
ابن الهيثم/ كلية التربية للعلوم الصرفة

المرحلة الثانية

قسم علوم الحاسبات

 Database (DB): Database is a collection of interrelated
data stored together without harmful or unnecessary
redundancy to serve multiple applications.

 Database management system (DBMS): are specially
designed applications that interact with the user, other
applications, and the database itself to capture and analyze
data.

A general-purpose (DBMS) is a software system designed to allow the
definition, creation, querying, update, and administration of DB, Well-known
DBMSs include:

MySQL

Microsoft SQL Server

Oracle

FoxPro

 IBM DB2

A database is not generally portable across different DBMS, but different
DBMSs can be using standards such as SQL (Structure Query Language) and
ODBC (Open Database Connectivity) or JDBC (The Java Database
Connectivity) to allow a single application to work with more than one
database.

Database Administrator (DBA):

is a person responsible for the performance, integrity and security of a database. He will
also be involved in the planning and developing of the DB, as well as troubleshooting
any issues on behalf of the users.

Purpose of Database Systems: (Why DB?)

 From the centralized control there are some advantages such as:

1. Redundancy can be reduced: In non-database systems each application has its own
private files. That fact can often lead to considerable redundancy in stored data, which
resultant waste in storage space.

2. Inconsistency can be avoided: If we have redundant data in one file, at such time the
DB is said to be inconsistent. (If the redundancy is removed or controlled then the DB
is never inconsistent as seen by the user).

3. The data can be shared: We mean that individual pieces of data in the DB may be
shared among several different users and applications, in that each of those users may
have access to the same piece of data.

4. Standards can be enforced: The database administrator (DBA) can ensure that all
applicable standards are observed in the representation of the data.

5. Security restriction can be applied:

 The DBA can ensure that the only means of access to the DB is through the proper
channels.

 The DBA can define security checks to be carried out whenever access is attempted to
sensitive data.

6. Integrity can be maintained: Integrity means ensuring that the data in the DB is
accurate. Inconsistency between two entries that represent the same fact is an
example of integrity (Even if there is no redundancy however, the DB may still
contain incorrect information). The DBA can define integrity checks to be carried
out whenever any update operation is attempted.

7. Data Independence: It is the immunity of application to change in storage structure
and access strategy, which implies that the application concerned do not depend on
any one particular storage structure and access strategy.

 Database management systems can be classified based on several criteria, such as the
data model, user numbers and database distribution.

1. Classification Based on Data Model: A Database model defines the logical design
and structure of a database. It defines how data will be stored, accessed, and updated
in a database management system.

Types of DB models:

• Network

• Hierarchical

• Relational

• Entity-Relationship

• Extended Relational

• Object-oriented

• Object-relational

• Semi-structured(XML/ Extensible Markup Language)

• NoSQL

2. Classification Based on User Numbers It can be a single-user database system, which
supports one user at a time, or a multiuser database system, which supports multiple users
concurrently.

3.Classification Based on Database Distribution

3.1 Centralized systems:

 With a centralized database system, the DBMS and database are stored at a single site
that is used by several other systems too.

Fig(1) centralized DB

3.2 Distributed database system: In a distributed database system, the
actual database and the DBMS software are distributed from various sites
that are connected by a computer network, A distributed database system
allows applications to access data from local and remote databases as shown
in Fig(2).

Fig(2) Distributed DB

Homogeneous distributed database systems: Homogeneous
distributed database systems use the same DBMS software from
multiple sites. Data exchange between these various sites can be
handled easily.

Heterogeneous distributed database systems: In a heterogeneous
distributed database system, different sites might use different
DBMS software, but there is additional common software to
support data exchange between these sites.

 is a person responsible for the performance, integrity and security of a
database. He will also be involved in the planning and developing of the DB,
as well as troubleshooting any issues on behalf of the users.

 From a historical perspective, the relational data model is relatively
new. The first database systems were based on either the network
model or the hierarchical model. Those two older models are tied
more closely to the underlying implementation of the database than
is the relational model.

 In the years following the introduction of the relational model, a
substantial theory has developed for relational databases. This
theory assists in the design of relational databases and in the
efficient processing of user requests for information from the
database.

 The relational model has established itself as the primary data
model for commercial data processing applications.

 In this model, data is organized in two-dimensional tables and the
relationship is maintained by storing a common field.

This model was introduced by E.F Codd in 1970, and since then it has
been the most widely used database model.

The basic structure of data in the relational model is tables. All the
information related to a particular type is stored in rows of that table.

