Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

Syntax Analyzer

When an input string (source code or a program in some
language) is given to a compiler, the compiler processes it in
several phases, starting from lexical analysis (scans the input and
divides it into tokens) to target code generation.

Syntax Analysis or Parsing is the second phase, i.e. after
lexical analysis. It checks the syntactical structure of the given
input, i.e. whether the given input is in the correct syntax (of the
language in which the input has been written) or not. It does so
by building a data structure, called a Parse Tree or Syntax Tree.

The parse tree is constructed by using the pre-defined
Grammar of the language and the input string. If the given input
string can be produced with the help of the syntax tree (in the
derivation process), the input string is found to be in the correct
syntax. If not, error is reported by syntax analyzer.

Example (1):-

Suppose Production rules for the Grammar of a language are:

S — cAd

A — bc|a

And the input string is “cad”.

Now the parser attempts to construct syntax tree from this
grammar for the given input string. It uses the given production
rules and applies those as needed to generate the string. To
generate string “cad” it uses the rules as shown in the given

diagram:-

-48-

University of Baghdad
College of Education for Pure Science
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

C

S

/

A

Compilers

N

d

Cc

M.Sc. Shaimaa Al-Obaidy

S

7N
A\

2021-2022
Third Stage

(1)

2)

€)

C))

In the step (3) above, the production rule A—bc was not a

suitable one to apply (because the string produced is “cbcd” not

“cad”), here the parser needs to backtrack, and apply the next

production rule available with A which is shown in the step (4),

and the string “cad” is produced.

Thus,

the given input can be produced by the given

grammar; therefore the input is correct in syntax. But backtrack

was needed to get the correct syntax tree, which is really a

complex process to implement.

Example (2):-

G= ({<eXp>’ <operand>’ <id>},{a ’ b ? c ? + ’» T 9 (’) },<exp>’ P)

T={a,b,c,+,-,(,)}

P=

<exp> ::= <operand> | <exp> + <operand> | <exp> - <operand>

<operand> ::= <id> | (<exp>)

<id>:=a | b |c

-49-

Compilers

University of Baghdad
College of Education for Pure Science

Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

M.Sc. Shaimaa Al-Obaidy
2021-2022
Third Stage

Syntax analyzer utilizes syntax trees to determine whether a

statement is accepted or not. Check if a-(b+c) accepted?

<exp>
<exp> <operand>
i A
4 A}
} (l)
<operand>
<exp->
v A
<id> f \
<exp> <operand>
\ 4 +
a v v
<operand> <id>
A 4 v
<id> c
A 4
b

We can use another method to determine whether a statement is

accepted or not, this method is called (Derivation Method).

There are two types of derivation:-
1. Leftmost derivation

2. Rightmost derivation

-50-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

Example (3):-

Let G be a grammar with this components ({S,E,F,P,R,L},{a, b, (,
),+,-,X,A,/},S,P)

P=

S— E S +E S- -E E~ T
T-F F- P P-b R~ a(L)
E+>E+T E-TXF F- FAP L+ S
S E-T E-T/F P-+a P- (S)

Is aX(b+a) accepted or not?

Leftmost derivation :-

S+ E- TXF - FXF » PxF + axF - axP » ax (S) > ax(E)»> ax(E+T) »
ax(T+T) -» ax(F+T) - ax(P+T) - ax(b+T) - ax(b+F) - ax(b+P)

—ax(b+a) .. aX(b+a) is accepted

Rightmost derivation :-
S + E » TXF - TXP - Tx(S) » TX(E) » TX(E+T) » TX(E+F) >Tx(E+P) >
Tx(E+a) = Tx(T+a) = Tx(F+a) » Tx(P+a) = Tx(b+a) »Fx(b+a) -

PX(b+a) = ax(b+a) .. aX (b+a) is accepted

Context-Free Grammars:

The syntax of a programming language is described by
context-free grammar (CFG). CFG consists of a set of terminals, a

set of non-terminals, a start symbol, and a set of productions.

-51-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

Ambiguity

A grammar that produces more than one parse tree for some
sentence is said to be ambiguous.

Example:-

consider a grammar

S—aS|Sa|a

Now for string aaa, we will have 4 parse trees, hence ambiguous

-52-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

Parser Techniques

Types of Parsers in Compiler Design:-

The parser is that phase of the compiler which takes a token
string as input and with the help of existing grammar, converts it
into the corresponding Intermediate Representation. The parser

is also known as Syntax Analyzer.

Types of Parser:

The parser is mainly classified into two categories, i.e. Top-

down Parser, and Bottom-up Parser. These are explained below:-

Parser (Syntax Analyzer)

A
' N

Top-down parser Bottom-Up parser
(Predictive Parser) (Operator-Precedent
A Parser)
With Without
Backtracking Backtracking

1-Top-Down Parser:
The top-down parser is the parser that generates parse for
the given input string with the help of grammar productions by
expanding the non-terminals i.e. it starts from the start symbol

and ends on the terminals. It uses left most derivation.

-53-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

Further Top-down parser is classified into two types: Recursive
parser, and Non-recursive parser.

1. Recursive parser is also known as the backtracking parser.

It basically generates the parse tree by using backtracking.

