قسم الرياضيات

الاحصاء الرياضي1

المرحلة الثالثة

الفصل الدراسي الاول

ا.م.د تسنيم حسن كاظم معا.د صادق ناجي ناصر

Sampling Concepts

Definition: Random sample

The random variables $X_1, X_2, ..., X_n$ are said to constitute a random sample of size n if

1. $X_1, X_2, ..., X_n$ are independent random variables.

2. Every X_i has the same pdf $f(x)$; that is

 $f_1(x_1) = f(x_1), f_2(x_2) = f(x_2) \dots, f_n(x_n) = f(x_n)$, so that the joint pdf:

 $f(x_1, x_2, ..., x_n) = f(x_1)f(x_2) ... f(x_n) = \prod_{i=1}^n f(x_i)$

In other words, if the random variables $X_1, X_2, ..., X_n$ are independent and identically distributed *(iid)*, then these random variables constitute a random sample of size n from a common distribution.

Definition: Statistic

A function of one or more random variables that does not depend upon any Therefore. unknown parameter is called a statistic. a statistic $U(X) = U(X_1, X_2, ..., X_n)$ is a function defined on the space of all possible sample points of the random variable X is also a random variable. Once the sample is drawn, a lowercase letter is used to represent the calculated or the observed value of the statistic

Example:

The sample mean \overline{X} is a statistic The sample variance S^2 is a statistic $X_{(n)} = \max(X_1, X_2, ... X_n)$ is a statistic

 $X_{(1)} = min(X_1, X_2, ... X_n)$ is a statistic

The sample median is a statistic

But the random variable $Y = \frac{X-\mu}{\sigma}$ is not a statistic unless μ and σ are known numbers.

Definition: Sampling Distribution

The sampling distribution of a statistic is the probability distribution for the possible values of the statistic that results when random samples of size n are repeatedly drawn from the population.

Example 1:

Let X_1 , X_2 and X_3 be independent random variables each have the pdf $f(x) = 2x$, $0 < x < 1$, zero elsewhere. The joint pdf $f(x_1, x_2, x_3)$ is $f(x_1)$, $f(x_2)$, $f(x_3)$ = $8x_1x_2x_3$, $0 < x_i < 1$, $i = 1, 2, 3$, zreo elsewhere. Let $Y = \max(X_1, X_2, X_3)$.

The distribution function of Y is

$$
G(y) = P(Y \le y) = P(X_1 \le y, X_2 \le y, X_3 \le y)
$$

=
$$
\int_0^y \int_0^y \int_0^y 8 x_1 x_2 x_3 dx_1 dx_2 dx_3
$$

 $= y^6$ 0 < y < 1

Accordingly, the pdf of $y = max(X_1, X_2, X_3)$ is

$$
g(y) = 6y^5, \quad 0 < y < 1
$$
\n
$$
= 0 \quad \text{elsewhere}
$$

Example 2:

Let *n* be a positive integer and let the random variables X_i , $i = 1, 2, ..., n$, be independent, each having the same pdf $f(x) = p^x (1-p)^{1-x}$, $x = 0.1$ and zero $Y = \sum_{i=1}^{n} X_i$, then Y is $b(n, p)$ with elsewhere. If pdf $g(y) = {n \choose y} p^{y} (1-p)^{n-y}$ $y = 0,1,...,n$

It should be noted that the statistic $Y = \sum_{i=1}^{n} X_i$ does not depend upon the parameter p .

Definition: The Sample Mean and The Sample Variance

Let $X_1, X_2, ..., X_n$ denote a random sample of size *n* from a given distribution. The statistic

 $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$ is called the mean of the random sample (sample mean).

And the statistic

 $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{1}{n-1} [\sum_{i=1}^n X_i^2 - n\bar{X}^2]$

is called the variance of the random sample (sample variance).

Theorem

Let $X_1, X_2, ..., X_n$ be a random sample of size *n* from a population with mean μ and variance σ^2 . Then $E(\bar{X}) = \mu$ and $var(\bar{X}) = \frac{\sigma^2}{n}$.

Proof:

$$
E(\bar{X}) = E\left(\frac{1}{n}\sum_{i=1}^{n}X_i\right) = \frac{1}{n}\sum_{i=1}^{n}E(X_i)
$$

= $\frac{1}{n}\sum_{i=1}^{n}\mu = \frac{1}{n}n \mu = \mu$

and

$$
var(\overline{X}) = var\left(\frac{1}{n}\sum_{i=1}^{n}X_i\right) = \frac{1}{n^2}\sum_{i=1}^{n} var(X_i)
$$

= $\frac{1}{n^2}n \sigma^2 = \frac{\sigma^2}{n}$ because X_i 's, i=1, 2, ..., n are independent

The theorem states that regardless of the form of the population distribution, one can obtain the mean and standard deviation of the statistic \overline{X} in terms of the mean and standard deviation of the population. Notice that the variance of each X_i is σ^2 , where the variance of \bar{X} is $\frac{\sigma^2}{n}$, which is smaller than σ^2 for $n \ge 2$.

Theorem

Let $X_1, X_2, ..., X_n$ be a random sample from a population with mean μ and variance σ^2 . Consider the sample variance

$$
S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}
$$

Show that $E(S^{2}) = \sigma^{2}$

$$
S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2} \right)
$$

$$
E(S^{2}) = \frac{1}{n-1} \left(\sum_{i=1}^{n} E(X_{i}^{2}) - n E(\bar{X}^{2}) \right)
$$

Using the fact that

$$
E(X^{2}) = var(X) + [E(X)]^{2} = \sigma^{2} + \mu^{2}
$$

Also

$$
E(\bar{X}^2) = var(\bar{X}) + [E(\bar{X})]^2 = \frac{\sigma^2}{n} + \mu^2
$$

We have the following

$$
E(S^2) = \frac{1}{n-1} \Big[n \sigma^2 + n \mu^2 - n \Big(\frac{\sigma^2}{n} + \mu^2 \Big) \Big]
$$

=
$$
\frac{1}{n-1} \Big[n \sigma^2 + n \mu^2 - \sigma^2 - n \mu^2 \Big]
$$

=
$$
\frac{1}{n-1} (n-1) \sigma^2 = \sigma^2
$$

This shows that the expected value of the sample variance is the same as the variance of the population under consideration. Hence $S²$ is called an unbiased estimator of σ^2 .

Distributions of Functions of Random Variables

1. The cumulative Distribution Function Technique

Assume that a random variable X has a distribution function $F_X(x)$ and that

 $Y = U(X)$ is a function of X.

Then $F_Y(y) = P(Y \le y) = P(U(X) \le y)$

The pdf of Y is found by differentiating $F_Y(y)$.