Hence, tables are also known as relations in the relational model

 Relationships: there are three types of relationships:

1:1 (unary relationship).

1:M (multiple relationship).

N:M (complex relationship).

 Database schema: is a formal description of all the database relations and all the
relationships existing between them.

 Database Integrity: means ensuring that the data in the DB is accurate. Inconsistency
between two entries that represent the same fact is an example of integrity (Even if there
is no redundancy however, the DB may still contain incorrect information). The DBA
can define integrity checks to be carried out whenever any update operation is
attempted.

 In a relational data model, data integrity can be achieved using integrity rules or
constraints

 A Null value is a special symbol, independent of data type, which means either unknown
or inapplicable. It does not mean zero or blank. Null Can represent:-

An unknown attribute value.

A known, but missing, attribute value.

A not “applicable” condition.

 Entity: An entity is a person, place, thing, or event for which data is collected and
maintained. For example student.

 Field: A field, also called an attribute, is a single characteristic or fact about an entity in
the example shown in Fig)3) the student entity has seven fields that store the student_ID,
enroll number, roll number, name, Address, City, dept_Id.

A common field is an attribute that appears in more than one entity. Common field can be
used to link entities in various types of relationships.

 Record: A record, also called a tuple, is a set of related fields that describes one instance,
or occurrence of an entity, such as one student, one department or one product. A record
might have one or dozens of fields, depending on what information is needed.

 During the systems design, you use key fields to organize, access, and maintain data
structures. The four types of keys are primary keys, candidate keys, foreign keys, and
secondary keys:

 1. Primary Key: A primary key is a field or combination of fields that uniquely and
minimally identifies a particular member of an entity; a table can have only one primary
key.

A combination key also can be called a composite key, a concatenated key, or a multi-
valued key.

 2. Candidate Key: Sometimes you have a choice of fields or field combinations to use
as the primary key. Any field that could serve as a primary key is called a candidate key.

 3. Foreign Key: A foreign key is a field in one table that must match a primary key
value in another table in order to establish the relationship between the two tables.
Unlike a primary key, a foreign key need not be unique.

 4. Secondary Key: A secondary key is a field or combination of fields that can be used
to access or retrieve records. Secondary key values are not unique. The need for a
secondary key arises because a table can have only one primary key.

 Those rules are general, specified at the database schema level, and they must be
respected by each schema instance. If we want to have a correct relational database
definition, we have to declare such constraints.

Relational data model constraints are:

 Entity integrity constraint

 Referential integrity constraint

 Semantic integrity constraints

 The entity integrity constraint says that no attribute participating in the primary key of
relation is allowed to accept null values.

 The referential integrity constraint says that if a relation R2 includes a foreign key FK
matching the primary key PK of other relation R1, then every value of FK in R2 must
either be equal to the value of PK in some tuple of R1 or be wholly null..

 A semantic integrity constraint refers to the correctness of the meaning of the data. For
example, the street number attribute value from the OWNERS relation must be positive,
because the real-world street numbers are positive.

 Semantic integrity constraints must be specified typically by a database administrator
and must be maintained in the system catalog or dictionary.

Relational DBMS permits several types of semantic integrity constraints such as :

 domain constraint

 null constraint

 unique constraint

 check constraint

 A domain constraint implies that a particular attribute of a relation is defined on a
particular domain.

 For example, the Street attribute domain of OWNERS relation is CHAR(20), because
streets have names in general and Number attribute domain is NUMERIC, because street
numbers are numeric values.

 There are some particular forms of domain constraints, namely format constraints and
range constraints.

 A format constraint might specify something like a data value pattern.

 For example, the PhoneNumber attribute values must be of this type XXXX-XXXXXX
where X represents an a digits first 4 X is the key and the last 6 is phone number .

 A range constraint requires that values of the attribute lie within the range values. For
example, the FabricationYear attribute values might range between 1950 and 2010.

 A null constraint specifies that attribute values cannot be null. On every tuple,
from every relation instance, that attribute must have a value which exists in
the underlying attribute domain.

 For example, FirstName and LastName attributes values cannot be null, this
means that a car owner must have a name.

 A unique constraint specifies that attribute values must be different.

 It is not possible to have two tuples in a relation with the same values for
that attribute.

 For example, in the CARS relation the SerialNumber attribute values must
be unique, because it is not possible to have two cars and only one engine.

 A unique constraint is usually specified with an attribute name followed by
the word Unique. Note that NULL is a valid unique value.