2. Non-recursive parser is also known as LL(1) parser or

predictive parser or without backtracking parser. It uses a parsing

table to generate the parse tree instead of backtracking.

2-Bottom-up Parser:

Bottom-up Parser is the parser that generates the parse tree
for the given input string with the help of grammar productions
by compressing the non-terminals i.e. it starts from non-
terminals and ends on the start symbol. It uses the reverse of the
rightmost derivation. Further Bottom-up parser is classified into
two types: LR parser, and Operator precedence parser.

LR parser is the bottom-up parser that generates the parse
tree for the given string by using unambiguous grammar. It
follows the reverse of the rightmost derivation.

LR parser is of four types:-

(a) LR(O)

(b) SLR(1)

(c) LALR(1)

(d) CLR(1)

Operator precedence parser generates the parse tree form given

grammar and string but the only condition is two consecutive

-54-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

non-terminals and epsilon never appear on the right-hand side of

any production.

l Parser I
|

I Top Down Parser I Bottom Up Parser

R . Operator

ecursive LL(1) LR parser Precedence

. Parser parser
IRO) | SLR() LALR(l) CLR(1)

Steps of parsing in LL(1l) parser or predictive parser with or
without backtracking:-
1- Remove left recursion, because ambiguous not allowed in
LL(1).
2- Compute FIRST and FOLLOW sets.
3- Construct the predictive parsing table using algorithm.

4- Parse string or statement using parser.

-55-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

Backtracking manipulating (Removing Left

Recursion)
Left-Recursion Elimination o3l bl Ly ol g8 il 51,85 slal|
E ~> E+A

Left Recursion Elimination :-
Left Recursion Elimination is of two types:-
1. Immediate Left-Recursion Elimination.

2. Not-Immediate Left-Recursion Elimination.

Immediate Left-Recursion Elimination

A grammar is left recursive if it has a nonterminal
(variable) S such that there is a derivation
S—Sa | f

Where a and B (sequence of terminals and non-terminals
that do not start with S)

Due to the presence of left recursion some top-down
parsers enter into an infinite loop so we have to eliminate left
recursion.

If we have a production of the form:-
A-> Ax,| Ax,| Ax,|...|Ax_|B, | B,]|...| B,

Where no fi begins with an A. The main rule for removing the

immediate backtracking is by generating two rules as follows:-

-56-

Compilers

University of Baghdad

M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

A->BA|3B8A|.|3BA (the first one depends on the part

of the previous rule exactly on the

part that not begins with A)

rd rd

A-> oA |0L,A |oGA |...]o A |E

(the second one depends on

the part of the initial rule exactly

on the part that begins with A)

Example (1):-
S—>Sab|Scd|Sef|g|h
Sol.

S—gS'|hs

S'—>ab8S8 |cdS' |efS'|¢

Example (2):-

E >abc |def|Erx
Sol.

E-abc | defE

E*rxf!|€

Example (3):-

S— (L) |]a (No left recursion)
L—LcS|S (left recursion)
Sol.

L— SL'

L' —-cSL'|¢

Example (4):-

exp > exp or term | term

term = term and factor | factor
factor = not factor | (exp) | true | false

Sol.

-

exp - term exp
exp - orterm exp | €
term - factor term

term - and factor term’ |

factor - not factor | (exp) | true | false

-57-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

Not Immediate Left-Recursion Elimination

Algorithm:-

Arrange NT in any order;
ForI:=2tondo
ForJ:=1toi-1do
Begin
Replace each production of the form A; > Ay by the production
Aj = 91 & /92 & /a3 & [---/ ok X,

Where
Aj * 21/32/33/---/3x are the current Ay productions;

End;

Eliminate the immediate left recursion among the Ai productions;

End;{of algorithm}

Example (1):-

B—-+>Ac/d
A - Br/x
Solution:-
A=B A,
Replace:- Aj > Ay
A~ Ayc/d
By:- Aj =91 X /92 X /a3 X /..o X
A, > Ax/x Using:- Ay = 91/02/03/ -/ ok

A2->A1r A S 5

-58-

Compilers

University of Baghdad M.Sc. Shaimaa Al-Obaidy
College of Education for Pure Science 2021-2022
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three
Az = 91 X /92 X
Ay = a1/02
" A~ A,c/d ;. 917 A,c and g1=d
I1=2 J=1 ol=r 61=A2C 0= d

Az = 91 X /9z X
. A > A,cr/drx/x

These two rules are converted to

A~ Ayc/d
immediate backtracking which can be
Az > A,cr /drx/x
eliminated by the following rules:-

B- Ac/d A~ Ax,/ Ax, / Ao,/.../Ax /B, /B, /.../B_
A~ Acr/dr/x A-BA/BA/./BA
The result will be:-
A~ oA /OLA /OGA /.../0 A /E
B = Ac/d

A->drA/xA

A->crA/e

Example (2):-
S-+Ab/b

A~ Ac/Sd/ e

-59-

Compilers

University of Baghdad Asst. Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

Another method to convert not immediate left recursion to
immediate left recursion is by using substitution, as shown in the
following example:-

S-Ab/b

A—->Ac/Sd/ e
The values of prameters i, j, o, d1,02,03, ...

e Usually, (i) refers to the rule that contains the not immediate
left recursion (rule no. 2), while (j) refers to the first rule