Example:

Suppose that
$$
f_X(x) = \begin{cases} 2e^{-2x} & x > 0 \\ 0 & 0. w \end{cases}
$$

\nConsider $Y = e^x$. Find $f_Y(y)$.
\n $A = \{X : x \in R, 0 < x < \infty\}$
\n $B = \{Y : y \in R, 1 < y < \infty\}$
\n $F_Y(y) = P(Y \le y) = P(e^x \le y) = P(X \le \ln y) = F_X(\ln y)$
\n $= \int_0^{\ln y} 2e^{-2x} dx = 1 - e^{-2\ln y} = 1 - e^{\ln y^{-2}}$
\n $= 1 - y^{-2}$

Hence

$$
f_Y(y) = \frac{dF_Y(y)}{dy} = 2y^{-3} \quad 1 < y < \infty
$$

Example:

 $0\leq x\leq 1$ Let X be a random variable with pdf $f_X(x) = \begin{cases} 2x \\ 0 \end{cases}$ $0. W$

and let $U = 3X - 1$. Find the pdf of u.

$$
F_U(u) = P(U \le u) = p(3X - 1 \le u) = p\left(X \le \frac{u+1}{3}\right)
$$

= $\int_0^{\frac{u+1}{3}} f_X(x) dx = \int_0^{\frac{u+1}{3}} 2x dx = \left(\frac{u+1}{3}\right)^2$
 $A = \{X : x \in R, 0 \le x \le 1\}$
 $B = \{U : u \in R, -1 \le u \le 2\}$
 $H_U(u) = \begin{cases} 0 & u < -1 \\ \left(\frac{u+1}{3}\right)^2 & -1 \le u \le 2 \\ 1 & u > 2 \end{cases}$

$$
\therefore f_U(u) = \frac{dF_U(u)}{du} = \begin{cases} \frac{2}{9}(u+1) & -1 \le u \le 2\\ 0 & \text{if } u \le 2 \end{cases}
$$

Example

Let $f(x) = \frac{1}{2}, -1 < x < 1$ and zero elsewhere, be the pdf of a random variable X. Define the random variable $Y = X^2$. Find the pdf of Y. $-1 < x < 1 \Rightarrow 0 < y < 1$

$$
F_Y(y) = p(Y \le y) = p(X^2 \le y) = p(-\sqrt{y} \le X \le \sqrt{y})
$$

$$
= \int_{-\sqrt{y}}^{\sqrt{y}} \frac{1}{2} dx = \frac{1}{2} [x]_{-\sqrt{y}}^{\sqrt{y}} = \sqrt{y}
$$

The Distribution function is

$$
F(y) = \begin{cases} 0 & y \le 0 \\ \sqrt{y} & 0 < y < 1 \\ 1 & 1 \le y \end{cases}
$$

 $y < 1$ The pdf of Y is $f(y) = \frac{dF(y)}{dy} = \begin{cases} \frac{\sqrt{y}}{2\sqrt{y}} & 0 \end{cases}$ $O.W.$

Let us consider the case $Y = g(x) = X^2$, where X is a random variable with distribution function $F_X(x)$ and pdf $f_X(x)$. $g(x)$ $D(V \leq v) = D(V^2 \leq v)$ $E(f_{\alpha})$

$$
F_Y(y) = P(Y \le y) = P(X^2 \le y)
$$

= $p(-\sqrt{y} \le X \le \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} f(x) dx$
= $F_X(\sqrt{y}) - F_X(-\sqrt{y})$

In general

$$
F_Y(y) = \begin{cases} F_X(\sqrt{y}) - F_X(-\sqrt{y}) & y > 0 \\ 0 & o.w. \end{cases}
$$

On differentiating with respect to y ,

$$
f_Y(y) = \begin{cases} f_X(\sqrt{y})\left(\frac{1}{2\sqrt{y}}\right) + f_X(-\sqrt{y})\left(\frac{1}{2\sqrt{y}}\right) & y > 0\\ 0 & 0.w.\end{cases}
$$
 Or

$$
f_Y(y) = \begin{cases} \frac{1}{2\sqrt{y}} \left[f_X(\sqrt{y}) + f_X(-\sqrt{y}) \right] & y > 0 \\ 0 & \text{ o.w.} \end{cases}
$$

Example:

Let X be a random variable $\sim N(0,1)$ and let $Y = g(x) = X^2$. Find the pdf of Y.

$$
f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \text{ and } f_X(\sqrt{y}) = f_X(-\sqrt{y}) = \frac{1}{\sqrt{2\pi}} e^{-y/2}
$$

\n
$$
f_Y(y) = \frac{1}{2\sqrt{y}} \left[\frac{1}{\sqrt{2\pi}} e^{-\frac{y}{2}} + \frac{1}{\sqrt{2\pi}} e^{-\frac{y}{2}} \right] = \frac{1}{2\sqrt{y}} \frac{1}{\sqrt{2\pi}} \left[2 e^{-\frac{y}{2}} \right]
$$

\n
$$
= \frac{y^{\frac{1}{2}-1} e^{-y/2}}{(2)^{\frac{1}{2}} \Gamma(\frac{1}{2})}, y > 0
$$

\nRecall that $\sqrt{\pi} = \Gamma(\frac{1}{2})$

Which is the pdf of the gamma distribution with $\alpha = \frac{1}{2}$ and $\beta = 2$.

Hence, $Y \sim \chi^2_{(1)}$.

Hence, if the random variable $X \sim N(0,1)$, then the random variable $Y = X^2 \sim \chi^2_{(1)}$.

Example:

Let the random variable X has the pdf

$$
f_X(x) = \begin{cases} 2x e^{-x^2} & 0 < x < \infty \\ 0 & 0 & \text{if } 0 < x \end{cases}
$$
\nLet $Y = X^2$. Find the pdf of Y .

\n
$$
f_X(\sqrt{y}) = 2\sqrt{y} e^{-y} \quad \text{and } f_X(-\sqrt{y}) = 0
$$
\n
$$
g_Y(y) = \frac{1}{2\sqrt{y}} 2\sqrt{y} e^{-y} = e^{-y}, \quad 0 < y < \infty
$$
\nWhich is exponential with $3 - 1$.

Which is exponential with $\lambda = 1$.

Exercise:

Suppose that X have a continuous distribution with distribution $F(x)$ and pdf $f(x)$ prove the following:

1-If $Y = F(x)$ then show that $Y \sim U(0,1)$. 2- If $U = -\log(F(x))$, then show that $U \sim exp(1)$ 3- If $V = -2 \log(F(x))$, then show that $V \sim \chi^2_{(2)}$.

The Transformation of Variables Technique

This method is also called the change of variable technique.

1. Discrete case

Let X be a discrete r.v. having pdf $f(x)$. Let A denote the set of discrete points, at each of which $f(x) > 0$, and let $y = u(x)$ define a one-to-one transformation that maps A onto B. Consider the r.v. $Y = u(x)$. If $y \in B$, then $x = w(y) \in A$. Accordingly, the pdf of Y is $g(y) = P(Y = y) = P(u(X) = y) = P(X = w(y))$

$$
= f(w(y)) \quad, y \in B \text{ and } g(y) = 0 \quad .0. W.
$$

Example:

Let X have the passion pdf
$$
f(x) = \begin{cases} \frac{\lambda^x e^{-\lambda}}{x!} & x = 0,1,2,... \\ 0 & x \end{cases}
$$

Define a new r.v. $Y = 4X$. Find the pdf of Y.

$$
A = \{x : x = 0, 1, 2, 3, \dots\}
$$

$$
B = \{y : y = 0, 4, 8, 12, \dots\}
$$

The function $y = 4x$ maps the space A onto space B such that there is one to-one correspondence between the points of A and those of B .

$$
g(y) = P(Y = y) = P(4X = y) = P(X = \frac{y}{4})
$$

$$
= \frac{\lambda^{y/4} e^{-\lambda}}{(y/4)!} \quad y = 0,4,8,...
$$

$$
= 0 \quad o.w.
$$

Example: Let $X \sim b\left(3, \frac{2}{3}\right)$. Find the pdf of $Y = X^2$

We know that If $x > b(n,p)$ then $f(x) = {n \choose x} p^x (1-p)^{n-x}$ $x = 0,1,...,n$ So that

$$
f(x) = \frac{3!}{x!(3-x)!} \left(\frac{2}{3}\right)^x \left(\frac{1}{3}\right)^{3-x} \qquad x = 0,1,2,3
$$

