Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter One

REFRENCES:-

Compilers Principles, Techniques and Tools by Alferd V.Aho.

Compiler Construction for Digital Computers by David Gries.

Introduction Theory of Computer Science by E.R. Krishuamurthy.
ool 200 plwo.s Al @y o8 clazjio puauad) dsdulaill 9 dy il Gl

A Compiler

Is a program that reads a program written in one language -the
Source Language- and translates it into an equivalent program in
another language - the Target Language -.

A compiler translates the code written in one language to some other
language without changing the meaning of the program. It is also
expected that a compiler should make the target code efficient and

optimized in terms of time and space.

Source Program Target Program
> Compiler >

»

A 4
Erxrror Messages

Compiler Design

Computers are a balanced mix of software and hardware. Hardware is
just a piece of mechanical device and its functions are being
controlled by compatible software. Hardware understands instructions
in the form of electronic charge, which is the counterpart of binary
language in software programming. Binary language has only two

alphabets, O and 1. To instruct, the hardware codes must be written in
-1-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter One

binary format, which is simply a series of 1s and Os. It would be a
difficult task for computer programmers to write such codes, which is

why we have compilers to write such codes.

Language Processing System

Any computer system is made of hardware and software. The
hardware understands a language, which humans cannot understand.
So we write programs in high-level language, which is easier for us to
understand and remember. These programs are then fed into a series
of tools and OS components to get the desired code that can be used

by the machine. This is known as Language Processing System.

Source Code

~ Target . .-
Assembly Code -

Relocatable ... '
Machine Code ™.
" —— Library files/
Linker Relocatable
“+— modules

Executable ...
Machine Code ..

Memiory

The high-level language is converted into binary language in various

phases. A compiler is a program that converts high-level language to

-2

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter One

assembly language. Similarly, an assembler is a program that converts
the assembly language to machine-level language.

Let us first understand how a program, using C compiler, is executed
on a host machine.

1.User writes a program in C language (High-Level Language).

2. The C compiler compiles the program and translates it to

assembly program (Low-Level Language).

3.An Assembler then translates the assembly program into

machine code (object).

4.A Linker tool is used to link all the parts of the program together
for execution (Executable Machine Code).

5.A Loader loads all of them into memory and then the program is

executed.
Before diving straight into the concepts of compilers, we should

understand a few other tools that work closely with compilers.

Preprocessor

A preprocessor, generally considered as a part of compiler, is a tool

that produces input for compilers.

Interpreter

An interpreter, like a compiler, translates high-level language into
low-level machine language. The difference lies in the way they read
the source code or input. A compiler reads the whole source code at
once, creates tokens, checks semantics, generates intermediate code,
executes the whole program and may involve many passes. In
contrast, an interpreter reads a statement from the input converts it

to an intermediate code, executes it, then takes the next statement in
-3-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter One

sequence. If an error occurs, an interpreter stops execution and
reports it. Whereas a compiler reads the whole program even if it

encounters several errors.

Assembler

An assembler translates assembly language programs into machine
code. The output of an assembler is called an object file, which
contains a combination of machine instructions as well as the data
required to place these instructions in memory.

Linker

Linker is a computer program that links and merges various object
files together in order to make an executable file. The major task of a
linker is to determine the memory location where these files will be
loaded.

Loader

Loader is a part of operating system and is responsible for loading

executable files into memory and executes them. It calculates the size

of a program (instructions and data) and creates memory space for it.

Compiler Architecture:-

A compiler can broadly be divided into two phases based on the way
they compile.

1. Analysis Phase
Known as the Front-End of the compiler, the analysis phase of the
compiler reads the source program, divides it into core parts and then

checks for lexical, grammar and syntax errors. The analysis phase

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter One

generates an intermediate representation of the source program and
symbol table, which should be fed to the Synthesis phase as input.

2. Synthesis Phase
Known as the Back-End of the compiler, the synthesis phase generates
the target program with the help of intermediate source code

representation and symbol table.

Front-end . Back-end

F Analysis ﬂ' . /_' Synthesis ﬂ
Intermediate -

Source Code Machine
Code Representation Code

The Phases of a Compiler :-

The compilation process is a sequence of various phases. Each phase
takes input from its previous stage, has its own representation of
source program, and feeds its output to the next phase of the

compiler. Let us understand the phases of a compiler.

