

 جامعة بغداد

 ابن الهيثم كلية التربية للعلوم الصرفة

 قسم علوم الحاسبات

Compilers
Code Generation

Third stage

M.Sc. Ahmed Rafid

2016-2017

Compilers Code generation M.Sc. Ahmed Rafid

2

 Code Generation

 Code generation is the final phase of compiler phases, It takes input from

the intermediate representation with information in symbol table of the

source program and produces as output an equivalent target program (see

Figure 1).

 Figure 1: position of Code generation

Main Tasks of Code Generator

1- Instruction selection: choosing appropriate target-machine

instructions to implement the IR statements.

The complexity of mapping IR program into code-sequence for

target machine depends on:

 – Level of IR (high-level or low-level)

 – Nature of instruction set (data type support)

 – Desired quality of generated code (speed and size)

2- Registers allocation and assignment: deciding what values to

keep in which registers

3- Instruction ordering: deciding in what order to schedule the

execution of instructions.

Compilers Code generation M.Sc. Ahmed Rafid

3

Issues in the design of code generator

1- Input to the code generator

• three-address presentations (quadruples, triples, …)

• Virtual machine presentations (bytecode, stack-machine, …)

• Linear presentation (postfix …)

• Graphical presentation (syntax trees, DAGs,…)

2- The target program

Instruction set architecture (RISC, CISC)

The instruction-set architecture of the target machine has a significant

impact on the difficulty of constructing a good code generator that

produces high-quality machine code. The most common target-machine

architectures are RISC (reduced instruction set computer), CISC

(complex instruction set computer), and stack based.

A RISC machine typically has many registers, three-address instructions,

simple addressing modes, and a relatively simple instruction-set

architecture.

In contrast, a CISC machine typically has few registers, two-address

instructions, a variety of addressing modes, several register classes,

variable-length instructions, and instructions with side effects.

In a stack-based machine, operations are done by pushing operands onto a

stack and then performing the operations on the operands at the top of the

stack. To achieve high performance the top of the stack is typically kept

in registers. Stack-based machines almost disappeared because it was felt

Compilers Code generation M.Sc. Ahmed Rafid

4

that the stack organization was too limiting and required too many swap

and copy operations.

Output may take variety of forms

1. Absolute machine language(executable code)

2. Relocatable machine language(object files for linker)

3. Assembly language(facilitates debugging)

Absolute machine language has advantage that it can be placed in a fixed

location in memory and immediately executed.

Relocatable machine language program allows subprograms to be

compiled separately.

Producing assembly language program as output makes the process of

code generation somewhat easier.