The transformation $y = u(x) = x^2$ maps $A = \{x : x = 0,1,2,3\}$ onto $B = \{y: y = 0, 1, 4, 9\}$. Since $x = w(y) = \sqrt{y}$,

$$
g(y) = P(Y = y) = P(X^2 = y) = P(X = \sqrt{y}) = f(\sqrt{y}) = \frac{3!}{(\sqrt{y})!(3-\sqrt{y})!} \left(\frac{2}{3}\right)^{\sqrt{y}} \left(\frac{1}{3}\right)^{3-\sqrt{y}} \qquad y = 0,1,4,9
$$

In the bivariate case, let $f(x_1, x_2)$ be the joint pdf of two discrete r.v's X_1 and X_2 with A the set of points at which $f(x_1, x_2) > 0$ $A = \{(x_1, x_2): f(x_1, x_2) > 0\}$. Let $y_1 = u_1(x_1, x_2)$ and $y_2 = u_2(x_1, x_2)$ define a one-to-one transformation that maps A onto B . The joint pdf of the two new r.v's $Y_1 = u_1(x_1, x_2)$ and $Y_2 = u_2(x_1, x_2)$ is

$$
g(y_1, y_2) = P(Y_1 = y_1, Y_2 = y_2) = P(Y_1 = u_1(x_1, x_2), Y_2 = u_2(x_1, x_2))
$$

= $P(X_1 = w_1(y_1, y_2), X_2 = w_2(y_1, y_2))$
= $f(w_1(y_1, y_2), w_2(y_1, y_2)) (y_1, y_2) \in B$
= 0 e.w

Where $x_1 = w_1(y_1, y_2)$ and $x_2 = w_2(y_1, y_2)$ are the single valued inverse of $y_1 = u_1(x_1, x_2)$ and $y_2 = u_2(x_1, x_2)$. Form the joint pdf $g(y_1, y_2)$ we may obtain the marginal pdf of Y_1 by summing on y_2 or the marginal pdf of Y_2 by summing on y_1 .

Example:

Let X_1 and X_2 be two independents r.v.'s that have Poisson distributions with means μ_1 and μ_2 , respectively. Find the pdf of $Y_1 = X_1 + X_2$

$$
f(x_1, x_2) = \frac{\mu_1^{x_1} \mu_2^{x_2} e^{-\mu_1 - \mu_2}}{x_1! \ x_2!} \qquad x_1 = 0, 1, 2, ..., x_2 = 0, 1, 2, ...
$$

We need to define a second r.v. $y_2 = X_2$. Then $y_1 = x_1 + x_2$ and $y_2 = x_2$ represent a one-to-one transformation that maps A onto

$$
B = \{ (y_1, y_2) : y_2 = 0, 1, \dots, y_1 \text{ and } y_1 = 0, 1, 2, \dots \}.
$$

Note that if $(y_1, y_2) \in B$, then $0 \le y_2 \le y_1$. The inverse functions are given by $x_1 = y_1 - y_2$ and $x_2 = y_2$.

The joint pdf of Y_1 and Y_2 is

$$
g(y_1, y_2) = \frac{\mu_1 y_1 - y_2 \mu_2 y_2 e^{-\mu_1 - \mu_2}}{(y_1 - y_2) \, y_2!} (y_1, y_2) \in B, y_1 = 0, 1, 2, \cdots, y_1 = 0, 1, 2, \cdots, y_1
$$

The marginal pdf of y_1 is

$$
g_1(y_1) = \sum_{y_2=0}^{y_1} g(y_1, y_2) = \frac{e^{-\mu_1 - \mu_2}}{y_1!} \sum_{y_2=0}^{y_1} \frac{y_1!}{(y_1 - y_2)! y_2!} \mu_1^{y_1 - y_2} \mu_2^{y_2}
$$

$$
= \frac{e^{-\mu_1 - \mu_2}}{y_1!} \sum_{y_2=0}^{y_1} \frac{y_1}{y_2!} \mu_1^{y_1 - y_2} \mu_2^{y_2} = \frac{(\mu_1 + \mu_2)^{y_1} e^{-\mu_1 - \mu_2}}{y_1!}
$$

Recall $(a + b)^n = \sum_{x=0}^n C_x^n a^x b^{n-x}$ $y_1 = 0,1,2,...$

Hance $Y_1 = x_1 + x_2 \sim p(\mu_1 + \mu_2)$.

Example: Let the stochastically independent r.v.'s such that $X_1 \sim b(n_1, p)$ and $X_2 \sim b(n_2, p)$. Find the joint pdf of $Y_1 = X_1 + X_2$ and $Y_2 = X_2$. Find also the pdf of Y_1 .

$$
f(x_1) = C_{x_1}^{n_1} p^{x_1} (1-p)^{n_1 - x_1} x_1 = 0, 1, ..., n_1 \text{ and}
$$

\n
$$
f(x_2) = C_{x_2}^{n_2} p^{x_2} (1-p)^{n_2 - x_2} x_1 = 0, 1, ..., n_2
$$

\n
$$
f(x_1, x_2) = C_{x_1}^{n_1} C_{x_2}^{n_2} p^{x_1 + x_2} (1-p)^{n_1 + n_2 - x_1 - x_2}
$$

\n
$$
y_1 = x_1 + x_2 \qquad y_2 = x_2
$$

\n
$$
x_1 = y_1 - y_2 \qquad x_2 = y_2
$$

\n
$$
f(y_1, y_2) = C_{y_1 - y_2}^{n_1} C_{y_2}^{n_2} p^{y_1} (1-p)^{n_1 + n_2 - y_1} y_1 = 0, 1, ..., n_1 + n_2, y_2 = 0, 1, ..., y_1
$$

$$
f(y_1) = \sum_{y_2=0}^{y_1} C_{y_1-y_2}^{n_1} C_{y_2}^{n_2} p^{y_1} (1-p)^{n_1+n_2-y_1}
$$

= $P^{y_i} (1-P)^{n_1+n_2-y_1} \sum_{y_2=0}^{y_1} C_{y_1-y_2}^{y_1} C_{y_2}^{n_2}$

(Since $\sum_{x=0}^{n} C_x^a C_{n-x}^b = C_{n-x}^b$) then

$$
f(y_1) = C_{y_1}^{n_1+n_2} p^{y_1} (1 - p)^{n_1 - n_2 - y_1} y_1 = 0, 1, ..., n_1 + n_2
$$

Hance $Y_1 \sim b(n_1 + n_2, P)$

2. Continuous case

Let X be a continuous r.v. having pdf $f(x)$. Let A be the space where $f(x) > 0$. Consider the r.v. $Y = u(x)$, where $y = u(x)$ defines a one-toone transformation that maps the set A onto the set B . Let the inverse of $y = u(x)$ be denoted by $x = w(y)$ and let the derivative $\frac{dx}{dy} = w(y)$ be continuous and not equal zero for all points y in B . Then the pdf of the r.v. $Y = u(x)$ is

$$
g(y) = f(w(y)) |w(y)| \qquad y \in B
$$

$$
= f(w(y)) |U|
$$

Where $J = \frac{dx}{dy} = w(y)$ is reffered to as the Jacobian of the transformation.

Example:

Let X be r.v. having pdf $f(x) = 2x$, $0 < x < 1$. Define the r.v.