(rule no.1).

o (4) represent the element next to the non terminal that

causes the not immediate left recursion.

e (01,0203 -+) these values can get them from rule no.1 (the
first rule), through taking the right hand side of the rule.
Now, depending on the notes above,
Ruleno.1 S—->Ab/Db (j=1) from this rule we can get
the values of (01,02,03,....),so d1=Ab and 092=b
Ruleno.2 A=+ Ac/Sd/ e (i=2), from this rule we can get the

valueof aa =d

i=2 j=1 41=Ab d2=b a =d
S+>Ab|b
A->Ac|Sd]|e

S=-Ab|b
A->Ac | (Ab | b)d | e

-60-

Compilers

University of Baghdad Asst. Prof. Shaimaa Al-Obaidy
College of Education for Pure Science 2021-2022
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter Three

S->Ab|b
A-Ac|Abd|bd|e

is converted to immediate left recursion

Now in this step, the not immediate left recursion ‘

S->Ab|b

recursion

Now in this step, eliminate the immediate left ‘

A->bdA | eA

A" >cA' | bdA' | ¢

Example (2):-
B->Ac|d rule no.l1
A->Br|x rule no. 2
i=2 j=1 0d1=Ac 02=d a =r
B->Ac|d
A= (Acl|d)r|x
B—->Ac|d
A->Acr|dr|x

is converted to immediate left recursion

Now in this step, the not immediate left recursion ‘

’ ’
- N
A->drA|xA recursion

Now in this step, eliminate the immediate left ‘

A" > crA’ IE

-61-

Compilers

University of Baghdad Asst. Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

Predicative Parsing (Top Down Parser)

e Predictive parsing is a special case of recursive descent
parsing where no backtracking is required.

e The key problem of predictive parsing is to determine the
production to be applied for a non-terminal in case of

alternatives

Non-recursive predictive parser architecture:-

INPUT al| * | b |3
STACK — ;
b Predict
redictive parsing program | OUTPUT

Y

/

$ ¥

Parsing Table M

The table-driven predictive parser has an input buffer, stack, a

parsing table and an output stream.

Input buffer:- It consists of strings to be parsed, followed by $

to indicate the end of the input string.
Stack:- It contains a sequence of grammar symbols preceded by

$ to indicate the bottom of the stack. Initially, the stack
contains the start symbol on top of $.

Parsing table:- It is a two-dimensional array M[A, a], where ‘A’ is

a non-terminal and ‘a’ is a terminal.

-62-

Compilers

University of Baghdad Asst. Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

Previously, we talk about the steps of top-down parser with or
without backtracking, as shown below:-
1- Remove left recursion, because ambiguous not allowed in
LL(1). (note that, this step is previously explained)
2- Compute FIRST and FOLLOW sets.

3- Construct the predictive parsing table using algorithm.

4- Parse string or statement using parser.

Predictive parsing table construction

The construction of a predictive parser is aided by two functions
associated with a grammar:-

1. FIRST

2. FOLLOW

FIRST Set in Syntax Analysis
FIRST(X) for a grammar symbol X is the set of terminals that

begin the strings derivable from X.

Rules to compute FIRST set:-
1. If x is a terminal, then FIRST(x) = { ‘x’ }
2. If x — €, is a production rule, then add € to FIRST(x).
3. If X is non-terminal and X — a a is a production then add (a) to
FIRST(X).
4. If X — Y1 Y2 Y3....Yn is a production,
a. FIRST(X) = FIRST(Y1)
b. If FIRST(Y1) contains € then FIRST(X) = { FIRST(Y1) - € }
U { FIRST(Y2) }

-63-

Compilers

University of Baghdad Asst. Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

c. If FIRST (Yi) contains € for alli = 1 to n, then add € to
FIRST(X).

Example (1):-

Consider the following grammar:-

E->E+T | T
T->T*F | F
F— (E) | id
Sol..-

Before calculating the first and follow functions, eliminate Left

Recursion from the grammar, if present.

E - TE

E' — +TE’ | €

T — FT?

T' — *FT' | ¢

F — (E) | id

Production Rules of

- FIRST sets
Grammar

E — TE' = FIRST(E) = FIRST(T) = {(, id }

E — +TE'|€ = |FIRST(E')={+, €}

T—FT = |FIRST(T) = FIRST(F) = {(, id }

T'—>*FT' | € = |FIRST(T')={"*, €}

F—(E)]|id = |FIRST(F)={(,id}

-64-

4
Compilers
University of Baghdad Asst. Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter Three

Example (2):-_Consider the following grammar:-

S—->A

A — aB / Ad

B—-b

C—g

Sol.:-

Before calculating the first and follow functions, eliminate Left

Recursion from the grammar, if present.