 A check constraint is a more complicated type of restriction that evaluates
a Boolean expression to see if certain data should be allowed.

 If the expression evaluates to true, the data is allowed.

 For example, in a Salespeople table you could place the constraint on
salary field that Salary > 0 which mean that the field‟s value must be
positive

 For the system to be usable, it must retrieve data efficiently.

 The need for efficiency has led designers to use complex data structures to represent
data in the database.

 Since many database-system users are not computer trained, developers hide the
complexity from users through several levels of abstraction, to simplify users’
interactions with the system:

1. Physical level (or Internal View / Schema): The lowest level of abstraction
describes how the data are actually stored. The physical level describes complex
low-level data structures in detail.

2. Logical level (or Conceptual View / Schema): The next-higher level of
abstraction describes what data are stored in the database, and what relationships
exist among those data.

 The logical level thus describes the entire database in terms of a small number of
relatively simple structures.

 Although implementation of the simple structures at the logical level may involve
complex physical-level structures, the user of the logical level does not need to be
aware of this complexity.

 This is referred to as physical data independence. Database administrators, who must
decide what information to keep in the database, use the logical level of abstraction

3. View level (or External View / Schema): The highest level of abstraction
describes only part of the entire database.

 Even though the logical level uses simpler structures, complexity remains because of
the variety of information stored in a large database.

 Many users of the database system do not need all this information; instead, they need
to access only a part of the database.

 The view level of abstraction exists to simplify their interaction with the system. The
system may provide many views for the same database.

 An analogy to the concept of data types in programming languages may clarify the
distinction among levels of abstraction. Many high-level programming languages
support the notion of a structured type. For example, we may describe a record as
follows:

type instructor = record

ID : char (5);

name : char (20);

dept name : char (20);

salary : numeric (8,2);

end;

 This code defines a new record type called instructor with four fields. Each field has a
name and a type associated with it. A university organization may have several such
record types, including

 department, with fields dept_name, building, and budget

 course, with fields course_id, title, dept_name, and credits

 student, with fields ID, name, dept_name, and tot_cred

 At the physical level, an instructor, department, or student record can be described as
a block of consecutive storage locations.

 The compiler hides this level of detail from programmers. Similarly, the database
system hides many of the lowest-level storage details from database programmers.

 Database administrators, on the other hand, may be aware of certain details of the
physical organization of the data. At the logical level, each such record is described by
a type definition, as in the previous code segment, and the interrelationship of these
record types is defined as well. Programmers using a programming language work at
this level of abstraction. Similarly, database administrators usually work at this level
of abstraction.

 Finally, at the view level, computer users see a set of application programs that hide
details of the data types.

 At the view level, several views of the database are defined, and a database user sees
some or all of these views.

 In addition to hiding details of the logical level of the database, the views also provide
a security mechanism to prevent users from accessing certain parts of the database.
For example, clerks in the university registrar office can see only that part of the
database that has information about students; they cannot access information about
salaries of instructors.

 Database systems have several schemes, partitioned according to the levels of
abstraction. At the lowest level is the physical scheme; at the intermediate level, the
conceptual scheme; at the highest level, a subscheme. In general, database systems
support one physical scheme, one conceptual scheme, and several subschemes.

Levels of Data Abstraction

 The ability to modify a scheme definition in one level without affecting a scheme
definition in the next higher level is called data independence. There are two levels of
data independence:

 Physical data independence is the ability to modify the physical scheme without
causing application programs to be rewritten. Modifications at the physical level are
occasionally necessary in order to improve performance..

 Logical data independence is the ability to modify the conceptual scheme without
causing application programs to be rewritten. Modifications at the conceptual level are
necessary whenever the logical structure of the database is altered.

 Logical data independence is more difficult to achieve than physical
data independence since application programs are heavily dependent on
the logical structure of the data they access.

 In general, the concept of data independence hides implementation
details from the users. This allows users to concentrate on the general
structure rather than low-level implementation details.

 Transactions are a sequence of queries and updates that together carry out a task.
Transactions can be committed, or rolled back; when a transaction is rolled back, the
effects of all updates performed by the transaction are undone.

 ACID is an acronym describing four features that an effective transaction system should
provide. ACID stands for Atomicity, Consistency, Isolation, and Durability.

 Atomicity means transactions are atomic. The operations in a transaction either all
happen or none of them happen.

 Consistency means the transaction ensures that the database is in a consistent state
before and after the transaction.

 In other words, if the operations within the transaction would violate the database‟s rules,
the transaction is rolled back.