 $Y = 8X^3$. Find the pdf of Y.

$$
A = \{x: 0 < x < 1\}
$$
\n
$$
B = \{y: 0 < x < 8\}
$$
\n
$$
y = u(x) = 8x^3
$$
\n
$$
x = w(y) = \frac{1}{2} \sqrt[3]{y} \qquad |J| = \left| \frac{dx}{dy} \right| = \frac{1}{6} y^{\frac{-2}{3}}
$$
\n
$$
\therefore g(y) = f(w(y))|J| = 2\frac{1}{2} \sqrt[3]{y} \frac{1}{6(\sqrt[3]{y})^2} = \frac{1}{6\sqrt[3]{y}}
$$

Example:

Let the r.v. $X \sim U(0,1)$ show that r.v. $Y = -2 \ln x$ has a Chi square distribution with 2. d.f.

$$
y = u(x) = -2 \ln x \therefore x = w(y) = e^{-y/2}
$$

\n
$$
J = \frac{dx}{dy} = -\frac{1}{2} e^{-y/2}
$$

\n
$$
\therefore g(y) = f(w(y)) |U| = 1 \cdot \frac{1}{2} e^{-y/2} 0 < y < \infty
$$

\n
$$
\therefore Y \sim \chi^2(2)
$$

Example:

Let
$$
\chi \sim U\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$
. Show that $Y = \tan X$ has a Cauchy distribution.
\n
$$
f(x) = \frac{1}{\pi/2 - (-\pi/2)} = \frac{1}{\pi} \text{ with } -\frac{\pi}{2} < x < \frac{\pi}{2}
$$
\n
$$
y = u(x) = \tan x \text{ then } x = \tan^{-1} y \text{ if } x = -\pi/2 \text{ then } \tan(-\pi/2)
$$
\n
$$
g(y) = f(\tan^{-1} y)|J|
$$
\n
$$
J = \frac{dx}{dy} = \frac{1}{1+y^2}
$$
\n
$$
\therefore g(y) = \frac{1}{\pi(1+y^2)} - \infty < y < \infty
$$

In the bivariate case, let $y_1 = u_1(x_1, x_2)$ and $y_2 = u_2(x_1, x_2)$ define a one-toone transformation that maps a set A in the x_1x_2 -plane onto a set B in the y_1y_2 plane if we express each of x_1 and x_2 in terms of y_1 and y_2 , we can write $x_1 =$ $w_1(y_1, y_2), x_2 = w_2(y_1, y_2).$

The Jacobian of the transformation will be

$$
J = \begin{vmatrix} \frac{dx_1}{dy_1} & \frac{dx_1}{dy_2} \\ \frac{dx_2}{dy_1} & \frac{dx_2}{dy_2} \end{vmatrix}
$$

The joint pdf of $Y_1 = u_1(x_1, x_2)$ and $Y_2 = u_2(x_1, x_2)$ is $g(y_1, y_2) =$ $h[w_1(y_1, y_2), w_2(y_1, y_2)]|J| (y_1, y_2) \in B$

And the marginal pdf $g_1(y_1)$ of Y_1 can be obtained from $g(y_1, y_2)$ by integrating on y_2 , and the marginal pdf $g_2(y_2)$ of Y_2 can be obtained from $g(y_1, y_2)$ by integrating on y_1

Example:

Let χ_1 and χ_2 denote a r.s. from $U(0,1)$. The joint pdf is then $f(x_1, x_2) =$ $f(x_1)f(x_2) = 1$ with $0 < x_1 < 1$

Let $Y_1 = X_1 + X_2$ and $Y_2 = X_1 - X_2$ $0 < x_2 < 1$

Find the joint pdf of Y_1 and Y_2

 $A = \{(x_1, x_2): 0 < x_1 < 1, 0 < x_2 < 1\}$

To determine the set B onto which A is mapped under the transformation, note that $y_1 + y_2 = x_1 + x_2 + X_1 - X_2 = 2 x_1$

$$
y_1 - y_2 = x_1 + x_2 - x_1 + x_2 = 2x_2
$$

$$
x_1 = w_1(y_1, y_2) = \frac{1}{2}(y_1 + y_2)
$$

$$
x_2 = w_2(y_1, y_2) = \frac{1}{2}(y_1 - y_2)
$$

Now to determine the set B , the boundaries of A are transformed as follows:

$$
x_1 = 0 \Rightarrow 0 = \frac{1}{2}(y_1 + y_2) \Rightarrow y_2 = -y_1
$$

\n
$$
x_1 = 1 \Rightarrow 1 = \frac{1}{2}(y_1 + y_2) \Rightarrow y_2 = 2 - y_1
$$

\n
$$
x_2 = 0 \Rightarrow 0 = \frac{1}{2}(y_1 - y_2) \Rightarrow y_2 = y_1
$$

\n
$$
x_2 = 1 \Rightarrow 1 = \frac{1}{2}(y_1 - y_2) \Rightarrow y_2 = y_1 - 2
$$

\n
$$
J = \begin{vmatrix} \frac{dx_1}{dy_1} & \frac{dx_1}{dy_2} \\ \frac{dx_2}{dy_1} & \frac{dx_2}{dy_2} \end{vmatrix} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix} = -\frac{1}{4} - \frac{1}{4} = -\frac{1}{2}
$$

\n
$$
g(y_1, y_2) = f \left[\frac{1}{2}(y_1 + y_2), \frac{1}{2}(y_1 - y_2) \right] \quad |J|
$$

\n
$$
= 1 \cdot \frac{1}{2} = \frac{1}{2} \qquad (y_1 - y_2) \in B
$$

\n
$$
= 0 \qquad e. w.
$$

Where $B = \{(y_1, y_2): 0 < y_1 < 2, -1 < y_2 < 1\}$

Example:

Let χ_1 , χ_2 be a.r.s. of size $n = 2$ from $N(0,1)$. Define $Y_1 = X_1 + X_2$ and $Y_2 = X_1 - X_2$. Find the joint pdf of Y_1 and Y_2 and show that Y_1 and Y_2 are stochastically independent.

$$
f(x_1, x_2) = f(x_1) \cdot f(x_2) = \frac{1}{2\pi} \exp\left[-\frac{1}{2}(x_1^2 + x_2^2)\right] \quad -\infty < x_i < \infty
$$
\n
$$
y_1 = x_1 + x_2 \qquad \qquad i = 1,2
$$
\n
$$
y_2 = x_1 - x_2 \qquad A = \{(x_1, x_2) : -\infty < x_i < \infty, i = 1,2\}
$$
\n
$$
B = \{(y_1, y_2) : -\infty < y_i < \infty, i = 1,2\}
$$
\n
$$
y_1 + y_2 = 2x_1 \implies x_1 = \frac{1}{2}(y_1 + y_2)
$$
\n
$$
y_1 - y_2 = 2x_2 \implies x_2 = \frac{1}{2}(y_1 - y_2)
$$
\n
$$
J = \begin{vmatrix} \frac{dx_1}{dy_1} & \frac{dx_1}{dy_2} \\ \frac{dx_2}{dy_1} & \frac{dx_2}{dy_2} \end{vmatrix} = \frac{1}{2} \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix} = -\frac{1}{4} - \frac{1}{4} = -\frac{1}{2}
$$

The joint pdf of Y_1 and Y_2 is

$$
g(y_1, y_2) = f\left(\frac{1}{2}(y_1 + y_2), \frac{1}{2}(y_1 - y_2)\right)|I|
$$

\n
$$
= \frac{1}{2\pi} \exp\left[-\frac{1}{2}\left(\frac{1}{4}(y_1 + y_2)^2 + \frac{1}{4}(y_1 - y_2)^2\right)\right] \cdot \frac{1}{2}
$$

\n
$$
= \frac{1}{2\pi} \exp\left[-\frac{1}{2}\left(\frac{1}{4}(y_1^2 + 2y_1y_2 + y_2^2) + \frac{1}{4}(y_1 - y_2)^2\right)\right] \cdot \frac{1}{2}
$$