S—-A
A — aBA’
A’ 5 dA’ [€
B—b
C-g
FIRST sets
'SU S—A = First(S) = First(A) = {a}
Qu
0 § A — aBA’ = |First(A) ={a}
p e R
g S A -dA/E = |First(A’)={d, €}
o
R E B-ob = | First(B) = { b}
»n
g C7e = |First(C) = { g}

-65-

Jewiurerr

JO sa[ny uoryonpoid

Compilers

University of Baghdad Asst. Prof. Shaimaa Al-Obaidy
College of Education for Pure Science 2021-2022
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three
Example (3):-_Consider the following grammar:-
S —» aBDh
B — cC
C ->bC / €
D — EF
E—>g/E€
F->f/€
Sol.:-
FIRST sets
S — aBDh = First(S) = {a}
B—cC = | First(B) = {c}
C—-bC/ €| = |First(C)={b, €}
D — EF = | First(D) = { First(E) - € } U First(F) = {g,f, €}
E—>g/€ | = |pirst(E) = {g, €}
F->f/€ = |First(F)={f, €}

Example (4):-_Consider the following grammar:-

E—-E+T/T

T—-TxF/F

F — (E)/ id

Sol.:-

Before calculating the first and follow functions, eliminate Left

Recursion from the grammar, if present.

-66-

University of Baghdad

Compilers

Asst. Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three
E - TE’
E’—> +TE’ /€
T - FT’
T - xFT’ [€
F — (E)/ id
FIRST sets
"30 E - TE = First(E) = First(T) = First(F) = { (, id }
=N
o & B8 /e |2 |mstm) =+, ¢
(a3
O e
g 8 T-FT = | First(T) = First(F) = { (, id }
A
H E T —>xFT’/€|=|First(T’) = (%, €}
®
2 .
o Fo(B)/id | = Ipirst(F)=1(,id}

-61-

Compilers

University of Baghdad Asst. Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

FOLLOW Set in Syntax Analysis

Follow (X) to be the set of terminals that can appear immediately
to the right of Non- Terminal X in some sentential form. That is
mean; we calculate the follow function of a non-terminal by
looking where it is present on the Right Hand Side (RHS) of a
production rule.
—rdaga cillaadla
(rule) JS ¢ o) £ 2l e wdie’ (Follow) 4s gaas -1
($) st Laila (start) saisll (Follow) 4ad -2
(€) = (Follow) 4& sana s siad () (Saal) 3 (1 -3
-1 (Follow) 4ad dias) custhaall jaaiall Ga¥) jglaall juainll (o Caadl o5y Lails -4
saindl 138 Ll gSu (Follow) 4ed (@ (terminal) £ (v saisll SIS 13 .
.(terminal T)
Lgin A paisll 13¢] (Follow) dad (oS cigud (an) jglaa puais iy oS ol 13) -
(rule) G ¥ 52l & 252 sal) uaizll (Follow) dasdl
(Follow) 4eé (& (non terminal NT) g5 ¢ Oa¥) sglaall paiall ¢lS 1) -
&e oal) glaall paiall (First) de gane (a JS aladl ¢o ke (Siu painl) 13gd
O ¥ g3l B asagall yaiall (Follow) 4s sana I ABLAYL (€) 4 Cids
(rule)

Rules For Calculating Follow Function:-

1-If S is a start symbol, then FOLLOW(S) contains $, means, for
the start symbol S, place $ in Follow(S). {Means put $ (the
end of input marker) in Follow(S) (S is the start symbol)}

2- If there is a production A — aBf3, then everything in FIRST(f)

except € is placed in Follow (B), means Follow(B) = First(f)

-68-

Compilers

University of Baghdad Asst. Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

3- If there is a production A — aB, or a production A — aBp
where FIRST(PB) contains &, then everything in FOLLOW(A) is
in FOLLOW(B), means Follow(B) = Follow(A)

4- € will never appear in the follow function of a nonterminal.

Example (1):- Consider the following grammar:-
S — aBDh

B — cC

C ->bC / €

D — EF

E—>g/E€

F->f/€

Sol.:-

S — aBDh [First(S) = {a} Follow(S) = { $ }

Follow(B) = { First(D) — € } U First(h)
={g,f,h}

C—DbC /€ RFirst(C)={b, €} Follow(C) = Follow(B) ={g ,f, h}

B—cC First(B) = { ¢ }

D — EF First(D) = { First(E) - € } U

First(F) = {g, f, €} Follow(D) = First(h) = { h }

Follow(E) = { First(F) — € } U Follow(D)

E—->gl/€E First(E) ={g, €} ={f,h}

F->f/E€ First(F) = {f, €} Follow(F) = Follow(D) = { h }

-69-

Compilers

University of Baghdad Asst. Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

Example (2):- Consider the following grammar:-

E-E+T/T

T—->TxF/F

F— (E)/ id

Sol.:-

The given grammar is left recursive. So, we first remove left
recursion from the given grammar. After eliminating left
recursion, we get the following grammar-

E - TE'

E' - +TE' /€

T — FT'

T' —» xFT' |/ €

F— (E)/ id

First Set Follow Set

E - TE' First(E) = {1"(11’8:((1'1;) = First(F) | ponow(E) = { $,)}

E— +TE'/ € First(E') = { +, € } Follow(E') = Follow(E) = {$,)}

T — FT' First(T) = First(F) = { (, id } FOLLOW(T):{?‘T,S;:?)')}' €}U Follow(E')
T'> xFT'/€ | pirst(T') = { x , €} Follow(T') = Follow(T) = {+, $,) }

Follow(F) = {First(T') - €} U Follow(T)