 Isolation means the transaction isolates the details of the transaction from everyone
except the person making the transaction.

Suppose you start a transaction, remove $100 from Alice‟s account, and add $100 to
Bob‟s account. Another person cannot peek at the database while you‟re in the middle of
this process and see a state where neither Alice nor Bob has the $100. Anyone who looks
in the database sees the $100 somewhere, either in Alice‟s account before the transaction
or in Bob‟s account afterwards.

 Durability means that once a transaction is committed, it will not disappear later. If the
power fails, when the database restarts, the effects of this transaction will still be there.

 Database Design and Application Development: How can a user describe a
real-world enterprise (e.g., a university) in terms of the data stored in a DBMS?
What factors must be considered in deciding how to organize the stored data?.

 The database design process can be divided into six steps. The E-R model is
most relevant to the first three steps.

1. Requirements Analysis: The very first step in designing a DB application is
to understand what data is to be stored in the DB, what applications must be
built on top of it, and what operations are most frequent and subject to
performance requirements.

2. Conceptual Database Design: The information gathered in the requirements
analysis step is used to develop a high-level description of the data to be
stored in the DB, along with the constraints known to hold over this data.
This step is often carried out using the E-R model.

3. Logical Database Design: We must choose a DBMS to implement our DB
design, and convert the conceptual database design into a DB schema in the
data model of the chosen DBMS.

4. Schema Refinement: The fourth step with DB’s design is to analyze the
collection of relations in our relational DB schema to identify potential
problems, and to refine it (Normalization).

5. Physical Database Design: It describes the details of how data is stored. This
step may simply involve building indexes on some tables and clustering some
tables.

6. Application and Security Design: Any software project that involves a
DBMS must consider aspects of the application that go beyond the database
itself. We must identify the entities (e.g., users, user groups, departments) and
processes involved in the application. We must describe the role of each entity
in every process that is reflected in some application task, as part of a
complete workflow for that task.

ER data model has existed for over 35 years. It is well
suited to data modelling for use with DB because it is fairly
abstract and is easy to discuss and explain. ER models are
readily translated to relations. ER models, also called an ER
schema, are represented by ER diagrams.

 ER modelling is based on two concepts:

1. Entities, defined as tables that hold specific information
(data)

2. Relationships, defined as the associations or interactions
between entities

Entity Relationship Diagram Symbols

 An entity is an object in the real world with an independent existence that can be
differentiated from other objects. An entity might be

1. An object with physical existence (e.g., a lecturer, a student, a car)

2. An object with conceptual existence (e.g., a course, a job, a position)

 Entities can be classified based on their strength into:-

 Weak Entity: an entity is considered weak if its tables are existence dependent.

1. That is, it cannot exist without a relationship with another entity

2. Its primary key is derived from the primary key of the parent entity

 Strong Entity: an entity is considered strong if it can exist a part from all of its related
entities.

 A table without a foreign key or a table that contains a foreign key that can contain nulls
is a strong entity.

Each entity has attributes—the particular properties that describe
it. For example, an EMPLOYEE entity may be described by the
employee’s name, age, address, salary, and job. A particular entity
will have a value for each of its attributes.

Types Of Attributes

Several types of attributes occur in the ER model: simple versus
composite, single valued versus multivalued, and stored versus
derived.

Simple Attributes: Are those drawn from the atomic value
domains; they are also called single-valued attributes. In the
COMPANY database, an example of this would be: Name =
{John} ; Age = {23}.

Composite Attributes: Are those that consist of a hierarchy of
attributes. Figure 3 Address may consist of Number, Street and
Suburb. So this would be written as → Address = {59 +‘Meek
Street’ + ‘Kingsford’}.

Multivalued Attributes: Are attributes that have a set of values for each
entity. For ex: the degrees of an employee: BSc, MIT, PhD.

Derived Attributes: Are attributes that contain values calculated from
other attributes. Age can be derived from the attribute Birthdate. In this
situation, Birthdate is called a stored attribute, which is physically saved
to the database.

The degree of a relationship is the number of entities associated in
the relationship. Binary and ternary relationships are special cases
where the degrees are 2 and 3, respectively. .

The binary relationship, an association between two entities, is by
far the most common type in the natural world. In fact, many
modeling systems use only this type. we see many examples of
the association of two entities in different ways: Department and
Division, Department and Employee, Employee and Project, and
so on.