\n
$$
= \frac{1}{2\pi} \exp\left[-\frac{1}{2}\left(\frac{1}{4}(2y_1^2 + 2y_2^2)\right)\right] \cdot \frac{1}{2}
$$

\n
$$
= \frac{1}{2\pi} \exp\left[-\frac{1}{2}\left(\frac{y_1^2 + y_2^2}{2}\right)\right] \cdot \frac{1}{2}
$$

\n
$$
= \frac{1}{4\pi} \exp\left[-\frac{1}{4}(y_1^2 + y_2^2)\right] \qquad -\infty < y_i < \infty \quad i = 1, 2
$$

\n
$$
g(y_1) = \int_{-\infty}^{\infty} g(y_1, y_2) dy_2 = \frac{1}{4\pi} e^{-\frac{1}{4}y^2} \cdot \int_{-\infty}^{\infty} e^{-\frac{1}{4}y^2} dy_2
$$

\n
$$
= \frac{1}{\sqrt{2\pi}\sqrt{2}} e^{-\frac{1}{2}\frac{y_1^2}{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sqrt{2}} e^{-\frac{1}{2}\frac{y_2^2}{2}} dy_2
$$

\n
$$
= \frac{1}{\sqrt{2\pi}\sqrt{2}} e^{-\frac{1}{2}\frac{y_1^2}{2}} \qquad -\infty < y_1 < \infty
$$

That is $Y_1 \sim N(0,2)$ similarly $Y_2 \sim N(0,2)$ and $g(y_1, y_2) = g_1(y_1), g_2(y_2)$ Therefore Y_1 and Y_2 are stochastically independent.

Example: Let χ_1, χ_2 be a random sample of size $n = 2$ from exponential distribution with $\lambda = 1$. Define the random variables $Y_1 = \frac{x_1}{x_1 + x_2}$ and $Y_2 = x_1 + x_2$. Find the joint and marginal pdf's of Y_1 and Y_2 and show that Y_1 and Y_2 are stochastically independent

$$
f(x_1, x_2) = e^{-x_1 - x_2} = e^{-(x_1 + x_2)} \qquad 0 < x_i < \infty \quad i = 1, 2
$$

\n
$$
A = \{(x_1, x_2): 0 < x_i < \infty, i = 1, 2\}
$$

\n
$$
A = \{(y_1, y_2): 0 < y_1 < 1, \qquad 0 < y_2 < \infty\}
$$

\n
$$
y_1 = \frac{x_1}{x_1 + x_2} \implies y_1 = \frac{x_1}{y_2} \implies x_1 = y_1 y_2
$$

\n
$$
y_2 = x_1 + x_2 \implies y_2 = y_1 y_2 + x_2 \implies x_2 = y_2 - y_1 y_2
$$

\n
$$
= y_2 (1 - y_1)
$$

$$
J = \begin{vmatrix} \frac{dx_1}{dy_1} & \frac{dx_1}{dy_2} \\ \frac{dx_2}{dy_1} & \frac{dx_2}{dy_2} \end{vmatrix} = \begin{vmatrix} y_2 & y_1 \\ -y_2 & 1 - y_2 \end{vmatrix} = y_2(1 - y_1) + y_1y_2 = y_2 - y_1y_2 + y_1y_2 = y_2
$$

\n
$$
\therefore g(y_1, y_2) = f(y_1y_2, y_2 - y_1y_2)|J|
$$

\n
$$
= y_2 e^{-y_2} \quad 0 < y_1 < 1, 0 < y_2 < \infty
$$

\n
$$
g_1(y_1) = \int_0^\infty g(y_1, y_2) dy_2 = \int_0^\infty y_2 e^{-y_2} dy_2 = 1 \quad 0 < y_1 < 1
$$

\n
$$
g_2(y_2) = \int_0^1 g(y_1, y_2) dy_1 = \int_0^1 y_2 e^{-y_2} dy_1 = y_2 e^{-y_2} \quad 0 < y_2 < \infty
$$

\nThat is $Y_1 \sim V(0, 1)$ and $Y_2 \sim G(1, 2)$
\n
$$
g_1(y_1) \cdot g_2(y_2) = y_2 e^{-y_2} = g(y_1, y_2)
$$

\n
$$
\therefore Y_1
$$
 and Y_2 are stochastically independent

Example: Let χ_1 and χ_2 have the joint pdf

$$
f_{(\chi_1,\chi_2)}(x_1, x_2) = \lambda^2 e^{-\lambda(x_1 + x_2)} \qquad x_1 > 0, x_2 > 0
$$

= 0 \qquad e.w.

Find the joint pdf of Y_1 and Y_2 if $Y_1 = \chi_1 + \chi_2$ and $Y_2 = \chi_2$

$$
A = \{(x_1, x_2): x_1 > 0, x_2 > 0\}
$$

$$
B = \{(y_1, y_2): 0 > y_2 < y_1, 0 < y_1 < \infty\}
$$

$$
y_{1} = x_{1} + x_{2} \t y_{2} = x_{2} \t y_{1} - y_{2} > 0
$$

\n
$$
x_{1} = y_{1} + y_{2} \t x_{2} = y_{2} \t y_{1} - y_{2} > 0
$$

\n
$$
J = \begin{vmatrix} \frac{dx_{1}}{dy_{1}} & \frac{dx_{1}}{dy_{2}} \\ \frac{dx_{2}}{dy_{1}} & \frac{dx_{2}}{dy_{2}} \end{vmatrix} = \begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix} = 1
$$

\n
$$
\therefore g(y_{1}, y_{2}) = f(y_{1} - y_{2}, y_{2}). |J|
$$

\n
$$
= \lambda^{2} e^{-\lambda(y_{1})}. 1 = \lambda^{2} e^{-\lambda(y_{1})} \t 0 < y_{2} < y_{1} < \infty
$$

The marginal pdf of Y_1 is

$$
g_1(y_1) = \int_{y_2}^{y_1} g(y_1, y_2) dy_2 = \int_0^{y_1} \lambda^2 e^{-\lambda y_1} dy_2
$$

= $\lambda^2 e^{-\lambda y_1} \int_0^{y_1} dy_2 = \lambda^2 e^{-\lambda y_1} y_2 \Big]_{y_1}^{y_1}$
= $\lambda^2 y_1 e^{-\lambda y_1} \qquad y_1 > 0$

Exercise:

Let χ_2 and have in dep gamma with parameters α , θ and β , θ respectively. Consider $Y_1 = \frac{x_1}{x_1 + x_2}$ and $Y_2 = x_1 + x_2$. Find the joint and marginal pdf's of Y_1 and Y_2 and show that they are stochastically in dep.

 \therefore Y₁ and Y₂ are stochastically in dep.

The marginal pdf of Y_1 is

$$
g_1(y_1) = \int_{y_2}^{y_1} g(y_1, y_2) dy_2 = \int_0^{y_1} \lambda^2 e^{-\lambda y_1} dy_2
$$

= $\lambda^2 e^{-\lambda y_1} \int_0^{y_1} dy_2 = \lambda^2 e^{-\lambda y_1} y_2 \Big]_{y_1}^{y_1}$
= $\lambda^2 y_1 e^{-\lambda y_1} \qquad y_1 > 0$

Exercise:

Let χ_2 and have in dep gamma with parameters α , θ and β , θ respectively. Consider $Y_1 = \frac{x_1}{x_1 + x_2}$ and $Y_2 = x_1 + x_2$. Find the joint and marginal pdf's of Y_1 and Y_2 and show that they are stochastically in dep.

 \therefore Y₁ and Y₂ are stochastically in dep.

