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the familiar typewriter controls, such as backspace (BS), horizontal tabulation
(HT), and carriage return (CR). Information separators are used to separate the
data into divisions like paragraphs and pages. They include characters such as
record separator (RS) and file separator (FS). The communication control char-
acters are useful during the transmission of text between remote terminals.
Examples of communication control characters are STX (start of text) and ETX
(end of text), which are used to frame a text message when transmitted through
a communication medium.

ASCII is a 7-bit code, but most computers manipulate an 8-bit quantity
as a single unit called a byte. Therefore, ASCII characters most often are stored
one per byte. The extra bit is sometimes used for other purposes, depending
on the application. For example, some printers recognize 8-bit ASCII characters
with the most significant bit set to 0. Additional 128 8-bit characters with the
most significant bit set to 1 are used for other symbols, such as the Greek
alphabet or italic type font. When used in data communication, the eighth bit
may be employed to indicate the parity of the binary-coded character.

11-2 Input—Output Interface

Input-output interface provides a method for transferring information be-
tween internal storage and external /O devices. Peripherals connected to a
computer need special communication links for interfacing them with the
central processing unit. The purpose of the communication link is to resolve
the differences that exist between the central computer and each peripheral.
The major differences are:

1. Peripherals are electromechanical and electromagnetic devices and their
manner of operation is different from the operation of the CPU and
memory, which are electronic devices. Therefore, a conversion of signal
values may be required.

2. The data transfer rate of peripherals is usually slower than the transfer
rate of the CPU, and consequently, a synchronization mechanism may
be needed.

3. Data codes and formats in peripherals differ from the word format in
the CPU and memory.

4. The operating modes of peripherals are different from each other and
each must be controlled so as not to disturb the operation of other
peripherals connected to the CPU.

To resolve these differences, computer systems include special hardware
components between the CPU and peripherals to supervise and synchronize
all input and output transfers. These components are called inferface units
because they interface between the processor bus and the peripheral device.
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In addition, each device may have its own controller that supervises the
operations of the particular mechanism in the peripheral.

L/O Bus and Interface Modules

A typical communication link between the processor and several peripherals
is shown in Fig. 11-1. The /O bus consists of data lines, address lines, and
control lines. The magnetic disk, printer, and terminal are employed in prac-
tically any general-purpose computer. The magnetic tape is used in some
computers for backup storage. Each peripheral device has assodated with it
an interface unit. Each interface decodes the address and control received from
the /O bus, interprets them for the peripheral, and provides signals for the
peripheral controller. It also synchmmz.es the data ﬁuw and supervises the
transfer between peripheral and processor. Each peripheral has its own con-
troller that operates the particular electromechanical device. For example, the
printer controller controls the paper motion, the print timing, and the selection
of printing characters. A controller may be housed separately or may be
physically integrated with the peripheral.

The I/O bus from the processor is attached to all peripheral interfaces. To
communicate with a particular device, the processor places a device address
on the address lines. Each interface attached to the /O bus contains an address
decoder that monitors the address lines. When the interface detects its own
address, it activates the path between the bus lines and the device that it
controls. All peripherals whose address does not correspond to the address in
the bus are disabled by their interface.

At the same time that the address is made available in the address lines,
the processor provides a function code in the control lines. The interface

Figure 11-1 Connection of O bus to input-output devices.
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selected responds to the function code and proceeds to execute it. The function
code is referred to as an /O command and is in essence an instruction that is
executed in the interface and its attached peripheral unit. The interpretation
of the command depends on the peripheral that the processor is addressing.
There are four types of commands that an interface may receive. They are
classified as control, status, data output, and data input.

A control command is issued to activate the peripheral and to inform it what
to do. For example, a magnetic tape unit may be instructed to backspace the
tape by one record, to rewind the tape, or to start the tape moving in the
forward direction. The particular control command issued depends on the
peripheral, and each peripheral receives its own distinguished sequence of
control commands, depending on its mode of operation.

A status command is used to test various status conditions in the interface
and the peripheral. For example, the computer may wish to check the status
of the peripheral before a transfer is initiated. During the transfer, one or more
errors may occur which are detected by the interface. These errors are desig-
nated by setting bits in a status register that the processor can read at certain
intervals.

A data output command causes the interface to respond by transferring data
from the bus into one of its registers. Consider an example with a tape unit.
The computer starts the tape moving by issuing a control command. The
processor then monitors the status of the tape by means of a status command.
When the tape is in the correct position, the processor issues a data output
command. The interface responds to the address and command and transfers
the information from the data lines in the bus to its buffer register. The interface
then communicates with the tape controller and sends the data to be stored
on tape.

The data input command is the opposite of the data output. In this case the
interface receives an item of data from the peripheral and places it in its buffer
register. The processor checks if data are available by means of a status com-
mand and then issues a data input command. The interface places the data on
the data lines, where they are accepted by the processor.

I/O versus Memory Bus

In addition to communicating with /O, the processor must communicate with
the memory unit. Like the /O bus, the memory bus contains data, address,
and read/write control lines. There are three ways that computer buses can be
used to communicate with memory and I/O:

1. Use two separate buses, one for memory and the other for I/O.

2. Use one common bus for both memory and IO but have separate
control lines for each. ‘

3. Use one common bus for memory and /O with common control lines.
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Iop

isolated I/O

memory-mapped

In the first method, the computer has independent sets of data, address,
and control buses, one for accessing memory and the other for /O. This is done
in computers that provide a separate /O processor (IOP) in addition to the
central processing unit (CPU). The memory communicates with both the CPU
and the IOP through a memory bus. The IOP communicates also with the input
and output devices through a separate I/O bus with its own address, data and
control lines. The purpose of the IOP is to provide an independent pathway
for the transfer of information between external devices and internal memory.
The VO processor is sometimes called a data channel. In Sec. 11-7 we discuss
the function of the IOP in more detail.

Isolated versus Memory-Mapped /O

Many computers use one common bus to transfer information between mem-
ory or /O and the CPU. The distinction between a memory transfer and /O
transfer is made through separate read and write lines. The CPU specifies
whether the address on the address lines is for a memory word or for an
interface register by enabling one of two possible read or write lines. The I/O
read and I/0 write control lines are enabled during an I/O transfer. The memory
read and memory write control lines are enabled during a memory transfer. This
configuration isolates all I/O interface addresses from the addresses assigned
to memory and is referred to as the isolated I/O method for assigning addresses
in a common bus.