F — (E) / id | pirst(F) = { (, id } ={x,+, $,)}

-70-

4
Compilers
University of Baghdad Asst. Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage

Chapter Three

Example (3):- Consider the following grammar:-

S—>A

A — aB / Ad

B—-b

C—g

Sol.:-

The given grammar is left recursive. So, we first remove left

recursion from the given grammar. After eliminating left

recursion, we get the following grammar-

S—-A

A — aBA'

A' - dA' /€

B—b

C—-g

First Set Follow Set

S— A First(S) = First(A) = {a} | Follow(S) = { $ }
A — aBA' First(A) = {a} Follow(A) = Follow(S) = { $ }
A’ —dA'/€ |pirst(A’)={d, €} Follow(A') = Follow(A) = { $ }
B—Db First(B) = { b } FOllOW(B) : iF‘dirS;(?') —-€ } U FO].].OW(A)
C—g First(C) = { g} Follow(C) = empty set

-71-

Compilers

University of Baghdad Asst. Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

Algorithm for construction of predictive parsing
table

Input : Grammar G
Output : Parsing table M
Method :
1- For each production A — a of the grammar, do steps 2 and 3.
2- For each terminal a in FIRST(a), add A — a to M[A, a].
3-If € is in FIRST(a), add A — a to M[A, b] for each terminal b in
FOLLOW(A). If € is in FIRST(a) and $ is in FOLLOW(A) , add A
—a to M[A, $].
4- Make each undefined entry of M be error.

Predictive parsing program

Algorithm:-
Set IP (Input Pointer) point to the first symbol of the input string W$

Repeat
Let X be the top stack symbol and () be the symbol pointed by IP;

If X is a terminal or $ then
If X = a then
Pop X from the stack and advance IP

Else error()

Else
if M[X,a]= X~ Y1 Y2 Yk then

Begin

-712-

Compilers

University of Baghdad Asst. Prof. Shaimaa Al-Obaidy
College of Education for Pure Science 2021-2022
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three
Pop X from the stack

pushY Y, ...Y ontostack with Y, on top

Output the production XY, Y, ... Y

End

Else error();
Until X=§;

.(Backtracking) wilsJl g3 ,J 0 aclgall gls ¢ (Top-Down) diy by wle) walwdl b2l
£all oo olS 13| Lo watls)l £g5)l .35 w0 S o 3 il £gm)l wle Sginy aclgill culs sl
«S) (Not-Immediate Backtracking) ,alell ,& ol (Immediate Backtracking) bl
g gm0 3 gl 3l 399 amllan a

. Push & Pop Jiai willg Ly dolsll wldesllg Stack 3939 o] duwo5,lex)l 03 8 2lisy
53ac g Lol o 332) (Parse table) Jss> usSi Jal oo (First and follow) dad wlus ai
olic Liod taocdl ,olic gl ad Lol Non-Terminal ,olic Lici Sbwdl ,olc o ¢
Jinso 4l §,bill 55 b s Terminal

-1 @)kl oy LlL,el S b wighs

baoc] duosy Jgx s >
. Top of Stack Jiay Sallg X 50,1 Jios Jo 3l 5g0e)l .1
. leloel walboll daldl ol uzy S8 Jiny SNlg @ 50l Jiny Wilill sg0all .2
. Stack Jioy il 900l .3
JolSIL lgs,el walball dlosll uolic Jiny i1l 5g0ell .4
ol o Lo wlidall wle Sginy Sally Output oy 5us3lg yuolsl sgeell 5

. Non-terminal ,.oliellg terminal

. $ Start Symbol wlc Sgisi (Stack) cllil sgoal) dulxiydl doull <

el e] welball dlasll wa (Input) gl >g0ell dulsiyX| dogsll <

46,1 0S5 s Mg puolsl Sgall Al dagll <

-713-

Compilers

University of Baghdad Asst. Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

. Top of Stack Jiaig Jll 3502l o 39390 bo wle saiss JodI 3900l duiladl dagll <
oucdl o 393500l i) Jiig &)l 300l (18 39390 Lo wle saies wilill sg0nll dulxi ¥l dogll
Lol se| Calball doall Ly

-ioledl @b
X=a IS I3] dasdo o X Terminal 95 o X 55 lodie .1
Sl ,.zuell 33L9 Top of Stack Jios Sillg X a0 wsws dulosy psits byl §isi 3] &
Lauls Input gl)l sgasll 4o s lisSy i @ sg0all dod of 1) Ll o] wallaall dlaxl 3
.(Stack Jioy Sillg Gl sg00)l dajd
dgidio ne 95 Lol se] walbaall dloall o oline (X 2 @) o] Sl el bo sl Gy o) b=
.(Not accepted)
(Parse table) JgxaJl w8 a go X @le e couid Not-Terminal g9i o0 X 65 lonie .2
00 wowg puols)l sgall 18 LgBla| A Bow @l elbi ol @ 308l g0 X Lol gblis
oy welially oSl @ell (o audl Wbl Push Jacg daill d 393 90ll il Stack
Anput Jis i3S Hui 90 @ Jis
. Stack # $ dod Lllb dulilly o3l wlghsll 51,8k Homw .3
Example O:-
Having the following grammar:-
E-E+T /T
T-TxF / F
F=>E)/id
Show the moves made by the Top-Down Parser on the input=id+idXid$
1- We must solve the left recursion and left factoring if it founded
in the grammar
Llooy ex il 8 galsdl g9)l dalleo o 3 M8 bl £95 o wils g9, wle xelgill 03 Sgiss
el

