Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

Lexical Analyzer Design

Lexical analysis is the first phase of a compiler. It takes modified
source code from language preprocessors that are written in the form of
sentences. The lexical analyzer breaks these syntaxes into a series of
tokens, by removing any whitespace or comments in the source code.

If the lexical analyzer finds a token invalid, it generates an error.
The lexical analyzer works closely with the syntax analyzer. It reads
character streams from the source code, checks for legal tokens, and
passes the data to the syntax analyzer when it demands.

The main sub-phases of the Lexical analyzer phase are shown below

in the following figure:-

Grammar

Transition Diagram

\ 4

Non-Deterministic Finite
State Automata (NDFSA)

\ 4

Deterministic Finite State
Automata (DFSA)

\ 4

Minimize of DFSA

\ 4

Recognizer

-20-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

e The grammar will converted to a Transition Diagram using special
algorithm.

e The converted Transition Diagram must be checked whether if it is
in NDFSA form or not; if so, the grammar must converted to DFSA
using algorithm which will be described in this chapter.

e The resulted grammar will be in DFSA form which must be
minimized to reduce the number of nodes depending on algorithm
designed for this purpose (fast searching and minimum memory
storage).

e The final sub-phase in lexical analyzer phase is to recognize if the
input string or statement is accepted or not depending on a specific

grammar.

Finite State Automata (FSA):-

Is a mathematical model consists of:-

1. A set of terminal symbols

N

. Transition functions

w

. One-Initial state (Start state)

1=

. One or Set of Final states

32

. Finite set of elements called states

States : States of FSA are represented by circles. State names or
numbers are written inside circles.

Start state : The state from where the FSA starts, is known as the start

state. Start state has an arrow pointed towards it.

21-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

Final State :- If the input string is successfully parsed, the automata is
expected to be in this state. Final state is represented by double circles,
it is also called the Accepting State.

A transition :- Is denoted by an arrow connecting two states, the arrow
is labeled by the symbol (possibly e). The transition from one state to
another state happens when a desired symbol in the inputis found. Upon
transition, automata can either move to the next state or stay in the same
state. Movement from one state to another is' shown as a directed arrow,

where the arrows points to the destination state.

o

Two types of FSA :-
o . Non-Deterministic Finite State Automata (NDFSA)

e Deterministic Finite State Automata (DFSA)
FSA is of NDFSA if one of these two conditions is satisfied:-
1. There are more than one transition have the same label from that

state to another states.

2. There is a € - transition.

=22-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

A transition, represent FSA of type | A transition, represent FSA of type

DFSA.

Formal method for converting R.E. to NDFSA :-

® If we have an R.E.= € then the NDFSA will be as follows:-

‘ £ @ where i = initial state , f =final state

@ If we find a terminal symbol like a, then the NDFSA will be as

follows:- ‘ a @

@ If we have P|Q

-23-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

@ If we have P.Q

® If we have Q*

Example :-

R.E.= abc|d*

-24-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

Examples :-

1. RE= letter (letter | digit)™

letter

2. RE=@| b)* e

-25-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

4. R.E.=((. | a)b™)*

Data structure representation of FSA :-

® Transition Matrix

We must have a matrix with the number of its rows equal to the number
of the FSA states in the diagram while the number of its columns in this
matrix equal to the number of its inputs (labels).

This type of representation has a disadvantage that it contains many
blank spaces, while the advantage of this type is that the indexing is fast.

For example:-

0-9

(- 7' I C I
Bl B DD
Hl H] W] #*

-26-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

@ Graph Representation

In this representation we have a fixed number of columns which is equal
to 2 and the labels of these two columns are Input Symbol & Next State
while the number of rows differs from one transition diagram to another
and these rows are labeled by the number of states. The disadvantage of
this representation is that it takes a long time for searching (search slow)

while the advantage of this representation is that it is compact.

For the previous example:-

Input Next

Symbol State
0-9 a] e 1 0-9 2
\J Z 0'9 Z
e S
3 0-9 4
4 0-9 4

-27-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

Transformation of NDFSA to DFSA:-

Before we use an algorithm to convert the grammar which is NDFSA

form to DFSA form, we must deal with a special function known as &-

Closure Function, which can be explained using the following

procedure:-

Function &-Closure (M) :-

> Begin
Push all states in M into stack;
Initialize €-Closure (M) to M;

While stack is not empty do
> Begin

Pop S;
For each state X with an edge labeled € from S to X do
If X is not in £-Closure (M) then

> Begin

Push X;

Add X to £-Closure (M);

, End;
End;

'S

End;

-28-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

Example :-

R.E.= abc|d*

To compute randomly the £-Closure for the following states:-
&-Closure ({0}) ={0, 1,5, 6, 8,9}
E-Closure ({1}) = {1}
&-Closure ({1, 8}) ={1, 8, 9, 6}