In the isolated /O configuration, the CPU has distinct input and output
instructions, and each of these instructions is associated with the address of
an interface register. When the CPU fetches and decodes the operation code
of an input or output instruction, it places the address associated with the
instruction into the common address lines. At the same time, it enables the /O
read (for input) or /O write (for output) control line. This informs the external
components that are attached to the common bus that the address in the
address lines is for an interface register and not for a memory word. On the
other hand, when the CPU is fetching an instruction or an operand from
memory, it places the memory address on the address lines and enables the
memory read or memory write control line. This informs the external compo-
nents that the address is for a memory word and not for an I/O interface.

The isolated /O method isolates memory and I/O addresses so that
memory address values are not affected by interface address assignment since
each has its own address space. The other alternative is to use the same address
space for both memory and I/O. This is the case in computers that employ only
one set of read and write signals and do not distinguish between memory and
I/O addresses. This configuration is referred to as memory-mapped 1/0. The
computer treats an interface register as being part of the memory system. The
assigned addresses for interface registers cannot be used for memory words,
which reduces the memory address range available.
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In a memory-mapped I/O organization there are no specific input or
output instructions. The CPU can manipulate I/O data residing in interface
registers with the same instructions that are used to manipulate memory
words. Each interface is organized as a set of registers that respond to read and
write requests in the normal address space. Typically, a segment of the total
address space is reserved for interface registers, but in general, they can be
located at any address as long as there is not also a memory word that responds
to the same address.

Computers with memory-mapped I/O can use memory-type instructions
to access /O data. It allows the computer to use the same instructions for either
input-output transfers or for memory transfers. The advantage is that the load
and store instructions used for reading and writing from memory can be used
to input and output data from /O registers. In a typical computer, there are
more memory-reference instructions than I/O instructions. With memory-
mapped VO all instructions that refer to memory are also available for I/O.

Example of I/O Interface

An example of an /O interface unit is shown in block diagram form in Fig. 11-2.
It consists of two data registers called ports, a control register, a status register,
bus buffers, and timing and control circuits. The interface communicates with
the CPU through the data bus. The chip select and register select inputs
determine the address assigned to the interface. The /O read and write are two
control lines that specify an input or output, respectively. The four registers
communicate directly with the /O device attached to the interface.

The I/O data to and from the device can be transferred into either port
A or port B. The interface may operate with an output device or with an input
device, or with a device that requires both input and output. If the interface
is connected to a printer, it will only output data, and if it services a character
reader, it will only input data. A magnetic disk unit transfers data in both
directions but not at the same time, so the interface can use bidirectional lines.
A command is passed to the /O device by sending a word to the appropriate
interface register. In a system like this, the function code in the /O bus is not
needed because control is sent to the control register, status information is
received from the status register, and data are transferred to and from ports
A and B registers. Thus the transfer of data, control, and status information
is always via the common data bus. The distinction between data, control, or
status information is determined from the particular interface register with
which the CPU communicates.

The control register receives control information from the CPU. By load-
ing appropriate bits into the control register, the interface and the /O device
attached to it can be placed in a variety of operating modes. For example, port
A may be defined as an input port and port B as an output port. A magnetic
tape unit may be instructed to rewind the tape or to start the tape moving in
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Figure 11-2 Example of /O interface unit.

the forward direction. The bits in the status register are used for status condi-
tions and for recording errors that may occur during the data transfer. For
example, a status bit may indicate that port A has received a new data item from
the /O device. Another bit in the status register may indicate that a parity error
has occurred during the transfer.

The interface registers communicate with the CPU through the bidirec-
tional data bus. The address bus selects the interface unit through the chip
select and the two register select inputs. A circuit must be provided externally
(usually, a decoder) to detect the address assigned to the interface registers.
This circuit enables the chip select (CS) input when the interface is selected by
the address bus. The two register select inputs RS1 and RSO are usually
connected to the two least significant lines of the address bus. These two inputs
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select one of the four registers in the interface as specified in the table accom-
panying the diagram. The content of the selected register is transfer into the
CPU via the data bus when the I/O read signal is enabled. The CPU transfers
binary information into the selected register via the data bus when the /O write
input is enabled.

11-3 Asynchronous Data Transfer

The internal operations in a digital system are synchronized by means of clock
pulses supplied by a common pulse generator. Clock pulses are applied to all
registers within a unit and all data transfers among internal registers occur
simultaneously during the occurrence of a clock pulse. Two units, such as a
CPU and an I/O interface, are designed independently of each other. If the
registers in the interface share a common clock with the CPU registers, the
transfer between the two units is said to be synchronous. In most cases, the
internal timing in each unit is independent from the other in that each uses its
own private clock for internal registers. In that case, the two units are said to
be asynchronous to each other. This approach is widely used in most computer
systems.

Asynchronous data transfer between two independent units requires
that control signals be transmitted between the communicating units to indi-
cate the time at which data is being transmitted. One way of achieving this is
by means of a strobe pulse supplied by one of the units to indicate to the other
unit when the transfer has to occur. Another method commonly used is to
accompany each data item being transferred with a control signal that indicates
the presence of data in the bus. The unit receiving the data item responds with
another control signal to acknowledge receipt of the data. This type of agree-
ment between two independent units is referred to as handshaking.

The strobe pulse method and the handshaking method of asynchronous
data transfer are not restricted to /O transfers. In fact, they are used extensively
on numerous occasions requiring the transfer of data between two indepen-
dent units. In the general case we consider the transmitting unit as the source
and the receiving unit as the destination. For example, the CPU is the source
unit during an output or a write transfer and it is the destination unit during
an input or aread transfer. It is customary to specify the asynchronous transfer
between two independent units by means of a timing diagram that shows the
timing relationship that must exist between the control signals and the data in
the buses. The sequence of control during an asynchronous transfer depends
on whether the transfer is initiated by the source or by the destination unit.

Strobe Control

The strobe control method of asynchronous data transfer employs a single
control line to time each transfer. The strobe may be activated by either the
source or the destination unit. Figure 11-3(a) shows a source-initiated transfer.
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Figure 11-3  Source-initiated strobe for data transfer.

The data bus carries the binary information from source unit to the destination
unit. Typically, the bus has multiple lines to transfer an entire byte or word.
The strobe is a single line that informs the destination unit when a valid data
word is available in the bus.

As shown in the timing diagram of Fig. 11-3(b), the source unit first places
the data on the data bus. After a brief delay to ensure that the data settle to
a steady value, the source activates the strobe pulse. The information on the
data bus and the strobe signal remain in the active state for a sufficient time
period to allow the destination unit to receive the data. Often, the destination
unit uses the falling edge of the strobe pulse to transfer the contents of the data
bus into one of its internal registers. The source removes the data from the bus
a brief period after it disables its strobe pulse. Actually, the source does not
have to change the information in the data bus. The fact that the strobe signal
is disabled indicates that the data bus does not contain valid data. New valid
data will be available only after the strobe is enabled again.

