
242 CHAPTER EIGHT Central Processing Unit

bus system

Figure 8·1 Major components of CPU.

a task that in large part involves choosing the hardware for implementing the
machine instructions. The user who programs the computer in machine or
assembly language must be aware of the register set, the memory structure,
the type of data supported by the instructions, and the function that each
instruction performs.

Design examples of simple CPUs are carried out in Chaps. 5 and 7. This
chapter describes the organization and architecture of the CPU with an empha­
sis on the user's view of the computer. We briefly describe how the registers
communicate with the ALU through buses and explain the operation of the
memory stack. We then present the type of instruction formats available, the
addressing modes used to retrieve data from memory, and typical instructions
commonly incorporated in computers. The last section presents the concept of
reduced instruction set computer (RISQ.

s,z General Register Organization

In the programming examples of Chap. 6, we have shown that memory
locations are needed for storing pointers, counters, return addresses, tempo­
rary results, and partial products during multiplication. Having to refer to
memory locations for such applications is time consuming because memory
access is the most time-consumin\;, oqerati!lR i.R � <:.<'-w..�\'1!1. . \\).1; more conve­
nlent and more efficient to store these intermediate values in processor regis­
ters. When a large number of registers are included in the CPU, it is most
efficient to connect them through a common bus system. The registers commu­
nicate with each other not only for direct data transfers, but also while perform­
ing various microoperations. Hence it is necessary to provide a common unit
that can perform all the arithmetic, logic, and shift microoperations in the
processor.

A bus organization for seven CPU registers is shown in Fig. 8-2. The
output of each register is connected to two multiplexers (MUX) to form the two
buses A and B. The selection lines in each multiplexer select one register or the
input data for the particular bus. The A and B buses form the inputs to a

- Rl
,_ RZ

..._ R3

- R4
,_. RS
,_. R6
>-- R1

Load
(71i,..)

3x8
-

ttt
sao

[:: OPR ::

3 3 3

I SF.I..A I SELl! I SEI.D I OPR

(b)C<nrolwml

Bblll

l"ipft 8-2 Reciau .., with common ALU.

}saB

244 CHAPTER EIGHT Central Processing Unit

control word

common arithmetic logic unit (ALU). The operation selected in the ALU deter­
mines the arithmetic or logic microoperation that is to be performed. The result
of the microoperation is available for output data and also goes into the inputs
of all the registers. The register that receives the information from the output
bus is selected by a decoder. The decoder activates one of the register load
inputs, thus providing a transfer path between the data in the output bus and
the inputs of the selected destination register.

The control unit that operates the CPU bus system directs the information
flow through the registers and ALU by selecting the various components in the
system. For example, to perform the operation

R1 <-- R2 + R3

the control must provide binary selection variables to the following selector
inputs:

1. MUX A selector (SELA): to place the content of R2 into bus A .

2 . MUX B selector (SELB): to place the content o f R 3 into bus B .

3 . ALU operation selector (OPR): to provide the arithmetic addition
A + B .

4. Decoder destination selector (SELD): to transfer the content of the
output bus into R 1 .

The four control selection variables are generated i n the control unit and
must be available at the beginning of a clock cycle. The data from the two source
registers propagate through the gates in the multiplexers and the ALU, to the
output bus, and into the inputs of the destination register, all during the clock
cycle interval. Then, when the next clock transition occurs, the binary informa­
tion from the output bus is transferred into R 1. To achieve a fast response time,
the ALU is constructed with high-speed circuits. The buses are implemented
with multiplexers or three-state gates, as shown in Sec. 4-3.

Control Word
There are 14 binary selection inputs in the unit, and their combined value
specifies a control word. The 14-bit control word is defined in Fig. 8-2(b). It
consists of four fields. Three fields contain three bits each, and one field has
five bits. The three bits of SELA select a source register for the A input of the
ALU. The three bits of SELB select a register for the B input of the ALU. The
three bits of SELD select a destination register using the decoder and its seven
load outputs. The five bits of OPR select one of the operations in the ALU. The
14-bit control word when applied to the selection inputs specify a particular
microoperation.

The encoding of the register selections is specified in Table 8-1 . The 3-bit

ALU

SECTION 8-2 General Register Organization 245

TABLE 8 .. 1 Encoding of Register Selection Fields

Binary
Code SELA SELB SELD

000 Input Input None
001 R1 R1 R1
010 R2 R2 R2
011 R3 R3 R3
100 R4 R4 R4
101 R5 R5 R5
110 R6 R6 R6
111 R7 R7 R7

binary code listed in the first column of the table specifies the binary code for
each of the three fields. The register selected by fields SELA, SELB, and SELD
is the one whose decimal number is equivalent to the binary number in the
code. When SELA or SELB is 000, the corresponding multiplexer selects the
external input data. When SELD = 000, no destination register is selected but
the contents of the output bus are available in the external output.