Gamma Distribution:

$$
X \sim \Gamma(\alpha, \beta) \equiv \mathrm{Gamma}(\alpha, \beta)
$$

The corresponding probability density function in the shape-rate parametrization is

$$
f(x;\alpha,\beta)=\frac{\beta^{\alpha}x^{\alpha-1}e^{-\beta x}}{\Gamma(\alpha)}\quad \text{ for } x>0\quad \alpha,\beta>0,
$$

where $\Gamma(\alpha)$ is the gamma function. For all positive integers, $\Gamma(\alpha) = (\alpha - 1)!$.

The Beta Distribution

Let X_1 and X_2 be two independent random variables that have gamma distributions with parameters $(\alpha, 1)$ and $(\beta, 1)$ respectively. The joint pdf is

$$
h(x_1, x_2) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} x_1^{\alpha - 1} x_2^{\beta - 1} e^{-x_1 - x_2} \quad 0 < x_i < \infty, i = 1, 2 \quad \alpha > 0,
$$
\n
$$
B > 0.
$$

Let $Y_1 = X_1 + X_2$ and $Y_2 = \frac{X_1}{X_1 + X_2}$. Show that $Y_2 \sim Beta(\alpha, \beta)$.

$$
A = \{(x_1, x_2): 0 < x_i < \infty, i = 1, 2\}
$$
\n
$$
B = \{(y_1, y_2): 0 < y_1 < \infty, 0 < y_2 < 1\}
$$
\n
$$
y_1 = u_1(x_1, x_2) = x_1 + x_2
$$
\n
$$
y_2 = u_2(x_1, x_2) = \frac{x_1}{x_1 + x_2}
$$

Hence,

$$
x_1 = y_1 y_2 \text{ and } x_2 = y_1 - y_1 y_2 = y_1 (1 - y_2)
$$
\n
$$
J = \begin{vmatrix} \frac{dx_1}{dy_1} & \frac{dx_1}{dy_2} \\ \frac{dx_2}{dy_1} & \frac{dx_2}{dy_2} \end{vmatrix} = \begin{vmatrix} y_2 & y_1 \\ 1 - y_2 & -y_1 \end{vmatrix} = -y_1 y_2 - y_1 + y_1 y_2 = -y_1
$$
\n
$$
g(y_1, y_2) = y_1 \frac{1}{\Gamma(\alpha) \Gamma(\beta)} (y_1 y_2)^{\alpha - 1} [y_1 (1 - y_2)]^{\beta - 1} e^{-y_1}
$$
\n
$$
= \frac{y_2^{\alpha - 1} (1 - y_2)^{\beta - 1}}{\Gamma(\alpha) \Gamma(\beta)} y_1^{\alpha + \beta - 1} e^{-y_1} \qquad 0 < y_1 < \infty, 0 < y_2 < 1
$$
\n
$$
g_2(y_2) = \frac{y_2^{\alpha - 1} (1 - y_2)^{\beta - 1}}{\Gamma(\alpha) \Gamma(\beta)} \int_0^\infty y_1^{\alpha + \beta - 1} e^{-y_1} dy_1
$$
\n
$$
= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} y_2^{\alpha - 1} (1 - y_2)^{\beta - 1} \qquad 0 < y_2 < 1
$$

This pdf is that of a beta distribution with parameters α and β .

Since
$$
g(y_1, y_2) = g_1(y_1) \cdot g_2(y_2)
$$
, the pdf of Y_1 is
\n
$$
g_1(y_1) = \frac{1}{\Gamma(\alpha + \beta)} y_1^{\alpha + \beta - 1} e^{-y_1} \quad 0 < y_1 < \infty
$$

Which is that of a gamma distribution with parameter values of $\alpha + B$ and 1. Assignment: Find the mean and the variance of the beta distribution.

Definition;

Student's *t*-distribution has the probability density function given by

$$
f(t)=\frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\,\Gamma(\frac{\nu}{2})}\bigg(1+\frac{t^2}{\nu}\bigg)^{-\frac{\nu+1}{2}},
$$

where ν is the number of *degrees of freedom* and Γ is the gamma function.

Theorem

Let W denote a random variable that is $N(0,1)$; let V denote a random variable that is $\chi^2_{(n)}$; and let W and V be independent.

Then $T = \frac{W}{\sqrt{V/n}}$ has a t distribution with n degrees of freedom. Its pdf is $g_1(t) = \frac{\Gamma[(n+1)/2]}{\sqrt{\pi n} \Gamma(n/2) (1+t^2/n)^{(n+1)/2}}$ $-\infty < t < \infty$

Proof:

The joint pdf of W and V is

$$
h(w,v) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}w^2} \frac{1}{\Gamma(n/2)2^{n/2}} v^{\frac{n}{2}-1} e^{-\frac{v}{2}} - \infty < w < \infty, 0 < v < \infty
$$

Define a new random variable $T = \frac{W}{\sqrt{V/n}}$

Let $t = \frac{w}{\sqrt{V/n}}$ and $u = v$ define a one-to-one transformation that maps $A = \{(w, v): -\infty < w < \infty, 0 < v < \infty\}$ onto

$$
B = \{(t, u): -\infty < t < \infty, 0 < u < \infty\}.
$$

Since $w = t\sqrt{u/n}$ and $v = u$

$$
J = \begin{vmatrix} \frac{dw}{dt} & \frac{dw}{du} \\ \frac{dv}{dt} & \frac{dv}{du} \end{vmatrix} = \begin{vmatrix} \sqrt{\frac{u}{n}} & \frac{t}{\sqrt{n}} & \frac{1}{2\sqrt{u}} \\ 0 & 1 \end{vmatrix} = \frac{\sqrt{u}}{\sqrt{n}}
$$

Accordingly, the joint pdf of T and U is

$$
g(t, u) = h\left(\frac{t\sqrt{u}}{\sqrt{n}}, u\right). |J|
$$

$$
= \frac{1}{\sqrt{2\pi}\Gamma(\frac{n}{2})2^{n/2}} u^{\frac{n}{2}-1} \exp\left[-\frac{1}{2}\left(\frac{t^2u}{n}+u\right)\right] \frac{\sqrt{u}}{\sqrt{n}}
$$

$$
= \frac{1}{\sqrt{2\pi n}\Gamma(\frac{n}{2})2^{n/2}} u^{\frac{n}{2}+\frac{1}{2}-1} \exp\left[-\frac{u}{2}\left(1+\frac{t^2}{n}\right)\right] -\infty < t < \infty, 0 < u < \infty
$$

The marginal pdf of T is

$$
g_1(t) = \int_0^\infty g(t, u) du
$$

\n
$$
= \int_0^\infty \frac{1}{\sqrt{2\pi n} \Gamma(\frac{n}{2})^{2n/2}} u^{\frac{(n+1)}{2} - 1} \exp\left[-\frac{u}{2} \left(1 + \frac{t^2}{n}\right)\right] du
$$

\nLet $z = \frac{u}{2} \left[1 + \frac{t^2}{n}\right]$ then $u = \frac{2z}{1 + \frac{t^2}{n}}$ and $du = \frac{2}{1 + \frac{t^2}{n}} dz$
\n
$$
g_1(t) = \int_0^\infty \frac{1}{\sqrt{2\pi n} \Gamma(\frac{n}{2})^{2n/2}} \left(\frac{2z}{1 + \frac{t^2}{n}}\right)^{\frac{(n+1)}{2}} e^{-z} \left(\frac{2}{1 + \frac{t^2}{n}}\right) dz
$$

\n
$$
= \frac{1}{\sqrt{\pi n} \Gamma(\frac{n}{2})^{2(n+1)/2}} 2^{(n+1)/2} \frac{1}{\left(1 + \frac{t^2}{n}\right)^{\frac{n+1}{2}}} \int_0^\infty z^{\frac{(n+1)}{2} - 1} e^{-z} dz
$$

\n
$$
= \frac{\Gamma(\frac{n+1}{2})}{\sqrt{\pi n} \Gamma(\frac{n}{2}) \left(1 + \frac{t^2}{n}\right)^{\frac{n+1}{2}}} - \infty < t < \infty
$$

Thus, if $W \sim N(0,1)$, $V \sim \chi^2_{(n)}$, and if W and V are independent. Then

$$
T = \frac{W}{\sqrt{V/n}} \sim t_{(n)}
$$

It is, in general, difficult to evaluate the distribution function of T . Some approximate values of $p(T \le t) = \int_{-\infty}^{t} g_1(w)dw$ are found for selected values of *n* and *t* in special tables. The *t* distribution is symmetric about $t = 0$. That is $E(T) = 0$ where $n \ge 2$. When $n = 1$ the $t - distribution$ reduced to the Cauchy distribution.