Figure 11-4 shows a data transfer initiated by the destination unit. In this
case the destination unit activates the strobe pulse, informing the source to
provide the data. The source unit responds by placing the requested binary
information on the data bus. The data must be valid and remain in the bus long
enough for the destination unit to accept it. The falling edge of the strobe pulse
can be used again to trigger a destination register. The destination unit then
disables the strobe. The source removes the data from the bus after a predeter-
mined time interval.

In many computers the strobe pulse is actually controlled by the clock
pulses in the CPU. The CPU is always in control of the buses and informs the
external units how to transfer data. For example, the strobe of Fig. 11-3 could
be a memory-write control signal from the CPU to a memory unit. The source,
being the CPU, places a word on the data bus and informs the memory unit,
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Figure 11-4 Destination-initiated strobe for data transfer.

which is the destination, that this is a write operation. Similarly, the strobe of
Fig. 11-4 could be a memory-read control signal from the CPU to a memory
unit. The destination, the CPU, initiates the read operation to inform the
memory, which is the source, to place a selected word into the data bus.

The transfer of data between the CPU and an interface unit is similar to
the strobe transfer just described. Data transfer between an interface and an
/O device is commonly controlled by a set of handshaking lines.

Handshaking

The disadvantage of the strobe method is that the source unit that initiates the
transfer has no way of knowing whether the destination unit has actually
received the data item that was placed in the bus. Similarly, a destination unit
that initiates the transfer has no way of knowing whether the source unit has
actually placed the data on the bus. The handshake method solves this problem
by introducing a second control signal that provides a reply to the unit that
initiates the transfer. The basic principle of the two-wire handshaking method
of data transfer is as follows. One control line is in the same direction as the
data flow in the bus from the source to the destination. It is used by the source
unit to inform the destination unit whether there are valid data in the bus. The
other control line is in the other direction from the destination to the source.
It is used by the destination unit to inform the source whether it can accept
data. The sequence of control during the transfer depends on the unit that
initiates the transfer.

Figure 11-5 shows the data transfer procedure when initiated by the
source. The two handshaking lines are data valid, which is generated by the
source unit, and data accepted, generated by the destination unit. The timing
diagram shows the exchange of signals between the two units. The sequence
of events listed in part (c) shows the four possible states that the system can
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Figure 11-5 Source-initiated transfer using handshaking.

be at any given time. The source unit initiates the transfer by placing the data
on the bus and enabling its data valid signal. The data accepted signal is activated
by the destination unit after it accepts the data from the bus. The source unit
then disables its data valid signal, which invalidates the data on the bus. The
destination unit then disables its data accepted signal and the system goes into
its initial state. The source does not send the next data item until after the
destination unit shows its readiness to accept new data by disabling its data
accepted signal. This scheme allows arbitrary delays from one state to the next



SECTION 11-3 Asynchronous Data Transfer 395

and permits each unit to respond at its own data transfer rate. The rate of
transfer is determined by the slowest unit.

The destination-initiated transfer using handshaking lines is shown in
Fig. 11-6. Note that the name of the signal generated by the destination unit
has been changed to ready for data to reflect its new meaning. The source unit
in this case does not place data on the bus until after it receives the ready for
data signal from the destination unit. From there on, the handshaking proce-
dure follows the same pattern as in the source-initiated case. Note that the

Figure 11-6 Destination-initiated transfer using handshaking.
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sequence of events in both cases would be identical if we consider the ready for
data signal as the complement of data accepted. In fact, the only difference
between the source-initiated and the destination-initiated transfer is in their
choice of initial state.

The handshaking scheme provides a high degree of flexibility and reliabil-
ity because the successful completion of a data transfer relies on active partic-
ipation by both units. If one unit is faulty, the data transfer will not be
completed. Such an error can be detected by means of a timeout mechanism,
which produces an alarm if the data transfer is not completed within a prede-
termined time. The timeout is implemented by means of an internal clock that
starts counting time when the unit enables one of its handshaking control
signals. If the return handshake signal does not respond within a given time
period, the unit assumes that an error has occurred. The timeout signal can be
used to interrupt the processor and hence execute a service routine that takes
appropriate error recovery action.

Asynchronous Serial Transfer

The transfer of data between two units may be done in parallel or serial. In
parallel data transmission, each bit of the message has its own path and the
total message is transmitted at the same time. This means that an n-bit message
must be transmitted through n separate conductor paths. In serial data trans-
mission, each bit in the message is sent in sequence one at a time. This method
requires the use of one pair of conductors or one conductor and a common
ground. Parallel transmission is faster but requires many wires. It is used for
short distances and where speed is important. Serial transmission is slower but
is less expensive since it requires only one pair of conductors.

Serial transmission can be synchronous or asynchronous. In synchron-
ous transmission, the two units share a common clock frequency and bits are
transmitted continuously at the rate dictated by the clock pulses. In long-
distant serial transmission, each unit is driven by a separate clock of the same
frequency. Synchronization signals are transmitted periodically between the
two units to keep their clocks in step with each other. In asynchronous trans-
mission, binary information is sent only when it is available and the line
remains idle when there is no information to be transmitted. This is in contrast
to synchronous transmission, where bits must be transmitted continuously to
keep the clock frequency in both units synchronized with each other. Syn-
chronous serial transmission is discussed further in Sec. 11-8.

A serial asynchronous data transmission technique used in many interac-
tive terminals employs special bits that are inserted at both ends of the char-
acter code. With this technique, each character consists of three parts: a start
bit, the character bits, and stop bits. The convention is that the transmitter rests
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at the 1-state when no characters are transmitted. The first bit, called the start
bit, is always a 0 and is used to indicate the beginning of a character. The last
bit called the stop bit is always a 1. An example of this format is shown in
Fig. 11-7.

A transmitted character can be detected by the receiver from knowledge
of the transmission rules:

1. When a character is not being sent, the line is kept in the 1-state.

2. The initiation of a character transmission is detected from the start bit,
which is always 0.

3. The character bits always follow the start bit.

4. After the last bit of the character is transmitted, a stop bit is detected
when the line returns to the 1-state for at least one bit time.

Using these rules, the receiver can detect the start bit when the line goes from
1t00. A clock in the receiver examines the line at proper bit times. The receiver
knows the transfer rate of the bits and the number of character bits to accept.
After the character bits are transmitted, one or two stop bits are sent. The stop
bits are always in the 1-state and frame the end of the character to signify the
idle or wait state.