1. Lexical Analyzer. gballl Jubsill dl> 50
2. Syntax Analyzer. el gall Jub>dll ds 50
3. Semantic Analyzer. Ssizall Jyl>ill dl> 50
4. Intermediate Code Generator. ddousgll ol esll sdgi dls 50
5. Code Optimizer. Ol il s ds o
6. Code Generator. el go

In each phase we need variables that can be obtained from a table
called Symbol Table manager, and in each phase some errors may be
-5-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter One

generated so we must have a program used to handle these errors , this

program called Error Handler.

Source Program

l

Lexical analyzer

\ 4

Syntax analyzer

\ 4

Semantic analyzer

\ 4

Symbols Intermediate Code Erxror
Table > Generator > Handler
Manager

\ 4

Code Optimizer

\ 4

Code Generator

!

Target Program

» Lexical Analyzer :-1Is the initial part of reading and analyzing

the program text (source program); The text is read (character by
character) and divided into tokens, each of which corresponds to a
symbol in the programming language, e.g., a variable name,

keyword or number.

» Syntax analyzer :- The next phase is called the syntax analysis

or parsing. It takes the token produced by lexical analysis as input

-6-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter One

and generates a parse tree (or syntax tree) that reflects the
structure of the program. This phase is often called parsing.

» Semantic Analysis:- Semantic analysis checks whether the
parse tree constructed follows the rules of language. Also is known
as Type checking which main function is to analyze the syntax
tree to determine if the program violates certain consistency
requirements, such as, if a variable is used but not declared,
assignment of values is between compatible’ data types, and

adding string to an integer.

» Intermediate Code Generator :- After syntax and semantic

analysis, It is in between the high-level language and the machine
language. This intermediate code should be generated in such a
way that it makes it easier to be translated into the target
machine code. This phase bridges the analysis and synthesis

phases of translation.

» Code Optimization phase :- The code optimization phase

attempts to improve the intermediate code which results that the
output runs faster and takes less space. Optimization can be
assumed as something that removes unnecessary code lines, and
arranges the sequence of statements in order to speed up the

program execution without wasting resources (CPU, memory).

» Code Generator :- The final phase of complier is the generation

of target code, which represents the output of the code generator

in the machine language.

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter One

» Symbol Table :- It is a data-structure maintained throughout all

the phases of a compiler. All the identifiers’ names along with
their types are stored here. The symbol table makes it easier for
the compiler to quickly search the identifier record and retrieve
it.

» Error Handler :- Each phase can produce errors. However, after

detecting an error, a phase must deal with that error, so that the
compilation can proceed. So dealing with that error is done by a
program known as Error Handler which is software used to handle
any error that may be produced from any phase and it is needed

in all phases of the compliers.

Note :- Each phase of the complier has two inputs and two outputs; for

example:- for the first phase (Lexical Analyzer) the first input to it is
the source program while the second input is some variables that may
be needed in that phase; while the first output is the errors that may
be generated in it and will be manipulated by the Error Handler
program, and the second output from it will represent the input for the

next compiler phase (Syntax).
Lexical Analysis:- A Review

Lexical analysis is the first phase of a compiler. It takes the

modified source code from language preprocessors that are written in
the form of sentences. The lexical analyzer breaks these syntaxes into
a series of tokens, by removing any whitespace or comments in the

source code.

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter One

In programming language, keywords, constants, identifiers,
strings, numbers, operators and punctuations symbols can be
considered as tokens.

For example, in C language, the variable declaration line
int value = 100;

Contains the tokens:-

int keyword
value identifier
= operator

100 constant

; symbol

The lexical analyzer also follows rule priority where a reserved
word, e.g., a keyword, of a language is given priority over user input.
That is, if the lexical analyzer finds a lexeme that matches with any
existing reserved word, it should generate an error.

If the lexical analyzer finds a token invalid, it generates an error.
The lexical analyzer works closely with the syntax analyzer. It reads
character streams from the source code, checks for legal tokens, and

passes the data to the syntax analyzer when it demands.

fokens

2=~ | lexemes . Lexical Syntax

e . . .