Example

Let $X \sim t_{(7)}$, then

 $P(X \le 1.415) = 0.90$

And $P(X \le -1.415) = 1 - P(X \le 1.415) = 0.10$

Theorem

Let $T \sim t_{(n)}$. Then $E(T) = 0$, $n \ge 2$ and $Var(T) = \frac{n}{n-2}$, $n \ge 3$

Proof

Using the definition of T and the independence of W and V

$$
E(T) = E\left[\frac{W}{\sqrt{\frac{V}{n}}}\right] = E(W)E\left(\frac{\sqrt{n}}{\sqrt{V}}\right) = 0
$$

Since W $\sim N(0, 1)$, $E(W) = 0$, $Var(W) = 1$

since
$$
W \sim N(0,1)
$$
, $E(W) = 0$, $Var(W) = 1$
\n $Var(T) = E(T^2) - [E(T)]^2$
\n $E(T^2) = E\left(\frac{W}{\sqrt{V/n}}\right)^2 = n E(W^2) E\left(\frac{1}{V}\right)$
\n $E(w^2) = 1$
\n $E(V^{-1}) = \int_0^\infty \frac{1}{\Gamma(\frac{n}{2}) 2^{n/2}} V^{-1} V^{\frac{n}{2} - 1} e^{-\frac{V}{2}} dv$
\n $= \frac{1}{\Gamma(\frac{n}{2}) 2^{n/2}} \int_0^\infty V(\frac{n}{2} - 1) - 1 e^{-\frac{V}{2}} dv$
\nLet $y = \frac{v}{2}$, then $v = 2y$ and $dv = 2dy$
\n $E(V^{-1}) = \frac{1}{\Gamma(\frac{n}{2}) 2^{n/2}} \int_0^\infty (2y)^{(\frac{n}{2} - 1)} - 1 e^{-y} 2 dy = \frac{1}{\Gamma(\frac{n}{2}) 2^{n/2}} 2^{\frac{n}{2} - 1} \Gamma(\frac{n}{2} - 1)$
\n $E(V^{-1}) = \frac{2^{-1}}{\Gamma(\frac{n}{2})} \Gamma(\frac{n}{2} - 1) = \frac{2^{-1} \Gamma(\frac{n}{2} - 1)}{(\frac{n}{2} - 1) \Gamma(\frac{n}{2} - 1)}$
\nRecall that $\Gamma(\alpha) = (\alpha - 1) \Gamma(\alpha - 1)$

$$
= \frac{1}{2^{\frac{n-2}{2}}} = \frac{1}{n-2}
$$

\n
$$
E(T^2) = n E(W^2) E(\frac{1}{V})
$$

\n
$$
\therefore E(T^2) = n \cdot 1 \cdot \frac{1}{n-2} = \frac{n}{n-2} = Var(T) \qquad n \ge 3
$$

The F- distribution

Theorem:

If U and V are independent chi-square random variables with n and m degrees of freedom respectively, then

 $F = \frac{U/n}{V/m}$ has an F- distribution with *n* and *m* d.f.

Proof:

The joint pdf of U and V is

$$
h(u,v) = \frac{1}{\Gamma(\frac{n}{2})\Gamma(\frac{m}{2})2^{(n+m)/2}} u^{\frac{n}{2}-1} v^{\frac{m}{2}-1} e^{-\frac{u+v}{2}} \qquad 0 < u < \infty, 0 < v < \infty
$$

Define the new random variable $W = \frac{U/n}{V/m}$

The equations $w = \frac{u/n}{v/m}$ and $z = v$ define a one-to-one transformation that maps the set $A = \{(u, v): 0 < u < \infty, 0 < V < \infty\}$ onto the set $B = \{(w, z): 0 < w < \infty, 0 < z < \infty\}.$ Since $\frac{u}{n} = w \frac{v}{m}$ then $u = \frac{n}{m}wz$ and $v = z$. The Jacobian is $J = \begin{vmatrix} \frac{du}{dw} & \frac{du}{dz} \\ \frac{dv}{dw} & \frac{dv}{w} \end{vmatrix} = \begin{vmatrix} \frac{n}{m}z & \frac{n}{m}w \\ 0 & 1 \end{vmatrix} = \frac{n}{m}z$

The joint pdf of the random variables W and Z is

$$
g(w,z) = \frac{1}{\Gamma(\frac{n}{2})\Gamma(\frac{m}{2})2^{(n+m)/2}} \left(\frac{n}{m}wz\right)^{\frac{n}{2}-1} z^{\frac{m}{2}-1} e^{-\frac{z}{2}(\frac{n}{m}w+1)} \frac{n}{m} z
$$

The marginal pdf of W is $g_1(w) = \int_0^\infty g(w, z) dz$

$$
= \int_0^\infty \frac{\left(\frac{n}{m}\right)^{n/2} w^{\frac{n}{2}-1}}{\Gamma(\frac{n}{2}) \Gamma(\frac{m}{2}) 2^{(n+m)/2}} z^{\frac{n+m}{2}-1} e^{-\frac{z}{2} (\frac{n}{m} w + 1)} dz
$$

\nLet $y = \frac{z}{2} (\frac{n}{m} w + 1)$ then $z = \frac{2y}{\frac{n}{m} w + 1}$
\n $\therefore dz = \frac{z}{(\frac{n}{m} w + 1)} dy$
\n $g_1(w) = \int_0^\infty \frac{\left(\frac{n}{m}\right)^{\frac{n}{2}} w^{\frac{n}{2}-1}}{\Gamma(\frac{n}{2}) \Gamma(\frac{m}{2}) 2^{\frac{(n+m)}{2}}} \left(\frac{2y}{m} \right)^{\frac{(n+m)}{2}-1} e^{-y} \left(\frac{2}{m} \right) dy$
\n $= \frac{\left(\frac{n}{m}\right)^{\frac{n}{2}} w^{\frac{n}{2}-1}}{\Gamma(\frac{n}{2}) \Gamma(\frac{m}{2}) (\frac{n}{m} w + 1)^{\frac{(n+m)}{2}}} \int_0^\infty y^{\frac{(n+m)}{2}-1} e^{-y} dy$
\n $= \frac{\Gamma(\frac{n+m}{2}) (\frac{n}{m})^{\frac{n}{2}} w^{\frac{n}{2}-1}}{\Gamma(\frac{n}{2}) \Gamma(\frac{m}{2}) (\frac{n+m}{m})^{\frac{(n+m)}{2}}} \qquad 0 < w < \infty$

This pdf is usually called an F-distribution and the ratio $F = \frac{U/n}{V/m}$ has an Fdistribution with *n* and *m* d.f. Approximate values of $P(F \le b) = \int_0^b g_1(w)dw$ are available for selected values of n, m and b .