At the end of the character the line is held at the 1-state for a period of
at least one or two bit times so that both the transmitter and receiver can
resynchronize. The length of time that the line stays in this state depends on
the amount of time required for the equipment to resynchronize. Some older
electromechanical terminals use two stop bits, but newer terminals use one
stop bit. The line remains in the 1-state until another character is transmitted.
The stop time ensures that a new character will not follow for one or two bit
times.

As an illustration, consider the serial transmission of a terminal whose
transfer rate is 10 characters per second. Each transmitted character consists

Figure 11-7  Asynchronous serial transmission.
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baud rate

of a start bit, eight information bits, and two stop bits, for a total of 11 bits. Ten
characters per second means that each character takes 0.1 s for transfer. Since
there are 11 bits to be transmitted, it follows that the bit time is 9.09 ms. The
baud rate is defined as the rate at which serial information is transmitted and
is equivalent to the data transfer in bits per second. Ten characters per second
with an 11-bit format has a transfer rate of 110 baud.

The terminal has a keyboard and a printer. Every time a key is depressed,
the terminal sends 11 bits serially along a wire. To print a character in the
printer, an 11-bit message must be received along another wire. The terminal
interface consists of a transmitter and a receiver. The transmitter accepts an
8-bit character from the computer and proceeds to send a serial 11-bit message
into the printer line. The receiver accepts a serial 11-bit message from the
keyboard line and forwards the 8-bit character code into the computer. Inte-
grated circuits are available which are specifically designed to provide the
interface between computer and similar interactive terminals. Such a circuit is
called an asynchronous communication interface or a universal asynchronous receiver-
transmitter (UART).

Asynchronous Communication Interface

The block diagram of an asynchronous communication interface is shown in
Fig. 11-8. It functions as both a transmitter and a receiver. The interface is
initialized for a particular mode of transfer by means of a control byte that is
loaded into its control register. The transmitter register accepts a data byte from
the CPU through the data bus. This byte is transferred to a shift register for
serial transmission. The receiver portion receives serial information into an-
other shift register, and when a complete data byte is accumulated, it is
transferred to the receiver register. The CPU can select the receiver register to
read the byte through the data bus. The bits in the status register are used for
input and output flags and for recording certain errors that may occur during
the transmission. The CPU can read the status register to check the status of
the flag bits and to determine if any errors have occurred. The chip select and
the read and write control lines communicate with the CPU. The chip select
(CS) input is used to select the interface through the address bus. The register
select (RS) is associated with the read (RD) and write (WR) controls. Two
registers are write-only and two are read-only. The register selected is a func-
tion of the RS value and the RD and WR status, as listed in the table accom-
panying the diagram.

The operation of the asynchronous communication interface is initialized
by the CPU by sending a byte to the control register. The initialization proce-
dure places the interface in a specific mode of operation as it defines certain
parameters such as the baud rate to use, how many bits are in each character,
whether to generate and check parity, and how many stop bits are appended
to each character. Two bits in the status register are used as flags. One bit is
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Figure 11-8 Block diagram of a typical asynchronous communication interface.

used to indicate whether the transmitter register is empty and another bit is
used to indicate whether the receiver register is full.

The operation of the transmitter portion of the interface is as follows. The
CPU reads the status register and checks the flag to see if the transmitter
register is empty. If it is empty, the CPU transfers a character to the transmitter
register and the interface clears the flag to mark the register full. The first bit
in the transmitter shift register is set to 0 to generate a start bit. The character
is transferred in parallel from the transmitter register to the shift register and
the appropriate number of stop bits are appended into the shift register. The
transmitter register is then marked empty. The character can now be transmit-
ted one bit at a time by shifting the data in the shift register at the specified
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baud rate. The CPU can transfer another character to the transmitter register
after checking the flag in the status register. The interface is said to be double
buffered because a new character can be loaded as soon as the previous one
starts transmission.

The operation of the receiver portion of the interface is similar. The
receive data input is in the 1-state when the line is idle. The receiver control
monitors the receive-data line for a 0 signal to detect the occurrence of a start
bit. Once a start bit has been detected, the incoming bits of the character are
shifted into the shift register at the prescribed baud rate. After receiving the
databits, the interface checks for the parity and stop bits. The character without
the start and stop bits is then transferred in parallel from the shift register to
the receiver register. The flag in the status register is set to indicate that the
receiver register is full. The CPU reads the status register and checks the flag,
and if set, it reads the data from the receiver register.

The interface checks for any possible errors during transmission and sets
appropriate bits in the status register. The CPU can read the status register at
any time to check if any errors have occurred. Three possible errors that the
interface checks during transmission are parity error, framing error, and over-
run error. Parity error occurs if the number of 1’s in the received data is not
the correct parity. A framing error occurs if the right number of stop bits is not
detected at the end of the received character. An overrun error occurs if the
CPU does not read the character from the receiver register before the next one
becomes available in the shift register. Overrun error results in a loss of
characters in the received data stream.

First-In, First-Out Buffer
A first-in, first-out (FIFO) buffer is a memory unit that stores information in
such a manner that the item first in is the item first out. A FIFO buffer comes
with separate input and output terminals. The important feature of this buffer
is that it can input data and output data at two different rates and the output
data are always in the same order in which the data entered the buffer. When
placed between two units, the FIFO can accept data from the source unit at one
rate of transfer and deliver the data to the destination unit at another rate. If
the source unit is slower than the destination unit, the buffer can be filled with
data at a slow rate and later emptied at the higher rate. If the source is faster
than the destination, the FIFO is useful for those cases where the source data
arrive in bursts that fill out the buffer but the time between bursts is long
enough for the destination unit to empty some or all the information from the
buffer. Thus a FIFO buffer can be useful in some applications when data are
transferred asynchronously. It piles up data as they come in and gives them
away in the same order when the data are needed.

The logic diagram of a typical 4 X 4 FIFO buffer is shown in Fig. 11-9. It
consists of four 4-bit registers RI, I = 1,2,3,4, and a control register with
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Figure 11-9 Circuit diagram of 4 X 4 FIFO buffer.

flip-flops F, i = 1, 2,3, 4, one for each register. The FIFO can store four words
of four bits each. The number of bits per word can be increased by increasing
the number of bits in each register and the number of words can be increased
by increasing the number of registers.

