33y daaly
g () 2l sl gy)

Compilers

Code Generation

Third stage

M.Sc. Ahmed Rafid

2016-2017

Compilers Code generation M.Sc. Ahmed Rafid

Code Generation

Code generation is the final phase of compiler phases, It takes input from
the intermediate representation with information in symbol table of the
source program and produces as output an equivalent target program (see

Figure 1).

[fEmmEs [
source | Front | intermediate | Code |intermediate | - Code | farget

pogram | End | code Optimizer code |Generutor| program

Figure 1: position of Code generation

Main Tasks of Code Generator

1- Instruction selection: choosing appropriate target-machine
instructions to implement the IR statements.
The complexity of mapping IR program into code-sequence for
target machine depends on:
— Level of IR (high-level or low-level)
— Nature of instruction set (data type support)
— Desired quality of generated code (speed and size)
2- Registers allocation and assignment: deciding what values to
keep in which registers
3- Instruction ordering: deciding in what order to schedule the

execution of instructions.

Compilers Code generation M.Sc. Ahmed Rafid

Issues in the design of code generator

1- Input to the code generator

 three-address presentations (quadruples, triples, ...)
* Virtual machine presentations (bytecode, stack-machine, ...)
* Linear presentation (postfix ...)

* Graphical presentation (syntax trees, DAGs,...)
2- The target program

Instruction set architecture (RISC, CISC)

The instruction-set architecture of the target machine has a significant
impact on the difficulty of constructing a good code generator that
produces high-quality machine code. The most common target-machine
architectures are RISC (reduced instruction set computer), CISC
(complex instruction set computer), and stack based.

A RISC machine typically has many registers, three-address instructions,

simple addressing modes, and a relatively simple instruction-set
architecture.

In contrast, a CISC machine typically has few registers, two-address
instructions, a variety of addressing modes, several register classes,
variable-length instructions, and instructions with side effects.

In a stack-based machine, operations are done by pushing operands onto a
stack and then performing the operations on the operands at the top of the
stack. To achieve high performance the top of the stack is typically kept

In registers. Stack-based machines almost disappeared because it was felt

Compilers Code generation M.Sc. Ahmed Rafid

that the stack organization was too limiting and required too many swap
and copy operations.

Output may take variety of forms

1. Absolute machine language(executable code)
2. Relocatable machine language(object files for linker)

3. Assembly language(facilitates debugging)

Absolute machine language has advantage that it can be placed in a fixed
location in memory and immediately executed.
Relocatable machine language program allows subprograms to be

compiled separately.

Producing assembly language program as output makes the process of
code generation somewhat easier.