E-Closure ({2, 3, 4})={2, 3, 4, 9}

-29-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

Algorithm for transforming NDFSA to DFSA:-

Initially let x= C-Closure ({So}) marked as the start state of DFSA, Sy is the

start state of NDFSA;
While there is unmarked states X = {S;, Sy, ... ,5,} of DFSA do
Begin
For each terminal symbol (a € X) do
Begin
Let M be the set of states to which there is transition on a from

some states S;in X ;

Y = E-Closure ({ M });

If Y has not yet been added to the set of states of DFSA then make
Y an unmarked state of DFSA;

Create an edge by adding a transition from X to Y labeled a if not
present;

End;
End;

End {algorithm}

-30-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

Examples:-

@ R.E. = Letter (letter | digit)™*

Final State
Start State

&-Closure ({0}) = {0} «------- Create a new node called for example A
A — letter ; M={1}; £-Closure ({1})={1,2,3,5,8} <------ Create a new

node called for example B (must be a final node because of node 8).

—» digit ;M=J;

B — letter ; M={4}; E-Closure ({4})={4,1,8,2,3,5} <------ Create a new

node called for example C (must be a final node because of node 8).

— digit ; M={6}; E-Closure ({6})={6,7,8,2,3,5} <------ Create a new

node called for example D (must be a final node because of node 8).

C — letter ; M={4}; No need to create a new node because -Closure

({4}) has been computed and by which we have node C.

— digit ; M={6); No need to create a new node because ¢-Closure

({6}) has been computed and by which we have node D.

-31-

University of Baghdad

Compilers

College of Education for Pure Science
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Two

M.Sc. Shaimaa Al-Obaidy
2021-2022
Third Stage

D — letter ; M={4); No need to create a new node because £-Closure

({4}) has been computed and by which we have node C.

— digit ; M={6); No need to create a new node because ¢-Closure

({6}) has been computed and by which we have node D.

Since of no nodes will be created and all the created nodes have been

manipulated, we will reach to the final step by which we have the DFSA,

this step will convert all the above work into a graph as follows:-

letter

-32-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

@ R.E.=((€| a)b™)*

&-Closure ({0}) = {0,1,2,4,5,6,7,9,10} «------- Create a new node called for

example A(must be a final node because of node 10).
A— a ;M={3); E-Closure ({3})={3,6,7,9,10,1,2,4,5} <«------ Create a new

node called for example B (must be a final node because of node 10).

— b ; M={8}; E-Closure ({8})={8,7,9,10,1,2,4,5,6} <------ Create a new

node called for example C (must be a final node because of node 10).

B— a ; M={3); No need to create a new node because ¢-Closure ({3})

has been computed and by which we have node B.

— b ; M={8}; No need to create a new node because £-Closure ({8})

has been computed and by which we have node C.

C— a ; M={3); No need to create a new node because &-Closure ({3})

has been computed and by which we have node B.

— b ; M={8}; No need to create a new node because £-Closure ({8})

has been computed and by which we have node C.

-33-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

Since of no nodes will be created and all the created nodes have been
manipulated, we will reach to the final step by which we have the DFSA,

this step will convert all the above work into a graph as follows:-

® R.E.=(a|b)*abb

-34-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

Minimizing of DFSA:-

The purposes of minimization are:-

1. Efficiency.
2. Optimal DFSA.

Algorithm:-

1. Construct an initial partition JI of the set of states with two groups:
the accepting states I and the non accepting states S-F; where S is
the set of all states of DFSA.

2. for each group G of Jl do
Begin

partition G into subgroups such that two states S and T of G are in
the same subgroup if and only if for all input symbols a, and states S
and T have transitions on a to states in the same group of JI, replace G

in JI;, ew bY the set of all subgroups formed .

End

3. If Jlpew = JI, let JIgina] = JI and continue with step (4), otherwise
repeat step (2) with' JI :=JI__,
4. Choose one state in each group of the partition JI; ,, as the

representative for that group.

-35-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

Example :-

The DFSA for the R.E. = Letter (letter | digit)* is as follows:-

letter

Group,= {A} which represents the set of not final nodes while Group, =
{B,C,D} which represents the set of final nodes.
Always minimization acts on the nodes of the same type (on the nodes of

one group)

After applying the previous algorithm, the minimization figure will be as

follows:-

letter

@ letter

-36-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

Another example :-

Group,= {A,B,C,D} which represents the set of not final nodes while
Group, = {E} which represents the set of final nodes.

Always minimization acts on the nodes of the same type (on the nodes of

one group)
After applying the previous algorithm, the minimization figure will be as

follows:-

-37-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

FSA Accepter (Recognizer):-

This will represents the final sub-phase for the lexical analyzer ,by using
a specific algorithm shown below we can specify the input string or
statement is accepted or not depending on a given grammar.

Never can apply the algorithm unless the grammar will be in minimized

form.
First, a transition matrix must be created for a given FSA, then doing a
table having two columns, the first represents the number of states while

the other represents the symbols for a given input string.