A flip-flop F,in the control register that is set to 1 indicates that a 4-bit data

word is stored in the corresponding register RI. A 0 in F, indicates that the
corresponding register does not contain valid data. The control register directs
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the movement of data through the registers. Whenever the F, bit of the control
register is set (F; = 1) and the F,, bit is reset (Fi,; = 1), a clock is generated
causing register R(I + 1) to accept the data from register RI. The same clock
transition sets F., to 1 and resets F; to 0. This causes the control flag to move
one position to the right together with the data. Data in the registers move
down the FIFO toward the output as long as there are empty locations ahead
of it. This ripple-through operation stops when the data reach a register RI with
the next flip-flop F..; being set to 1, or at the last register R4. An overall master
clear is used to initialize all control register flip-flops to 0.

Data are inserted into the buffer provided that the input ready signal is
enabled. This occurs when the first control flip-flop F, is reset, indicating that
register R1is empty. Data are loaded from the input lines by enabling the clock
in R1 through the insert control line. The same clock sets F;, which disables the
input ready control, indicating that the FIFO is now busy and unable to accept
more data. The ripple-through process begins provided that R2 is empty. The
data in R1 are transferred into R2 and F, is cleared. This enables the input ready
line, indicating that the inputs are now available for another data word. If the
FIFO is full, F; remains set and the input ready line stays in the 0 state. Note
that the two control lines input ready and insert constitute a destination-initiated
pair of handshake lines.

The data falling through the registers stack up at the output end. The
output ready control line is enabled when the last control flip-flop F, is set,
indicating that there are valid data in the output register R4. The output data
from R4 are accepted by a destination unit, which then enables the delete
control signal. This resets F,, causing output ready to disable, indicating that the
data on the output are no longer valid. Only after the delete signal goes back
to 0 can the data from R3 move into R4. If the FIFO is empty, there will be no
data in R3 and F, will remain in the reset state. Note that the two control lines
output ready and delete constitute a source-initiated pair of handshake lines.

11-4 Modes of Transfer

Binary information received from an external device is usually stored in mem-
ory for later processing. Information transferred from the central computer into
an external device originates in the memory unit. The CPU merely executes the
I/O instructions and may accept the data temporarily, but the ultimate source
or destination is the memory unit. Data transfer between the central computer
and I/O devices may be handled in a variety of modes. Some modes use the
CPU as an intermediate path; others transfer the data directly to and from the
memory unit. Data transfer to and from peripherals may be handled in one of
three possible modes:

1. Programmed I/O
2. Interrupt-initiated /O
3. Direct memory access (DMA)
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Programmed /O operations are the result of /O instructions written in
the computer program. Each data item transfer is initiated by an instruction
in the program. Usually, the transfer is to and from a CPU register and
peripheral. Other instructions are needed to transfer the data to and from CPU
and memory. Transferring data under program control requires constant mon-
itoring of the peripheral by the CPU. Once a data transfer is initiated, the CPU
is required to monitor the interface to see when a transfer can again be made.
Itis up to the programmed instructions executed in the CPU to keep close tabs
on everything that is taking place in the interface unit and the IO device.

In the programmed /O method, the CPU stays in a program loop until
the /O unit indicates that it is ready for data transfer. This is a time-consuming
process since it keeps the processor busy needlessly. It can be avoided by using
an interrupt facility and special commands to inform the interface to issue an
interrupt request signal when the data are available from the device. In the
meantime the CPU can proceed to execute another program. The interface
meanwhile keeps monitoring the device. When the interface determines that
the device is ready for data transfer, it generates an interrupt request to the
computer. Upon detecting the external interrupt signal, the CPU momentarily
stops the task it is processing, branches to a service program to process the /O
transfer, and then returns to the task it was originally performing.

Transfer of data under programmed I/O is between CPU and peripheral.
In direct memory access (DMA), the interface transfers data into and out of the
memory unit through the memory bus. The CPU initiates the transfer by
supplying the interface with the starting address and the number of words
needed to be transferred and then proceeds to execute other tasks. When the
transfer is made, the DMA requests memory cycles through the memory bus.
When the request is granted by the memory controller, the DMA transfers the
data directly into memory. The CPU merely delays its memory access operation
to allow the direct memory /O transfer. Since peripheral speed is usually
slower than processor speed, /O-memory transfers are infrequent compared
to processor access to memory. DMA transfer is discussed in more detail in
Sec. 11-6.

Many computers combine the interface logic with the requirements for
direct memory access into one unit and call it an /O processor (IOP). The IOP
can handle many peripherals through a DMA and interrupt facility. In such
a system, the computer is divided into three separate modules: the memory
unit, the CPU, and the IOP. /O processors are presented in Sec. 11-7.

v

Example of Programmed 1/O
In the programmed /O method, the /O device does not have direct access to
memory. A transfer from an I/O device to memory requires the execution of
several instructions by the CPU, including an input instruction to transfer the
data from the device to the CPU and a store instruction to transfer the data from
the CPU to memory. Other instructions may be needed to verify that the data
are available from the device and to count the numbers of words transferred.
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An example of data transfer from an /O device through an interface into
the CPU is shown in Fig. 11-10. The device transfers bytes of data one at a time
as they are available. When a byte of data is available, the device places it in
the /O bus and enables its data valid line. The interface accepts the byte into
its data register and enables the data accepted line. The interface sets a bit in
the status register that we will refer to as an F or “flag” bit. The device can now
disable the data valid line, but it will not transfer another byte until the data
accepted line is disabled by the interface. This is according to the handshaking
procedure established in Fig. 11-5.

A program is written for the computer to check the flag in the status
register to determine if a byte has been placed in the data register by the /O
device. This is done by reading the status register into a CPU register and
checking the value of the flag bit. If the flag is equal to 1, the CPU reads the
data from the data register. The flag bit is then cleared to 0 by either the CPU
or the interface, depending on how the interface circuits are designed. Once
the flag is cleared, the interface disables the data accepted line and the device
can then transfer the next data byte.

A flowchart of the program that must be written for the CPU is shown
in Fig. 11-11. It is assumed that the device is sending a sequence of bytes
that must be stored in memory. The transfer of each byte requires three
instructions:

1. Read the status register.

2. Check the status of the flag bit and branch to step 1 if not set or to step
3 if set.

3. Read the data register.
Each byte is read into a CPU register and then transferred to memory with a

store instruction. A common /O programming task is to transfer a block of
words from an I/O device and store them in a memory buffer. A program that

Figure 11-10 Data transfer from /O device to CPU.
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Figure 11-11  Flowchart for CPU program to input data.

stores input characters in a memory buffer using the instructions defined in
Chap. 6 is listed in Table 6-21.