-74-

Compilers

University of Baghdad
College of Education for Pure Science
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

E-TE’

E->+TE /¢

T-FT

T 2XFT /¢

F- (E)/id

Asst. Prof. Shaimaa Al-Obaidy
2021-2022
Third Stage

2- We must find the first and follow to the grammar:

First Set

Follow Set

E — TE' First(E) = { (, id } Follow(E) = {$,)}
E'— +TE'/ € |First(E') = {+, ¢} Follow(E') = { $,)}

T — FT' First(T) = { (, id } Follow(T) = { +, $,) }
T'— xFT € First(T') = { x, € } Follow(T') = {+,$,)}
F—(E)/id |pirst(F)={(,id)} Follow(F) = { x, +, $,) }

3- We must find or construct now the predictive parsing table

Id

+ X

() $

E - TE

E -TE’

E° 9+TE’

» L d

E =g |E -2¢

T SFT"

>,

T & |T =xFT

»

T - | T —¢

E
E
T | T -FT
T
F

F = id

F = (E)

-75-

4
Compilers
Asst. Prof. Shaimaa Al-Obaidy

2021-2022
Third Stage

University of Baghdad
College of Education for Pure Science
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three
4- Parse string or statement using parser.
X|la]| Stack Input Output
E |lid|[$E id+idxid$|| ----------
T ||id||$SE"T id+idxid$|| E - TE"
F ||id|[sE" T" F |[ia+iaxidas|[T >FT-
id ||id|[sE” T id |[ia+iaxids|| F - id
|+ $SE” T +idxid$ Pop id
E|[+] $E” +idxid$ || T = €
+ ||+ ||SE” T+ +idxid$ [|[E® »+TE”
" |[ia][sE" T idxid$ || Pop +
F |id|[sE" 1" F || iaxids || T ->FT
id||id|[sE” T~ ia || iaxids || F - id
T ||* ||$SE" T~ xid$ Pop id
x || x||SE° T Fx xid$ T -xFT’
F |lid||SE°" T F id$ Pop X
id |[id||$E" T~ id Id$ F - id
1] ? $SE° T’ $ Pop id
E |5 |[sE” $ T ¢
T ? $ $ E =¢
Stop

-76-

Compilers

University of Baghdad Asst. Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

Example @:- Having the following grammar, parse the following
statement:- not (true or false) $
exp - exp or term | term

term - term and factor | factor
factor = not factor | (exp) |true | false

1- We must solve the left recursion and left factoring if it founded

in the grammar

plosy el L8 wealsll £ 92,5l dallao o 2B Halall £95 o wils €925 wle aclgdll 03 (Sgisi
el

exp - term exp’

exp’' = or term exp’ | €

term - factor term’

term’' = and factor term’| €

factor = not factor | (exp) |true | false

2- We must find the first and follow to the grammar:
3- We must find or construct now the predictive parsing table, the
resultant table will be as follows:-

not or and () true | false $
exp— exp— exp— exp—
exp term term term term
exp’ exp’ exp’ exp
exp’'—
exp’ or term exp’—€ exp’'—€
exp’
term— term— term— term—
term factor factor factor factor
term’ term’ term’ term’
term’ term’
, — or — and
term factor factor term’—€ term’—e
term’ term’
factor (| factor— factor factor— | factor
not — (exp) true — false
factor

-11-

Compilers

University of Baghdad Asst.Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

Example @:-

Having the following grammar:-

exp - exp or term | term

term - term and factor | factor

factor = not factor | (exp) | true | false

Parse the following statement:- not (true or false) $

Sol.

1- We must solve the left recursion and left factoring if it founded
in the grammar

exp = term exp'

exp' = orterm exp | €

term - factor term'

term' = and factor term'| €

factor = not factor | (exp) | true | false

2- We must find the first and follow to the grammar:

First Set Follow Set
exp - term exp' First (exp)={not,(,true,false} Follow (exp) ={$,)}
exp' > or term exp' | ¢ First(exp') = {or,€E } Follow (exp')={$,)}

' Follow (term) = first
term > factor term First(term)={not,(,true,false} | ((exp')-€) U follow
(exp)={or,$,)}
term' » and factor term'|c . "N = Follow(term’) = follow
| First(term’) = {and , €} (term)={or, $,)}
factor = not factor | (exp) | Follow(factor) = first
true | false First(factor)={not,(,true,false} | ((term')-€) U follow
ue (term)= {and, or , $,)}

-76-

Compilers

Asst.Prof. Shaimaa Al-Obaidy

University of Baghdad
College of Education for Pure Science
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

2021-2022
Third Stage

3- We must find or construct now the predictive parsing table

not or and () true false S
exp— exp— exp— exp—
exp term term term term
exp’ exp’ exp’ exp
exp’—
exp’ or term exp’'—€ exp’—€
exp’
term— term— term— term—
term factor factor factor factor
term’ term’ term’ term’
term’
— and
term’ factor term’—€ term’—€
term’
factor || factor— factor factor— | factor
not — (exp) true — false
factor