A binary recursive relationship (for example, “manages”) relates a
particular Employee to another Employee by management. It is
called recursive is one in which the same entity participates more
than once in the relationship; because the entity relates only to
another instance of its own type.

The binary recursive relationship construct is a diamond with both
connections to the same entity. A ternary relationship is an
association among three entities.

Participation refers to whether an entity must participate in a relationship
with another entity to exist. can be total or partial (optional):

Total participation is where an entity must participate in a relationship to
exist. For example, an employee must work for at least one department to
exist as an employee.

Partial (optional) participation is where the entity can exist without
participating in a relationship with another entity . For example, the entity
course may exist within an organization, even though it has no current
students.

We will be following the simple rules:

1. Entities and Simple Attributes:

An entity type within ER diagram is turned into a table. You may
preferably keep the same name for the entity or give it a sensible name but
avoid DBMS reserved words as well as avoid the use of special characters.

Each attribute turns into a column (attribute) in the table. The key attribute
of the entity is the primary key of the table which is usually underlined. It
can be composite if required but can never be null.

 It is highly recommended that every table should start with its primary key
attribute conventionally named as TablenameID.

Taking the following simple ER diagram:

The initial relational schema is expressed in the following format writing
the table names with the attributes list inside a parentheses as shown below
for Persons and Phones are Tables. name, lastname, are Table Columns
(Attributes).

Persons (personid, name, lastname, email)

2. Multi-Valued Attributes:

A multi-valued attribute is usually represented with a double-line oval.

 If you have a multi-valued attribute, take the attribute and turn it into a new
entity or table of its own. Then make a 1: N relationship between the new
entity and the existing one. In simple words:

 Create a table for the attribute.

Add the primary (id) column of the parent entity as a foreign key within the
new table

Persons (personid, name, lastname, email)

Phones (phoneid , personid, phone)

 3. 1:1 Relationships:

 To keep it simple and even for better performances at data retrieval, I would personally
recommend using attributes to represent such relationship. For instance, let us consider
the case where the Person has or optionally has one wife. You can place the primary key
of the wife within the table of the Persons which we call in this case Foreign key as
shown below.

 Persons (personid, name, lastname, email , wifeid)

 Wife (wifeid , name)

 Or vice versa to put the personid as a foreign key within the Wife table as shown below:

 Persons (personid , name, lastname, email)

 Wife (wifeid , name , personid)

4. 1: N Relationships:

This is the tricky part! For simplicity, use attributes in the same way as 1:1
relationship but we have only one choice as opposed to two choices. For
instance, the Person can have a House from zero to many, but a House can
have only one Person. To represent such relationship the personidas the
Parent node must be placed within the Child table as a foreign key but not
the other way around as shown next:

 It should convert to:

Persons (personid , name, lastname, email)

House (houseid , num , address, personid)

5. N:N Relationships:

We normally use tables to express such type of relationship. It is the same
for N − ary relationship of ER diagrams. For instance, The Person can live
or work in many countries. Also, a country can have many people. To
express this relationship within a relational schema we use a separate table
as shown below:

 it should convert into :

Persons(personid , name, lastname, email)

Countries (countryid , name, code)

HasRelat (hasrelatid , personid , countryid)

We will be producing the relational schema for the following
ER diagram:

Relational algebra a formal query language for asking
questions. Is a set of operators to manipulate relations. Each
operator of the relational algebra takes either one or two
relations as its input and produces a new relation as its output

Codd defined 8 such operators, two groups of 4 each:

 The traditional set operations: union, intersection, difference
and Cartesian product

 The special relational operations: select, project, join and
divide.

The selection operator extracts certain rows from the table and
discards the others. Retrieved tuples must satisfy a given
filtering condition.

Syntax: Result = σ c (R)

Example : find the movies made by Hanson after 1997

Selection Condition

 Selection condition is a Boolean combination of terms; A term
is one of the following forms:-

1. attribut op constant op ∈ {=, ≠,<,≤,>, ≥}

2. attribute1 op attribute2

3. term1 ∧ term2

4. term1 ∨ term2

5.￢ term1

6. (term1)

Operator precedence: (), op,￢, ∧, ∨

The project operator extracts certain columns from the table and discards
the other columns; Duplicate tuples in the resulting table are eliminated

Union: R ∪ S returns a relation containing all tuples that occur in R or S
(or both). Remove the duplicated tuples

 Intersection: R ∩ S returns a relation containing all tuples that occur in
both R and S

Set-difference: R − S returns a relation containing all tuples in R but not
in S

 Two relations are union compatible if :-

- They have the same number of fields

- corresponding fields, have the same domains

union (∪), intersection (∩), and set-difference (−) operators require
input relations to be union compatible.