The programmed I/O method is particularly useful in small low-speed
computers or in systems that are dedicated to monitor a device continuously.
The difference in information transfer rate between the CPU and the /O device
makes this type of transfer inefficient. To see why this is inefficient, consider
a typical computer that can execute the two instructions that read the status
register and check the flag in 1 ps. Assume that the input device transfers its
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vectored interrupt

I/O routines

data at an average rate of 100 bytes per second. This is equivalent to one byte
every 10,000 ps. This means that the CPU will check the flag 10,000 times
between each transfer. The CPU is wasting time while checking the flag instead
of doing some other useful processing task.

Interrupt-Initiated /O

An alternative to the CPU constantly monitoring the flag is to let the interface
inform the computer when it is ready to transfer data. This mode of transfer
uses the interrupt facility. While the CPU is running a program, it does not
check the flag. However, when the flag is set, the computer is momentarily
interrupted from proceeding with the current program and is informed of the
fact that the flag has been set. The CPU deviates from what it is doing to take
care of the input or output transfer. After the transfer is completed, the
computer returns to the previous program to continue what it was doing before
the interrupt.

The CPU responds to the interrupt signal by storing the return address
from the program counter into a memory stack and then control branches to
a service routine that processes the required /O transfer. The way that the
processor chooses the branch address of the service routine varies from one
unit to another. In principle, there are two methods for accomplishing this.
Oneis called vectored interrupt and the other, nonvectored interrupt. In a nonvec-
tored interrupt, the branch address is assigned to a fixed location in memory.
In a vectored interrupt, the source that interrupts supplies the branch informa-
tion to the computer. This information is called the interrupt vector. In some
computers the interrupt vector is the first address of the /O service routine.
In other computers the interrupt vector is an address that points to a location
in memory where the beginning address of the /O service routine is stored.
A system with vectored interrupt is demonstrated in Sec. 11-5.

Software Considerations

The previous discussion was concerned with the basic hardware needed to
interface I/O devices to a computer system. A computer must also have soft-
ware routines for controlling peripherals and for transfer of data between the
processor and peripherals. I/O routines must issue control commands to acti-
vate the peripheral and to check the device status to determine when it is ready
for data transfer. Once ready, information is transferred item by item until all
the data are transferred. In some cases, a control command is then given to
execute a device function such as stop tape or print characters. Error checking
and other useful steps often accompany the transfers. In interrupt-controlled
transfers, the /O software must issue commands to the peripheral to interrupt
when ready and to service the interrupt when it occurs. In DMA transfer, the
/O software must initiate the DMA channel to start its operation.
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Software control of input-output equipment is a complex undertaking.
For this reason I/O routines for standard peripherals are provided by the
manufacturer as part of the computer system. They are usually included within
the operating system. Most operating systems are supplied with a variety of
/O programs to support the particular line of peripherals offered for the
computer. I/O routines are usually available as operating system procedures
and the user refers to the established routines to specify the type of transfer
required without going into detailed machine language programs.

11-5 Priority Interrupt

Data transfer between the CPU and an I/O device is initiated by the CPU.
However, the CPU cannot start the transfer unless the device is ready to
communicate with the CPU. The readiness of the device can be determined
from an interrupt signal. The CPU responds to the interrupt request by storing
the return address from PC into a memory stack and then the program
branches to a service routine that processes the required transfer. As discussed
in Sec. 8-7, some processors also push the current PSW (program status word)
onto the stack and load a new PSW for the service routine. We neglect the PSW
here in order not to complicate the discussion of /O interrupts.

In a typical application a number of /O devices are attached to the
computer, with each device being able to originate an interrupt request. The
first task of the interrupt system is to identify the source of the interrupt. There
is also the possibility that several sources will request service simultaneously.
In this case the system must also decide which device to service first.

A priority interrupt is a system that establishes a priority over the various
sources to determine which condition is to be serviced first when two or more
requests arrive simultaneously. The system may also determine which condi-
tions are permitted to interrupt the computer while another interrupt is being
serviced. Higher-priority interrupt levels are assigned to requests which, if
delayed or interrupted, could have serious consequences. Devices with high-
speed transfers such as magnetic disks are given high priority, and slow
devices such as keyboards receive low priority. When two devices interrupt the
computer at the same time, the computer services the device, with the higher
priority first.

Establishing the priority of simultaneous interrupts can be done by soft-
ware or hardware. A polling procedure is used to identify the highest-priority
source by software means. In this method there is one common branch address
for all interrupts. The program that takes care of interrupts begins at the branch
address and polls the interrupt sources in sequence. The order in which they
are tested determines the priority of each interrupt. The highest-priority source
is tested first, and if its interrupt signal is on, control branches to a service
routine for this source. Otherwise, the next-lower-priority source is tested, and
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vector address (VAD)

so on. Thus the initial service routine for all interrupts consists of a program
that tests the interrupt sources in sequence and branches to one of many
possible service routines. The particular service routine reached belongs to the
highest-priority device among all devices that interrupted the computer. The
disadvantage of the software method is that if there are many interrupts, the
time required to poll them can exceed the time available to service the /O
device. In this situation a hardware priority-interrupt unit can be used to speed
up the operation.

A hardware priority-interrupt unit functions as an overall manager in an
interrupt system environment. It accepts interrupt requests from many
sources, determines which of the incoming requests has the highest priority,
and issues an interrupt request to the computer based on this determination.
To speed up the operation, each interrupt source has its own interrupt vector
to access its own service routine directly. Thus no polling is required because
all the decisions are established by the hardware priority-interrupt unit. The
hardware priority function can be established by either a serial or a parallel
connection of interrupt lines. The serial connection is also known as the daisy-
chaining method.

Daisy-Chaining Priority

The daisy-chaining method of establishing priority consists of a serial connec-
tion of all devices that request an interrupt. The device with the highest priority
is placed in the first position, followed by lower-priority devices up to the
device with the lowest priority, which is placed last in the chain. This method
of connection between three devices and the CPU is shown in Fig. 11-12. The
interrupt request line is common to all devices and forms a wired logic connec-
tion. If any device has its interrupt signal in the low-level state, the interrupt
line goes to the low-level state and enables the interrupt input in the CPU.
When no interrupts are pending, the interrupt line stays in the high-level state
and no interrupts are recognized by the CPU. This is equivalent to a negative-
logic OR operation. The CPU responds to an interrupt request by enabling the
interrupt acknowledge line. This signal is received by device 1 at its PI (priority
in) input. The acknowledge signal passes on to the next device through the PO
(priority out) output only if device 1 is not requesting an interrupt. If device
1hasa pending interrupt, it blocks the acknowledge signal from the next device
by placing a 0 in the PO output. It then proceeds to insert its own interrupt
vector address (VAD) into the data bus for the CPU to use during the interrupt
cycle.