- | Analyzer Analyzer

[e e]

= —‘__/

request for tokens

source-code

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter One

Specifications of Tokens

Let us understand how the language theory undertakes the following

terms:

Alphabets
Any finite set of symbols {0,1} is a set of binary alphabets,

{o0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} is a set of Hexadecimal alphabets, {a-z,
A-Z} is a set of English language alphabets.

Strings

Any finite sequence of alphabets is called a string. Length of the
string is the total number of occurrence of alphabets, e.g., the length
of the string tutorials point is 14 and is denoted by |tutorialspoint| =

14. A string having no alphabets, i.e. a string of zero length is known

as an empty string and is denoted by € (epsilon).

Language

A language is considered as a finite set of strings over some finite
set of alphabets. Computer languages are considered as finite sets, and
mathematically set operations can be performed on them. Finite
languages can be described by means of regular expressions.

The various operations on languages are:
e .Union of two languages L and M is written as
LUM-={s | sisin L or s is in M}
¢ Concatenation of two languages L and M is written as
LM ={st | sisin L and t is in M}
e The Kleene Closure of a language L is written as

L* = Zero or more occurrence of language L.

-10-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter One

Grammars

A grammar is a set of formal rules for constructing correct
sentences in any language; such sentences are called Grammatical

Sentences.

Concatenation
We define the Concatenation of two symbols U and V by:-
UV={X | X=uv,uisinUand visin V}
Note that:- UV # VU
U (VW) = (UV) W

Example Q:-
Let } ={0,1} and U= {000,111} and V= {101,010}

= UV= {000101, 000010, 111101, 111010}

= VU= {101000, 101111, 010000, 010111}
~UV #VU

Example @:-
Let) = {a,b,c,d} ; U= {abd , bcd} ; V= {bcd , cab} and W= {da , bd}
To prove the following:- U (VW) = (UV) W
First, take the left side;
U (VW) ={abd , bcd} {bcdda, bcdbd, cabda, cabbd}

= { abdbcdda, abdbcdbd, abdcabda, abdcabbd, bcdbcdda,
bcdbcdbd, bcdcabda, bcdcabbd }
Second, take the right side;
(UV) W.= { abdbcd, abdcab, bcdbcd, becdcab} {da , bd}

= { abdbcdda, abdcabda, bcdbcdda, bcdcabda, abdbcdbd,
abdcabbd, bcdbcdbd, becdcabbd }
S U (VW) = (UV) W

-11-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter One

Closure or Star Operation :-

This operation defines on a set S, a derived set $*, having as members
the empty word and all words formed by concatenating a finite number of

worxds in S, as shown below:-

Example :-
Let S = {01, 11}, then

$'={e, 01,11, 0101,0111,1101,1111 , 010101, 010111, ...}
A A\ A J \ A)
: Y Y
s? s! s2 s?

Formalization:-

A phrase structure grammar is of the form G= (N, T, S, P); where:-
N = A finite set of non-terminal symbols denoted by A, B, C,...

T = A finite set of terminal symbols denoted by a, b, c,...
WithNU T=Vand N.(] T= @ (null set).
P = A finite set of ordered pairs (o, /) called the Production Rules, a

and [being the string over V and o involving at least one symbol from
N.
S = is'a'special symbol called the Starting Symbol.

-12-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter One

Example :-

Let G=(N, T, S, P); N= {S, B, C}, T= {a, b}

P= {(S — aba), (SB —b), (b—bB), (b—A)}

This grammar is not a structure grammar because of the production
rule b ->bB because the left side of this rule containing only a terminal
symbol (b) and in any production rule the left side must involve at least

one non-terminal symbol.

Example :-

Let G= (N, T, S, P) where N= {S, A}, T= {a, b}
P= {(S—aAa), (A—>bADb), (A—a)}

S —» aAa — abAba — abbAbba — abbabba

Note :-

1. The production rules can be written in another form, for the above
example, the production rule is written as follows:-
P= {(S, aAa), (A, bAb), (A, a)}
2. Some times it may be that two different grammars G and G
generated the same language L (G)=L(G) .. the grammars are said

to be equivalent.