Consider R(A,B,C) and S(X, Y), Cross-product: R × S returns
a relation with attribute list (A,B,C,X, Y) defined as follows:

R × S = {(a, b, c, x, y) | (a, b, c) ∈ R, (x, y) ∈ S}

Cross-product operation is also known as Cartesian product

Fields of the same name are may renamed

 Join can be defined as cross-product followed by selection and projection.

We have Several variants of join:-

Condition joins

Equi join

A special case of condition join where the condition c contains only
equalities Condition. Result schema similar to cross-product, but
only one copy of fields for which equality is specified.

Natural Join

Natural Join is Equi join on all common fields. It is an equi join in which
equalities are specified on all fields having the same name in R and S.

We can then omit the join condition.

Result is guaranteed not to have two fields with the same name.

 If no fields in common, then natural join is simply cross product.

 Suppose A has two groups of fields <x,y> y fields are same fields in terms of domain
as B. A/B = <x> such as for every y value in a tuple of B there is <x,y> in A.

 Another way to understand division is as follows. For each x value in (the first
column of) A, consider the set of y values that appear in (the second field of) tuples
of A with that x value. If this set contains (all y values in) B, the x value is in the
result of A/B.

 Is a step-by-step operation to replace the relationships between data into two dimensional tabular form,
in order to reduce the redundancy of data, increase the integrity and to free the relations from
undesirable insertion, update, and deletion dependency.

 Normalization Objectives:

1. To make it possible to tabulate any relation in D.B.

2. To free relation from undesirable insertion, update, and deletion dependence.

3. To obtain a powerful retrieved capability by means of simple collection of relational operators to
manipulate the relations.

4. To reduce the redundancy of data, achieve data independence, increase the integrity of data.

5. To make the relation more informative to the user.

6. To reduce the need for restructuring the relations as a new type of data are introduced when further
applications or users view requires them.

FUNCTIONAL DEPENDENCY

 Given a relation R, we say that attribute Y of R is functionally dependent on attribute X of R if each X
value in R has associated with it precisely one Y-value in R.

 A functional dependency is a relationship between two sets of attributes in a database table. It describes
how the value of one attribute determines the value of another attribute.

 Basically, a functional dependency is represented as X → Y, where X and Y are sets of attributes. This
notation implies that any two rows in the table with the same value for X will also have the same value
for Y. In other words, the value of Y is functionally dependent on the value of X.

 Let’s consider an example to illustrate functional dependencies. Suppose we have a table called
“Employees” with attributes such as employee ID, name, department, and salary. If we define a
functional dependency as “department → salary,” it means that for any two employees who belong to
the same department, their salaries will be the same. This allows us to infer the salary of an employee
based on their department alone.

 First normal form (FNF)

 A relation R is in first normal form if all underlying domains contains atomic value only
(no repeated group).

 Second normal form (SNF)

 A relation R is in second normal form iff:

 It is in 1NF.

 Every non-key attribute is depend on all parts off primary key.

 Third Normal form (TNF)

 A relation R is in third normal form iff:

 It is in 2NF.

 Every non-key attribute is depending on the primary key directly (Not transitively).

 SQL known as SQL or simply “sequel,” is a programming language that
communicates through relational databases. It is the easiest way to store, update,
remove, search, or retrieve information on a database.

 The SQL language has several parts:-

1. The Data Manipulation Language (DML): This subset of SQL allows users to
pose queries and to insert, delete, and modify rows.

2. The Data Definition Language (DDL): This subset of SQL supports the creation,
deletion, and modification of definitions for tables and views.

3. Triggers and Advanced Integrity Constraints: The new SQL:1999 standard
includes support for triggers.

4. Embedded SQL: Embedded SQL features allow SQL code to be called from
a host language such as C or COBOL.

5. Dynamic SQL: Features allow SQL statement to constructed and executed at
runtime based on input parameters.

6. Client-Server Execution and Remote Database Access: These commands
control how a client application program can connect to an SQL database
server, or access data from a database over a network.

7. Transaction Management (TCL): Various commands allow a user to
explicitly control aspects of how a transaction is to be executed.