A device with a 0 in its PI input generates a 0 in its PO output to inform
the next-lower-priority device that the acknowledge signal has been blocked.
A device that is requesting an interrupt and has a 1 in its Pl input will intercept
the acknowledge signal by placing a 0 in its PO output. If the device does not
have pending interrupts, it transmits the acknowledge signal to the next device
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Figure 11-12  Daisy-chain priority interrupt.

by placing a 1in its PO output. Thus the device with PI = 1and PO = 0is the
one with the highest priority that is requesting an interrupt, and this device
places its VAD on the data bus. The daisy chain arrangement gives the highest
priority to the device that receives the interrupt acknowledge signal from the
CPU. The farther the device is from the first position, the lower is its priority.

Figure 11-13 shows the internal logic that must be included within each
device when connected in the daisy-chaining scheme. The device sets its RF
flip-flop when it wants to interrupt the CPU. The output of the RF flip-flop goes
through an open-collector inverter, a circuit that provides the wired logic for
the common interrupt line. If PI = 0, both PO and the enable line to VAD are
equal to 0, irrespective of the value of RF. If PI = 1and RF = 0, then PO = 1
and the vector address is disabled. This condition passes the acknowledge
signal to the next device through PO. The device is active when PI = 1 and
RF = 1. This condition places a 0 in PO and enables the vector address for the
data bus. It is assumed that each device has its own distinct vector address.
The RF flip-flop is reset after a sufficient delay to ensure that the CPU has
received the vector address.

Parallel Priority Interrupt

The parallel priority interrupt method uses a register whose bits are set sepa-
rately by the interrupt signal from each device. Priority is established aceording
to the position of the bits in the register. In addition to the interrupt register,
the circuit may include a mask register whose purpose is to control the status
of each interrupt request. The mask register can be programmed to disable
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Figure 11-13  One stage of the daisy-chain priority arrangement.

lower-priority interrupts while a higher-priority device is being serviced. It can
also provide a facility that allows a high-priority device to interrupt the CPU
while a lower-priority device is being serviced.

The priority logic for a system of four interrupt sources is shown in
Fig. 11-14. It consists of an interrupt register whose individual bits are set by
external conditions and cleared by program instructions. The magnetic disk,
being a high-speed device, is given the highest priority. The printer has the
next priority, followed by a character reader and a keyboard. The mask register
has the same number of bits as the interrupt register. By means of program
instructions, it is possible to set or reset any bit in the mask register. Each
interrupt bit and its corresponding mask bit are applied to an AND gate to
produce the four inputs to a priority encoder. In this way an interrupt is
recognized only if its corresponding mask bit is set to 1 by the program. The
priority encoder generates two bits of the vector address, which is transferred
to the CPU.

Another output from the encoder sets an interrupt status flip-flop IST
when an interrupt that is not masked occurs. The interrupt enable flip-flop IEN
can be set or cleared by the program to provide an overall control over the
interrupt system. The outputs of IST ANDed with IEN provide a common
interrupt signal for the CPU. The interrupt acknowledge INTACK signal from
the CPU enables the bus buffers in the output register and a vector address
VAD is placed into the data bus. We will now explain the priority encoder
circuit and then discuss the interaction between the priority interrupt con-
troller and the CPU.
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Priority Encoder

The priority encoder is a circuit that implements the priority function. The logic
of the priority encoder is such that if two or more inputs arrive at the same time,
the input having the highest priority will take precedence. The truth table of
a four-input priority encoder is given in Table 11-2. The x’s in the table
designate don’t-care conditions. Input I; has the highest priority; so regardless
of the values of other inputs, when this input is 1, the output generates an
output xy = 00. [, has the next priority level. The outputis 01ifI; = 1 provided
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TABLE 11-2 Priority Encoder Truth Table

Inputs Outputs

Io I, I, I x y IST Boolean functions

w

x =140
=10, + 1415
UST) =1y + 1, + 1, + 1,

X = =00

0
1
0
1
X
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coo~=X
oo =X X
O = XX X
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that I, = 0, regardless of the values of the other two lower-priority inputs. The
output for I, is generated only if higher-priority inputs are 0, and so on down
the priority level. The interrupt status IST is set only when one or more inputs
are equal to 1. If all inputs are 0, IST is cleared to 0 and the other outputs of
the encoder are not used, so they are marked with don’t-care conditions. This
is because the vector address is not transferred to the CPU when IST = 0. The
Boolean functions listed in the table specify the internal logic of the encoder.
Usually, a computer will have more than four interrupt sources. A priority
encoder with eight inputs, for example, will generate an output of three bits.
The output of the priority encoder is used to form part of the vector
address for each interrupt source. The other bits of the vector address can be
assigned any value. For example, the vector address can be formed by append-
ing six zeros to the x and y outputs of the encoder. With this choice the interrupt
vectors for the four /O devices are assigned binary numbers 0, 1, 2, and 3.

Interrupt Cycle

The interrupt enable flip-flop IEN shown in Fig. 11-14 can be set or cleared by
program instructions. When IEN is cleared, the interrupt request coming from
IST is neglected by the CPU. The program-controlled IEN bit allows the pro-
grammer to choose whether to use the interrupt facility. If an instruction to
clear IEN has been inserted in the program, it means that the user does not
want his program to be interrupted. An instruction to set IEN indicates that
the interrupt facility will be used while the current program is running. Most
computers include internal hardware that clears IEN to 0 every time an inter-
rupt is acknowledged by the processor.

At the end of each instruction cycle the CPU checks IEN and the interrupt
signal from IST. If either is equal to 0, control continues with the next instruc-
tion. If both IEN and IST are equal to 1, the CPU goes to an interrupt cycle.
During the interrupt cycle the CPU performs the following sequence of micro-
operations:

SP«SP -1  Decrement stack pointer
M[SP]«PC Push PC into stack
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INTACK <1  Enable interrupt acknowledge
PC «VAD Transfer vector address to PC
IEN <0 Disable further interrupts

Go to fetch next instruction

The CPU pushes the return address from PC into the stack. It then acknowl-
edges the interrupt by enabling the INTACK line. The priority interrupt unit
responds by placing a unique interrupt vector into the CPU data bus. The CPU
transfers the vector address into PC and clears IEN prior to going to the next
fetch phase. The instruction read from memory during the next fetch phase will
be the one located at the vector address.