4- Apply parsing algorithm

false) $

to parse the statement not (true or

X a Stack Input Output
exp not || $exp not (true or false) $|] = ----------
term n_ot $ exp’ term not (true or false) $ exp— term exp’
factor || not ||$ exp’ term’ factor not (true or false) $ ||term— factor term’
n_ot n_ot $ exp’ term’ factor not not (true or false) $ || factor— not factor
factor ($ exp’ term’ factor (true or false) $ pop not
(T $ exp’ term’) exp | (true or false) $ factor— (exp)
exp ||true||$ exp’ term’) exp true or false) $ pop (
term E $ exp’ term’) exp’ term true or false) $ exp— term exp’

and so on until we reach to to stop condition when stack=$ only

-11-

Compilers

University of Baghdad Asst.Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

Bottom Up Parser (Shift-Reduce Parser)

Bottom Up Parser

Operator
LR parser Precedence
parser

—

Constructing a parse tree for an input string beginning at the

leaves and going towards the root is called bottom-up parsing.
There is a general style of bottom-up syntax analysis, known

as shift reduces parsing.

Is a right most derivation for a sentential form in reverse order.

Conditions for Bottom-Up Parser:-
1. No &-rules (i.e., A = €).
2. It must be operator grammar (i.e., no adjacent non-terminal).

Example O:- E-EAE/(E)/-E/id

Since of this production rule, the
grammar is not operator grammar

(E=NT, A=NT, E=NT).

-18-

Compilers

University of Baghdad Asst.Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

Example @:- E» E+E/E-E

-\‘ This grammar is an operator grammar (E is
NT, + is T, E is NT).

SHIFT-REDUCE PARSING (Operator Precedence Parser)
Shift-reduce parsing is a type of bottom-up parsing that attempts

to construct a parse tree for an input string beginning at the
leaves (the bottom) and working up towards the root (the top).
Example: Consider the grammar:

S — aABe

A—Abc | b

B—-d

The sentence to be recognized is abbcde.

REDUCTION (LEFTMOST) RIGHTMOST DERIVATION
abbcde (A —b) S — aABe

aAbede (A — Abc) — aAde

aAde (B — d) — aAbcde

aABe (S — aABe) —> abbcde

S

We need to do a table with three fields (Stack, Input, action

{which will be either shift or reduce}).

-79-

Compilers

University of Baghdad Asst.Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

Actions in SHIFT-REDUCE PARSING
o Shift - The next input symbol is shifted onto the top of the

stack

e Reduce - the parser replaces the handle within a stack with a
non-terminal.

e Accept - the parser announces successful completion of
parsing.

e Error - the parser discovers that a syntax error has occurred

and calls an error recovery routine.

Initial value for stack=#$.

Initial value for input=the sentence which we want to parse.

Initial value for action = Shift.

We need to know the meaning of the handle.

Definition: a handle is a substring that:-

1- Matches a right hand side of a production rule in the grammar

2- Whose reduction to the non-terminal on the left hand side of

that grammar rule is a step along the reverse of a rightmost

derivation.

ols Empty word (g) oo xclsill gls ga (Bottom-Up) i by wle) guubwdl bzl o

Non- g9 0 by9lsio olic 5939 axc I (Operator grammar) gg5 oo ¢85
.Terminal

L= Jolaill gllaall sclgill 8 ils £92 5 3939 w9l 39290 Ay ko)l 030 w1 A 0
.Push & Pop Jici willg lgz dolzdl wlileellg Stack 3939 o dio 1930l 030 o8 zlisi @

-80-

Compilers

University of Baghdad Asst.Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

-t 4o 5l g3l wghs
-8aac] @&y Jga> (usSs
. Stack Jiey Jo3l >0l .1
.(Input) JolSIb Lz, walball doall olic Jins wilil] 5s0sll .2
Shift & Lod gl guiidec Jiny $3Jls Action Jiey ,53lg el >500ll .3
.Reduce
$ e b Sgisi (Stack) Jo Xl seoell dulxipdl dagll
Ll e Golball dasll o (Input) wlill >geel) dulxi | degsll <
sl 08 393 90l suniell Push duoc Jinig Shift o985 55319 el sg0el) dulxidl dagll
Stack 8 juaiell givg ilill >g00ll Ly
Blbeoll aclgill wle Right Most Derivation gubi (0 33 <
Aniey Wow illg (Handle) o wouw bo 33 Ay Lgade slaicAbg 8 il diLull 5glosl ey <
(Action) cJUll >g0ell A8 lede
(Tree) alxsiul selgill §laiul
oJ| @dls]y Ll el walboll Aol Ly waol 8 392 50l suniell d@8la] dls Jios ds> o Jgl
.(Top of Stack)
98 U di Ll 59l g8 (Top of Stack)sd| adls| a5 S3Jl joniell (LS 3] dasde <
a8 (Handle) oS ol bl diol o] sunisll gl xid (Handle) oS 13] X 4l (Handle)
.(Top of Stack) «J| aidls|
.(Stack=$Start Symbol) Jsdl JisJl dasd 555 o] @l @ludl olghslly i <

Example O:-

S+>SxS/S8+S/id Input = idxid+id$

Sol.