8. Security (DCL): SQL provides mechanisms to control users' access to data
objects such as tables and views.

five main categories of SQL each with its own commands as shown in the table (1) below

Command descriptionsCommand Commands categories

Retrieve information from tableSELECTData Retrieval

Insert information to table or objectINSERT

(DML) Data Manipulation

language

Edit information on table or objectUPDATE

delete information on table or objectDELETE

Create table or objectCREATE

(DDL) Data Definition language

Edit table or objectAlter

Delete table or objectDROP

Rename table or objectRENAME

Delete a part of table or objectTRUNCATE

Transaction Control

Commit the inf. On tableCOMMIT

Rollback on the new info.ROLLBACK

Go back to the point where the

system Is consistence

SAVEPOINT

Give users access to the info.GRANT

(DCL) Data Control Language

Blocking the user's access of info.REVOKE

Five main categories of SQL each with its own commands as shown in the table (1) below

Data Retrieval (SELECT):

What Who Example
All columns SELECT * FROM table; SELECT * FROM Students;

Some columns SELECT column1,column2,... FROM table; SELECT LastName, FirstName FROM Students;

Some

rows/columns

SELECT column1,column2,...

FROM table

[WHERE condition(s)];

SELECT LastName,FirstName

FROM Students

WHERE StudentID LIKE '%123%

No Repeats SELECT [DISTINCT] column(s)

FROM table;

SELECT DISTINCT LastName

FROM Students;

Ordering SELECT column1,column2,...

FROM table

[ORDER BY column(s) [DESC]];

SELECT LastName,FirstName

FROM Students

ORDER BY LastName, FirstName DESC;

Column

Aliases

SELECT column1 [AS alias1],

column2 [AS alias2], ...

FROM table1;

SELECT LastName,FirstName AS First

FROM Students;

We can use the four Arithmetic Operators (+ , -, * , /) with select command and Some operator used with

WHERE condition

BETWEEN AND NOT (BETWEENAN)

IN() NOT IN()

LIKE NOT LIKE()

IS NULL Is Not NULL

 A view is tables whose rows are not explicitly stored in the database but are computed
as needed from a view definition. A database view is a searchable object in a database
that is defined by a query. Though a view doesn’t store data, some refer to a views as
“virtual tables,” you can query a view like you can a table. A view can combine data
from two or more table, and also just contain a subset of information. We create view
using SQL commands.

 What is the difference between table and view?

 A view is a virtual table. A view consists of rows and columns just like a table. The
difference between a view and a table is that views are definitions built on top of other
tables (or views), and do not hold data themselves. If data is changing in the
underlying table, the same change is reflected in the view. A view can be built on top
of a single table or multiple tables. It can also be built on top of another view.

Views offer the following advantages:

Ease of use: A view hides the complexity of the database tables from
end users. Essentially we can think of views as a layer of abstraction on
top of the database tables.

Space savings: Views takes very little space to store, since they do not
store actual data.

Additional data security: Views can include only certain columns in the
table so that only the non-sensitive columns are included and exposed
to the end user. In addition, some databases allow views to have
different security settings, thus hiding sensitive data from prying eyes.

 TRIGGERS AND ACTIVE DATABASES A trigger is a procedure that is
automatically invoked by the DBMS in response to specified changes to the
database, and is typically specified by the DBA.

 A database that has a set of associated triggers is called an active database.

 A trigger description contains three parts:

 - Event: A change to the database that activates the trigger.

 - Condition: A query or test that is run when the trigger is activated.

 - Action: A procedure that is executed when the trigger is activated and its
condition is true.

 To create a trigger or drop a trigger, use the CREATE TRIGGER or DROP TRIGGER
statement. Syntax

 CREATE TRIGGER trigger_name trigger_time trigger_event ON tbl_name

 FOR EACH ROW trigger_body trigger_time: { BEFORE | AFTER }

 trigger_event: { INSERT | UPDATE | DELETE }

 Trigger names exist in the schema namespace, meaning that all triggers must have
unique names within a schema.

 Triggers in different schemas can have the same name.

 trigger_time is the trigger action time. It can be BEFORE or AFTER to indicate that
the trigger activates before or after each row to be modified.

 trigger_event indicates the kind of operation that activates the trigger.

 These trigger_event values are permitted:

 INSERT: The trigger activates whenever a new row is inserted into the table; for
example, through INSERT statements.

 UPDATE: The trigger activates whenever a row is modified; for example, through
UPDATE statements.

 DELETE: The trigger activates whenever a row is deleted from the table; for example,
through DELETE statements. DROP TABLE and TRUNCATE TABLE statements on
the table do not activate this trigger, because they do not use DELETE.

 trigger_body is the statement to execute when the trigger activates. To execute
multiple statements, use the BEGIN ... END compound statement construct.

