ Generally $\exists r_n \in Q$ between a and r_{n-1} and r'_n between r_{n-1} and b .

Thus we have infinite countable set between a and b

Theorem (1.12): (The density of irrational number)

For each real numbers a and b with $a < b$, there exists an irrational number s between a and b .

Proof: Suppose the result is not true i.e between a and b there is only rational number by **(1.10**), $\exists r_1 \in Q$ s.t $(a < r < b)$

 $\sqrt{2} \notin Q$, $\sqrt{2} \in Q' \Rightarrow a + \sqrt{2} < b + \sqrt{2} \Rightarrow a + \sqrt{2} < r + \sqrt{2} < b + \sqrt{2}$ $r+\sqrt{2}~\in Q'$, If $(r\in Q$, $s\in Q'$, then $r+s\in Q'$), hence a contradiction

Corollary (1.13):

For any real numbers a and b there exists an infinite countable set of irrational numbers between a and b .

<u>Proof</u> : $a < b$, by (1.12) ∃ $s_1 \in Q'$ *s.t* $a < s_1 < b$. $a < s_1$, by (1.12) $\exists s_2 \in Q'$ s.t $a < s_2 < b$ And $\exists s'_2 \in Q'$ s.t $s_1 < s'_2 < b$ Generally $\exists s_n \in Q'$ between a and s_{n-1} and s'_n between s_{n-1} and b . we have infinite countable set $\{s_1, s_2, s'_2, \dots\}$ between a and b **Example:** .1.25 < 1.50 $1.50 - 1.25 = 0.25$, by Arch., then $\exists n \in \mathbb{Z}^+$ s. t $n(0.25) > 1$

 $10(1.25) < k < 10(1.50)$ (choose $n = 10$) \Rightarrow 12.5 $< k < 15$ \Rightarrow $k = 13$. The number is $\frac{13}{10}$ 10