® Derive this grammar using right most derivation
S = SXS = SXS+S - SXS+id +» Sxid+id —» idxid+id

-81-

Compilers

Asst.Prof. Shaimaa Al-Obaidy
2021-2022
Third Stage

University of Baghdad
College of Education for Pure Science
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three

@ Specify the handles (using the above derivation)

S+ SXS =+ Sx S+8 =+ SxS+ id »» Sx id +id = id xid+id

®Doing Syntax tree (parse tree)

-82-

S
4 /I\ N
S X S
L
g + S
| }
id id
@ Doing Parse table
Stack Input Action
$ idxid+id$ Shift
$id xid+id$ Reduce S »id
$S xid+id$ Shift
$ Sx id+id$ Shift
$ Sxid +id$ Reduce S »+id
$ SxS +id$ Shift
$ SxS+ id$ Shift
$ SxS+id $ Reduce S »*id
$ SxS+S $ Reduce S = S+5
$ SxS§ $ Reduce S =SS
$S5 $ Accept

Compilers

University of Baghdad Asst.Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

Example @:-
E->T/E+T/E-T/-T
T—->F/TxXF/ TF

F - (E)/ id

Input = -(idx(id-id) / id)$

Solution :-
E->-T |
~.F '

= -(E)

= -(T)

~-(I/F) v
»>-(T/id)

--(IxF /id)

-+-(Tx (E) /id)

+ -(TX(E-T) /id)

- -(TxX(E-F) /id)

- -(TX(E-id) /id)

- -(T%(T-id) /id)

-+ (Tx(F-id) /id)

-+ (Tx(id -id) /id)
= -(F % (id - id) /id)
- -(id x (id - id) /id)

—
—~—

NH-He— e T He
<

X €t =
g «—'1 «

o — M — =
—-

| —— T -«
-«

B T e— He— g H
o — b — He*

e

-83-

Compilers

Asst.Prof. Shaimaa Al-Obaidy
2021-2022
Third Stage

University of Baghdad
College of Education for Pure Science
Ibn-AL-Haithem/ Dep. Of Computer Science

Chapter Three
Stack Input Action
$ -(idx(id-id)/id)$ Shift
$- (idx(id-id)/id)$ Shift
$-(idx(id-id)/id)$ Shift
$-(id x(id-id)/id)$ | Reduce F »id
$-(F x(id-id)/id)$ || Reduce T -F
$ -(T x(id-id)/id)$ Shift
$ -(Tx (id-id)/id)$ Shift
$ -(Tx(id-id)/id)$ Shift
$ -(Tx(id -id)/id)$ Reduce F ~id
$ -(Tx(F -id)/id)$ Reduce T —F
$ -(TX(T -id)/id)$ Reduce E »T
$ -(TX(E -id)/id)$ Shift
$ -(Tx(E- id)/id)$ Shift
$ -(TX(E-id)/id)$ Reduce F ~id
$ -(TX(E-F)/id)$ Reduce T -F
$ -(TX(E-T)/id)$ Reduce E +E-T
$-(TX(E)/id)$ Shift
$-(TX(E) /id)$ Reduce F - (E)
$-(TxF /id)$ Reduce T = TXF
$-(T /id)$ Shift
$-(T/ id)$ Shift

-84-

Compilers

University of Baghdad Asst.Prof. Shaimaa Al-Obaidy
College of Education for Pure Science 2021-2022
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three
$-(T/id)$ Reduce F —»>id
$-(T/F)$ Reduce T -»T/F
$-(T)$ Reduce E-» T
$-(E)$ Shift
$-(E) $ Reduce F = (E)
$-F $ Reduce T »F
$-T $ Reduce E -+ -T
$E $ Accept

LR Parser
An efficient bottom-up syntax analysis technique that can be used to parse a large class of
CFG 15 called LR(k) parsing. The ‘L’ is for left-to-right scanning of the mput, the ‘R’ for
constructing a rightmost derivation in reverse

Advantages of LR Parser:-

v Itis an efficient non-backtracking shift-reduce parsing method.

v A grammar that can be parsed using LR method is a proper superset of a grammar that
can be parsed with predictive parser.

v' Tt detects a syntactic error as soon as possible.

-85-

Compilers

University of Baghdad Asst.Prof. Shaimaa Al-Obaidy

College of Education for Pure Science 2021-2022

Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

Types of LR Parsing method:-
1. SLR- Simple LR

» Easiest to implement, least powerful.
2. CLR- Canonical LR
* Most powerful, most expensive.
3. LALR- Look-Ahead LR
* Intermediate in size and cost between the other two methods.
Let us see the comparison between SLR, CLR, and LALR Parser.

SLR Parser LALR Parser CLR Parser
Itis very easy and cheap to |It is also easy and cheap to It is expensive and difficult
implement. implement. to implement.
SLR Parser is the smallest in |LALR and SLR have the same |CLR Parser is the largest.
size. size. As they have less number |As the number of states is

of states. very large.

Error detection 1s not Ermor detection is not immediate | Error detection can be done
immediate in SLR. in LALR. immediately in CLR Parser.
SLR fails to produce a It is intermediate in power It is very powerful and works
parsing table for a certain between SLR and CLR 1.e_, on a large class of grammar.
class of grammars. SLR = LALR = CLR.
It requires less time and It requires more time and space |It also requires more time
space complexity. complexity. and space complexity.

-86-