 Within the trigger body, you can refer to columns in the subject table (the table
associated with the trigger) by using the aliases OLD and NEW. OLD.col_name refers
to a column of an existing row before it is updated or deleted. NEW.col_name refers
to the column of a new row to be inserted or an existing row after it is updated.

 Here is a simple example that associates a trigger with a table, to activate for
INSERT operations.

 The trigger acts as an accumulator, summing the values inserted into one of the
columns of the table.

mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));

mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account FOR EACH
ROW SET @sum = @sum + NEW.amount;

 In the example, the trigger body is a simple SET that accumulates into a user
variable the values inserted into the amount column. The statement refers to the
column as NEW.amount which means “the value of the amount column to be
inserted into the new row.”

 The CREATE TRIGGER statement creates a trigger named ins_sum that is
associated with the account table. It also includes clauses that specify the trigger
action time, the triggering event, and what to do when the trigger activates:

 The keyword BEFORE indicates the trigger action time. In this case, the trigger
activates before each row inserted into the table. The other permitted keyword here
is AFTER.

 The keyword INSERT indicates the trigger event; that is, the type of operation that
activates the trigger. In the example, INSERT operations cause trigger activation.
You can also create triggers for DELETE and UPDATE operations.

 The statement following FOR EACH ROW defines the trigger body; that is, the
statement to execute each time the trigger activates, which occurs once for each row
affected by the triggering event.

 To use the trigger, set the accumulator variable to zero, execute an
INSERTstatement, and then see what value the variable has afterward:

mysql> SET @sum = 0;

mysql> INSERT INTO account VALUES(137,14.98),(141,1937.50),(97,-100.00);
mysql> SELECT @sum AS 'Total amount inserted’;

+-----------------------+

| Total amount inserted |

+-----------------------+

| 1852.48 |

+-----------------------+

 In this case, the value of @sum after the INSERT statement has executed is 14.98 +
1937.50 - 100, or 1852.48.

 To destroy the trigger, use a DROP TRIGGER statement.

 You must specify the schema name if the trigger is not in the default schema:

 mysql> DROP TRIGGER test.ins_sum;

 If you drop a table, any triggers for the table are also dropped.

 Trigger names exist in the schema namespace, meaning that all triggers must have
unique names within a schema.

 Triggers in different schemas can have the same name.

 In an INSERT trigger, only NEW.col_name can be used; there is no old row.

 In a DELETE trigger, only OLD.col_name can be used; there is no new row.

 In an UPDATE trigger, you can use OLD.col_name to refer to the columns of a row
before it is updated and NEW.col_name to refer to the columns of the row after it is
updated.

 By using the BEGIN ... END construct, you can define a trigger that executes
multiple statements. Within the BEGIN block, you also can use other syntax that is
permitted within stored routines such as conditionals and loops. However, just as
for stored routines, if you use the mysql program to define a trigger that executes
multiple

 statements, it is necessary to redefine the mysql statement delimiter so that you can
use the ; statement delimiter within the trigger definition.

 The DELIMITER statement changes the standard delimiter which is semicolon (;)
to another. The delimiter is changed from the semicolon (;) to double-slashes //.
Why do we have to change the delimiter? To pass the trigger, stored procedure to
the server as a whole rather than letting mysql tool to interpret each statement at a
time.

 The following example illustrates these points. It defines an UPDATE trigger that checks the new
value to be used for updating each row, and modifies the value to be within the range from 0 to 100.
This must be a BEFORE trigger because the value must be checked before it is used to update the
row:

mysql> delimiter //

mysql> CREATE TRIGGER upd_check BEFORE UPDATE ON account

-> FOR EACH ROW

-> BEGIN

-> IF NEW.amount < 0 THEN

-> SET NEW.amount = 0;

-> ELSEIF NEW.amount > 100 THEN

->SET NEW.amount = 100;

-> END IF;

-> END;//

mysql> delimiter ;

SQL Joins

A JOIN clause is used to combine rows from two or more tables, based
on a related column between them.

Let's look at a selection from the "person" table:

Then, look at a selection from the "color" table:

Notice that the "fk" column in the "person" table refers to the "id" in the
"color" table.

LEFT (OUTER) JOIN: Return all records from the left table, and the
matched records from the right table

RIGHT (OUTER) JOIN: Return all records from the right table, and the
matched records from the left table

Cross join : Return all records when there is a match in either left or
right table