Example :-

G= (N,T,S,P)

N= {number, integer, fraction, digit}

T=-{,0,1, 2,3, ..., 9}

S=number

P={(number—integer fraction), (integer—digit), (integer— integer digit),

(fraction—.digit), (fraction—fraction digit),(digit—0), (digit—>1),

-13-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter One

(digit—2), (digit—3), (digit—4), (digit—5), (digit—6), (digit—>7), (digit—8),
(digit—9)}
Now we want to prove if the following number is accepted or not

753.127?

number

/ \

integer fraction
integer digit fraction digit
SN L s
integer igit 3 . digit 2

oo 1

digit 5 1

l

7

Kinds of Grammar Description :-

1. Transition Diagram.

2. BNF (Backus_ Naur form,).
. EBNF.

/Cobol_Meta Language.

. Syntax Equations.

O o » X

. Regular Expression (R.E.).

-14-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter One

By using BNF the grammar can be represented as follows:-
(For the previous example)

G=(N,T,S,P)

N= {<number>, <integer> , <fraction> , <digit>}

T=4{,0,1, 2, 3, ..., 9}

S= <number>

Production rules P will be represented as follows:

<number> ::= <integer> <fraction>

<integer> ::= <digit>|<integer> <digit>
<fraction> ::= .<digit> | <fraction> <digit>
<digit> 2=0]1]|2|3|4]|5|6]|7|8]|9

Regular Expression (R.E.)

The lexical analyzer needs to scan and identify only a finite set of
valid string/token/lexeme ‘that belong to the language in hand. It
searches for the pattern defined by the language rules.

Regular expressions have the capability to express finite
languages by defining a pattern for finite strings of symbols. The
grammar defined by regular expressions is known as regular grammar.

The language defined by regular grammar is known as regular
language.

The various operations on languages are:
e Union of two languages L and M is written as
LUM-={s | sisin L or s is in M}
e Concatenation of two languages L and M is written as
LM ={st | sisin L and t is in M}
e The Kleene Closure of a language L is written as

L* = Zero or more occurrence of language L.

-15-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter One

For example, R” is R.E. denoting {¢}U L U LoU..yL
P R R R

The main components of RE are
1. € or A is R.E. denoting by L°={€}=L
2. Any terminal symbol like a is R.E. denoting L={a}
3. [a-z] is all lower-case alphabets of English language.

4. [A-Z] is all upper-case alphabets of English language.

5. [0-9] is all natural digits used in mathematics.

Transformation of R.E. to Transition Diagram

(Formal Method)

1. For each non terminal NT draw a circle.
2. Connect with arrows between any two circles with respect to the
following rules:-
e If NTH5NT connect the two circles with arrow labeled A or €.
e If NTS>T NT connect the two circles with arrow labeled T.
e If NTHT creates a new circle with a new NT (final) then
connect the left-hand side NT of the rule and the new NT
with‘arrow labeled T.

o If NTHT's NT create circles (as the length of T's-1).

-16-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy
College of Education for Pure Science 2021-2022
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter One

Example :-
Let G= {{S, R, U},{a, b}, S, P}

P:
S—o>a

R — abaU
U->b

S > bU
R—->U
U —> aS
S > bR

Transformation of BNF to Transition Diagram
(Informal Method)

1. Draw a separate transition diagram for each production rule.
2. Substitute each mnon-terminal symbol by its corresponding
transition diagrams.
Example :-
G=(N,T,S,P)
N= {<number>, <integer>, <fraction>, <digit>}
T=4{.,0, 1,2, 3, ..., 9}

S= <number>

<number> ::= <integer> <fraction>
<integer> ::= <digit> | <integer> <digit>
<fraction> ::= .<digit> | <fraction> <digit>

<digit> ::= 0|1]|2|3]|4|5|6|7|8|9
-17-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter One

Now we take each production rule and draw to it a separate transition
diagram:-

<number> ::= <integer> <fraction>

:<integer> O<fraction>:
<integer> ::= <digit> | <integer> <digit>

>
: <digit>
@'

<fraction> ::= .<digit> | <fraction> <digit>

<digit> ::= 0| 1]2]3]|4|5|6]7|8]9

00

-18-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter One

Now we must substitute each non-terminal symbol by its corresponding

<fraction> @

transition diagram.

<digit>
> >
Q

: <digit> C _ : <digit>
) @
<digit> Cg}»

> 0-9 () " 0-9

0-9 0-9

-19-