The ALU provides arithmetic and logic operations. In addition, the CPU
must provide shift operations. The shifter may be placed in the input of the
ALU to provide a preshift capability, or at the output of the ALU to provide
postshifting capability. In some cases, the shift operations are included with
the ALU. An arithmetic logic and shift unit was designed in Sec. 4-7. The
function table for this ALU is listed in Table 4-8. The encoding of the ALU
operations for the CPU is taken from Sec. 4-7 and is specified in Table 8-2. The
OPR field has five bits and each operation is designated with a symbolic name.

TABLE 8-2 Encoding of ALU Operations

OPR
Select Operation Symbol

00000 Transfer A TSFA
00001 Increment A INCA
00010 Add A + B ADD
00101 Subtract A - B SUB
00110 Decrement A DECA
01000 AND A and B AND
01010 OR A and B OR
01100 XOR A and B XOR
01110 Complement A COMA
10000 Shift right A SHRA
11000 Shift left A SHLA

246 CHAPTIR EIGHT Centtal Processing Unit

Examples of Microoperations
A control word of 14 bits is needed to specify a rnicrooperation in the CPU. The
control word for a given microoperation can be derived from the selection
variables. For example, the subtract rnicrooperation given by the statement

R1 <-R2 - R3

specifies R2 for the A input of the ALU, R3 for the B input of the ALU, R1 for
the destination register, and an ALU operation to subtract A - B. Thus the
control word is specified by the four fields and the corresponding binary value
for each field is obtained from the encoding listed in Tables 8-1 and 8-2. The
binary control word for the subtract rnicrooperation is 010 011 001 00101 and
is obtained as follows:

Field:
Symbol:
Control word:

SELA SELB SELD OPR
R2 R3 R1 SUB
010 011 001 00101

The control word for this rnicrooperation and a few others are listed in
Table 8-3.

The increment and transfer rnicrooperations do not use the B input of the
ALU. For these cases, the B field is marked with a dash. We assign 000 to any
unused field when formulating the binary control word, although any other
binary number may be used. To place the content of a register into the output
terminals we place the content of the register into the A input of the ALU, but
none of the registers are selected to accept the data. The ALU operation TSFA
places the data from the register, through the ALU, into the output terminals.
The direct transfer from input to output is accomplished with a control word

TABLE 8�3 Examples of Microoperations for the CPU

Microoperation SELA

R1 <-- R2 - R3 R2
R4 <-- R4 V R5 R4
R6 <-- R6 + 1 R6
R7 <-- R 1 R 1
Output <-- R2 R2
Output <-- lnput Input
R4 <-- sh1 R4 R4
RS <-- 0 RS

Symbolic Designation

SELB

R3
R5

RS

SELD

R1
R4
R6
R7
None
None
R4
RS

OPR Control Word

SUB 010 011 001 00101
OR 100 101 100 01010
INCA 110 000 110 00001
TSFA 001 000 111 00000
TSFA 010 000 000 00000
TSFA 000 000 000 00000
SHLA 100 000 100 11000
XOR 101 101 101 01100

UFO

stack pointer

SECTION 8-3 Scack Organizarion 24 7

of all 0' s (making the B field 000). A register can be cleared to 0 with an
exclusive-OR operation. This is because x Ell x = 0.

It is apparent from these examples that many other microoperations can
be generated in the CPU. The most efficient way to generate control words with
a large number of bits is to store them in a memory unit. A memory unit that
stores control words is referred to as a control memory. By reading consecutive
control words from memory, it is possible to initiate the desired sequence of
microoperations for the CPU. This type of control is referred to as micropro­
grammed controL A microprogrammed control unit is shown in Fig. 7-8. The
binary control word for the CPU will come from the outputs of the control
memory marked "micro-ops."

8-3 Stack Organization

A useful feature that is included in the CPU of most computers is a stack or
last-in, first-out (UFO) list. A stack is a storage device that stores information
in such a manner that the item stored last is the first item retrieved. The
operation of a stack can be compared to a stack of trays. The last tray placed
on top of the stack is the first to be taken off.

The stack in digital computers is essentially a memory unit with an
address register that can count only (after an initial value is loaded into it). The
register that holds the address for the stack is called a stack pointer (SP) because
its value always points at the top item in the stack. Contrary to a stack of trays
where the tray itself may be taken out or inserted, the physical registers of a
stack are always available for reading or writing. It is the content of the word
that is inserted or deleted.

The two operations of a stack are the insertion and deletion of items. The
operation of insertion is called push (or push-down) because it can be thought
of as the result of pushing a new item on top. The operation of deletion is called
pop (or pop-up) because it can be thought of as the result of removing one item
so that the stack pops up. However, nothing is pushed or popped in a com­
puter stack. These operations are simulated by incrementing or decrementing
the stack pointer register.

Register Stack
A stack can be placed in a portion of a large memory or it can be organized as
a collection of a finite number of memory words or registers. Figure 8-3 shows
the organization of a 64-word register stack. The stack pointer register SP
contains a binary number whose value is equal to the address of the word that
is currently on top of the stack. Three items are placed in the stack: A, B, and
C, in that order. Item C is on top of the stack so that the content of SP is now
3. To remove the top item, the stack is popped by reading the memory word