Algorithm :-
Begin
State = Start State of the FSA;
Symbol = First Input Symbol;
If Matrix [State, Symbol] # Exror Indication then
Begin
State = Matrix [State, Symbol];
Symbol = Next Input Symbol;
End
Else Input is not accepted
If State is'a Final State of FSA then Input is accepted
Else Input is not accepted

End;

-38-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

Example :- Having the following FSA representation shown below:-

Depending on the above representation, for 1.3$ and 379% ,you asked to

recognize which one is accepted and which one is not accepted?

Solution:-

The Transition Matrix for the above FSA:-

0-9
2

[QU C I C R
H] H] o #

2
4
4

For the String=1.3 $

W Input symbol

It is accepted
because state
number 4 is a final
State

-39-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

For the String=37$

State | Input symbol

It is not accepted because
state number 2 is not a final
state and the expression is
finished

This algorithm was slow and overlapping token, so a new algorithm can
be used to recognize the overlapping token.

For example:-

Suppose that we have this language:

{"bit" , "byte" , "item" , "tem'"}

Now if we take the word items, we will find two words overlapping with

each other, these words are: item and tem

tem

—

items

/_l

item

-40-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

The new algorithm is known as AHO Algorithm and depends on the

following steps:-

(For the above example)
Step 1:- Constructing Tree-Structured DFSA.

(Always the input for the first node is all letters except the letters that are

outputted from it).

Every 4 b i t
character
except

b,i,t

\4
t
OmOmOa
(=)
Step 2:- Determine fall back function f (Q) =R which is calculated as

follows:-

¢ Find largest route o which lead to Q from a state that is not

the start state.

e Find the route o but this time from the start state and

finished in R.

e F(Q)=R.

-41-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

Q o1 2345|6|:l 8|9|10|111213

FOIolo]lz]s]o 11|12|o 11|12|13|o 0}o

Step 3:- Construct the Matrix Representation for the DFSA, the

number of rows in it equal to the number ob nodes found in DFSA,

while the number of columns equal to the number of characters that

form the input language.

bli tlmly e
ol Tzlarf ool o
1 [zl zlz#1% 4] #
2 [#l#1 3]z l#] #
sllzlzl#1#1#| #
afelzls|##] #
s(#l#|#1#[#]| s
e |zl #2#]| #
7=z l#1s| =] #
s#zl#|#1#[#]| 9
o [#l#]#l10]#] #
ol[zlzlzl#2#]| #
1 |[zlzlz2[# |#] 12
2[#l#1#113[#]| #
Bl#l#1z1##]| #

-42-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

Step 4:- Apply the steps of AHO Algorithm which is shown below:-

Algorithm :-
Begin
State = Start State;
Ch = First Character of Input;
While input symbols are not already exhausted do
If Matrix [State, Ch] # error indication then
— Begin
State = Matrix [State, Ch];
Ch = next Character;

— End

— Else begin
If State is a Final State then Signal;
If State = 0 then Ch= Next Character & State = Same State
Else State= f (State) & Ch=Same Character
. End;
End;

-43-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

Example :-

Input String = bitemk$ for the same language {"bit" , "byte" , "item" ,
"tem"}
After constructing Tree-Structured DFSA, and create a Transition Matrix

for it with computing the value of the fall back function

State | Ch
0 | b}—— it
1 l <«
2 t » item
3 e
8 e —> tem
9 m —
G——
10 k
13 k
0 k
0 $

-44-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

Example :-

If you have the following language:-

{"WHAT", "WHERE"," WHEN"," WHERES","HOW"," WHY"} ‘and you
asked to apply AHO algorithm on it to specify the words that are
overlapped with each other in this string:- (WHYOWNSES)

Step 1:- Constructing Tree-Structured DFSA.

-45-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

Step 2:- Compute fall back function f (Q) as follows:-

Q joj112|314]|]5)6]7|8|9]10]J11]12]13

FQ)jojojirjojojojojojojojojojogi

Step 3:- Construct the Matrix Representation for the DFSA, the

number of rows in it equal to the number ob nodes found in DFSA,

while the number of columns equal to the number of characters that

form the input language.

WlH A|E|Y|N|O|S R
olltTiiJofofloJofJoJoJo
L [Zlzlzlzlzlzl#|#]|¢#
2 #1235zl #|#]¢#
s [zl z2] 21zl 2121 # 1#| %
a 1202121 #1201 ##]|¢#
s lZlzl# 1zl 210l zl#]e6
szl 221zl #121##]|¢#
#2211 #1#1 # |s8|¢#
s [zl =1 2121l 2121 # 1#| %
o #1212l #1221 #|#]|¢#
o[22l 2121l 2121 # 1#| %
nfzlzlz121 #1212 #| #
23l 2] #2121 2121 2 1#| #
BllElzl 212121212 (#]| %

-46-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Two

Step 4:- Apply the steps of AHO Algorithm on the string :-
(WHYOWNSES).

State | Ch
0 | WT > WHY
1 H
2 Y «
10 O — Matrix [State,Ch]=#
0 o
0 W
1 N «—— Matrix [State,Ch |=#
0 N
0 S
0 E
0 $

-47-