Software Routines

A priority interrupt system is a combination of hardware and software tech-
niques. So far we have discussed the hardware aspects of a priority interrupt
system. The computer must also have software routines for servicing the
interrupt requests and for controlling the interrupt hardware registers.
Figure 11-15 shows the programs that must reside in memory for handling the

Figure 11-15 Programs stored in memory for servicing interrupts.

Address
Memory 1/0 service programs
0 JMP DISK DISK —> Program to service
magnetic disk
1 JMP PTR
2 JMPRDR PTR — Program to service
fine printer
3 JMP KBD
Main program
RDR — Program to service
character reader
750 —
KBD —> Program to service
keyboard
Stack 256 —>

256
750
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service program

interrupt system. Each device has its own service program that can be reached
through a jump (JMP) instruction stored at the assigned vector address. The
symbolic name of each routine represents the starting address of the service
program. The stack shown in the diagram is used for storing the return address
after each interrupt.

To illustrate with a specific example assume that the keyboard sets its
interrupt bit while the CPU is executing the instruction in location 749 of the
main program. At the end of the instruction cycle, the computer goes to an
interrupt cycle. It stores the return address 750 in the stack and then accepts
the vector address 00000011 from the bus and transfers it to PC. The instruction
inlocation 3 is executed next, resulting in transfer of control to the KBD routine.
Now suppose that the disk sets its interrupt bit when the CPU is executing the
instruction at address 255 in the KBD program. Address 256 is pushed into the
stack and control is transferred to the DISK service program. The last instruc-
tion in each routine is a return from interrupt instruction. When the disk
service program is completed, the return instruction pops the stack and places
256 into PC. This returns control to the KBD routine to continue servicing the
keyboard. At the end of the KBD program, the last instruction pops the stack
and returns control to the main program at address 750. Thus, a higher-priority
device can interrupt a lower-priority device. It is assumed that the time spent
in servicing the high-priority interrupt is short compared to the transfer rate
of the low-priority device so that no loss of information takes place.

Initial and Final Operations

Each interrupt service routine must have an initial and final set of operations
for controlling the registers in the hardware interrupt system. Remember that
the interrupt enable IEN is cleared at the end of an interrupt cycle. This flip-flop
must be set again to enable higher-priority interrupt requests, but not before
lower-priority interrupts are disabled. The initial sequence of each interrupt
service routine must have instructions to control the interrupt hardware in the
following manner:

1. Clear lower-level mask register bits.
2. Clear interrupt status bit IST.

3. Save contents of processor registers.
4. Set interrupt enable bit IEN.

5. Proceed with service routine.

The lower-level mask register bits (including the bit of the source that
interrupted) are cleared to prevent these conditions from enabling the inter-
rupt. Although lower-priority interrupt sources are assigned to higher-num-
bered bits in the mask register, priority can be changed if desired since the
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programmer can use any bit configuration for the mask register. The interrupt
status bit must be cleared so it can be set again when a higher-priority interrupt
occurs. The contents of processor registers are saved because they may be
needed by the program that has been interrupted after control returns to it. The
interrupt enable IEN is then set to allow other (higher-priority) interrupts and
the computer proceeds to service the interrupt request.

The final sequence in each interrupt service routine must have instruc-
tions to control the interrupt hardware in the following manner:

1. Clear interrupt enable bit IEN.
2. Restore contents of processor registers.

3. Clear the bit in the interrupt register belonging to the source that has
been serviced.

4. Set lower-level priority bits in the mask register.
5. Restore return address into PC and set IEN.

The bit in the interrupt register belonging to the source of the interrupt
must be cleared so that it will be available again for the source to interrupt. The
lower-priority bits in the mask register (including the bit of the source being
interrupted) are set so they can enable the interrupt. The return to the inter-
rupted program is accomplished by restoring the return address to PC. Note
that the hardware must be designed so that no interrupts occur while executing
steps 2 through 5; otherwise, the return address may be lost and the informa-
tion in the mask and processor registers may be ambiguous if an interrupt
is acknowledged while executing the operations in these steps. For this reason
IEN is initially cleared and then set after the return address is transferred into
PC.

The initial and final operations listed above are referred to as overhead
operations or housekeeping chores. They are not part of the service program
proper but are essential for processing interrupts. All overhead operations can
be implemented by software. This is done by inserting the proper instructions
at the beginning and at the end of each service routine. Some of the overhead
operations can be done automatically by the hardware. The contents of proces-
sor registers can be pushed into a stack by the hardware before branching to
the service routine. Other initial and final operations can be assigned to the
hardware. In this way, it is possible to reduce the time between receipt of an
interruptand the execution of the instructions that service the interrupt source.

11-6 Direct Memory Access (DMA)

The transfer of data between a fast storage device such as magnetic disk and
memory is often limited by the speed of the CPU. Removing the CPU from the
path and letting the peripheral device manage the memory buses directly
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Figure 11-19 Block diagram of a computer with I/O processor.

The data formats of peripheral devices differ from memory and CPU data
formats. The IOP must structure data words from many different sources. For
example, it may be necessary to take four bytes from an input device and pack
them into one 32-bit word before the transfer to memory. Data are gathered
in the IOP at the device rate and bit capacity while the CPU is executing its own
program. After the input data are assembled into a memory word, they are
transferred from IOP directly into memory by “’stealing” one memory cycle
from the CPU. Similarly, an output word transferred from memory to the IOP
is directed from the IOP to the output device at the device rate and bit capacity.

The communication between the IOP and the devices attached to it is
similar to the program control method of transfer. Communication with the
memory is similar to the direct memory access method. The way by which the
CPU and IOP communicate depends on the level of sophistication included in
the system. In very-large-scale computers, each processor is independent of
all others and any one processor can initiate an operation. In most computer
systems, the CPU is the master while the IOP is a slave processor. The CPU
is assigned the task of initiating all operations, but /O instructions are executed
in the IOP. CPU instructions provide operations to start an /O transfer and also
to test /O status conditions needed for making decisions on various /O
activities. The IOP, in turn, typically asks for CPU attention by means of an
interrupt. It also responds to CPU requests by placing a status word in a
prescribed location in memory to be examined later by a CPU program. When
an /O operation is desired, the CPU informs the IOP where to find the /O
program and then leaves the transfer details to the IOP.

Instructions that are read from memory by an IOP are sometimes called
commands, to distinguish them from instructions that are read by the CPU.
Otherwise, an instruction and a command have similar functions. Commands
are prepared by experienced programmers and are stored in memory. The
command words constitute the program for the IOP. The CPU informs the IOP
where to find the commands in memory when it is time to execute the /O
program.