Example:

When $n = 7$, $m = 8$, $P(F \le 3.50) = 0.95$

When $n = 9, m = 4, P(F \le 14.7) = 0.99$

Remark:

Since $F = \frac{U/n}{V/m} \sim F(n, m)$, then $\frac{1}{F} = \frac{V/m}{U/n} \sim F(m, n)$

For example, if $F \sim F(4,9)$ such that $P(F(4,9) \le c) = 0.01$

Then
$$
P\left(\frac{1}{F(4,9)} \ge \frac{1}{c}\right) = 0.01
$$
 or $P\left(\frac{1}{F(4,9)} \le \frac{1}{c}\right) = 0.99$
Which is equivalent to $P\left(F(9,4) \le \frac{1}{c}\right) = 0.99$

From *F* tables $\frac{1}{c} = 14.7$ \therefore $c = \frac{1}{14.7} = 0.0682$

Theorem

If
$$
X \sim F(n, m)
$$
, then $E(X^r) = \left(\frac{m}{n}\right)^r \frac{\Gamma(\frac{n}{2} + r)\Gamma(\frac{m}{2} - r)}{\Gamma(\frac{n}{2})\Gamma(\frac{m}{2})}$ $m > 2r$

Proof

Since
$$
X \sim F(n, m)
$$
, then $X = \frac{U/n}{V/m}$ where $U \sim \chi^2(n)$ and $V \sim \chi^2(m)$
\n
$$
E(X^r) = E\left(\frac{U/n}{V/m}\right)^r = \left(\frac{m}{n}\right)^r E(U^r) E(V)^{-r}
$$
\n
$$
E(U^r) = \int_0^\infty u^r f(u) du = \int_0^\infty u^r \frac{1}{\Gamma(\frac{n}{2}) 2^{\frac{n}{2}}} u^{\frac{n}{2}-1} e^{-\frac{u}{2}} du
$$
\n
$$
= \frac{1}{\Gamma(\frac{n}{2}) 2^{\frac{n}{2}}} \int_0^\infty u^{\frac{n}{2}+r-1} e^{-\frac{u}{2}} du
$$
\nLet $y = \frac{u}{2}$ then $u = 2y$ and $du \Rightarrow du = 2dy$
\n
$$
E(U^r) = \frac{1}{\Gamma(\frac{n}{2}) 2^{\frac{n}{2}}} \int_0^\infty (2y)^{\frac{n}{2}+r-1} e^{-y} 2dy
$$
\n
$$
= \frac{2^r}{\Gamma(\frac{n}{2})} \int_0^\infty y^{\frac{n}{2}+r-1} e^{-y} dy = \frac{2^r}{\Gamma(\frac{n}{2})} \Gamma(\frac{n}{2} + r)
$$
\n
$$
E(V^{-r}) = \int_0^\infty v^{-r} f(v) dv
$$
\n
$$
= \int_0^\infty \frac{1}{\Gamma(\frac{m}{2}) 2^{\frac{m}{2}}} v^{-r} v^{\frac{m}{2} - 1} e^{-\frac{v}{2}} dv
$$
\n
$$
= \frac{1}{\Gamma(\frac{m}{2}) 2^{\frac{m}{2}}} \int_0^\infty v^{\frac{m}{2} - r - 1} e^{-\frac{v}{2}} dv
$$

Let $y = \frac{v}{2}$ then $v = 2y$ and $dv = 2dy$ $E(V^{-r}) = \frac{1}{\Gamma(\frac{m}{2})2^{(\frac{m}{2})}} \int_0^\infty (2y)^{\frac{m}{2} - r - 1} e^{-y} 2dy$

$$
= \frac{2^{-r}}{\Gamma(\frac{m}{2})} \Gamma(\frac{m}{2} - r)
$$

: $E(X^r) = \left(\frac{m}{n}\right)^r \frac{2^r}{\Gamma(\frac{n}{2})} \Gamma(\frac{n}{2} + r) \frac{2^{-r}}{\Gamma(\frac{m}{2})} \Gamma(\frac{m}{2} - r)$

$$
= \left(\frac{m}{n}\right)^r \frac{\Gamma(\frac{n}{2} + r)\Gamma(\frac{m}{2} - r)}{\Gamma(\frac{n}{2}) \Gamma(\frac{m}{2})}
$$

Now

$$
E(X) = \frac{m}{n} \frac{\Gamma(\frac{n}{2}+1) \Gamma(\frac{m}{2}-1)}{\Gamma(\frac{n}{2}) \Gamma(\frac{m}{2})} = \frac{m}{n} \frac{\frac{n}{2} \Gamma(\frac{n}{2}) \Gamma(\frac{m}{2}-1)}{\Gamma(\frac{n}{2}) (\frac{m}{2}-1) \Gamma(\frac{m}{2}-1)}
$$

\n
$$
= \frac{m}{n} \frac{\frac{n}{2}}{\frac{m-2}{2}} = \frac{m}{m-2} \qquad m > 2
$$

\n
$$
E(X^{2}) = \left(\frac{m}{n}\right)^{2} \frac{\Gamma(\frac{n}{2}+2) \Gamma(\frac{m}{2}-2)}{\Gamma(\frac{n}{2}) \Gamma(\frac{m}{2})}
$$

\n
$$
= \frac{m^{2}}{n^{2}} \frac{\left(\frac{n}{2}+1\right) \Gamma(\frac{n}{2}+1) \Gamma(\frac{m}{2}-2)}{\Gamma(\frac{n}{2}) (\frac{m}{2}-1) \Gamma(\frac{m}{2}-1)}
$$

\n
$$
= \frac{m^{2}}{n^{2}} \frac{\left(\frac{n}{2}+1\right) \left(\frac{n}{2}\right) \Gamma(\frac{n}{2}) \Gamma(\frac{n}{2}-2)}{\Gamma(\frac{n}{2}) (\frac{m}{2}-2) \Gamma(\frac{m}{2}-2)} = \frac{m^{2}}{n} \frac{\frac{1}{2} \left(\frac{n+2}{2}\right)}{\left(\frac{m-2}{2}\right) \left(\frac{m-4}{2}\right)}
$$

\n
$$
= \frac{m^{2}(n+2)}{n(m-2)(m-4)}
$$

\n
$$
\therefore Var(X) = E(X^{2}) - [E(X)]^{2} = \frac{m^{2}(n+2)}{n(m-2)(m-4)} - \frac{m^{2}}{(m-2)^{2}}
$$

\n
$$
= \frac{m^{2}(n+2)(m-2)-m^{2}n(m-4)}{n(m-2)^{2}(m-4)}
$$

\n
$$
= \frac{m^{2}[n+2)(m-2)-m(m-4)]}{n(m-2)^{2}(m-4)} = \frac{m^{2}(nm+2m-2n-4-nm+4n)}{n(m-2)^{2}(m-4)}
$$

\n
$$
= \frac{m^{2}(2m+2n-4)}{n(m-2)^{2}(m-4)} = \frac
$$

Order statistics

Let the random variables $X_1, X_2, ..., X_n$ form a random sample of size n from a distribution for which the pdf is $f(x)$ and the distribution function is $F(x)$.

We denote the ordered random variables $Y_1 < Y_2 < \cdots < Y_n$ the order statistics of that sample. That is:

 Y_1 is the smallest of $X_1, X_2, ..., X_n$ Y_2 is the second smallest of $X_1, X_2, ..., X_n$ \vdots

 Y_n is the largest of $X_1, X_2, ..., X_n$

The sample range R is the distance between the smallest and the largest observation $R = Y_n - Y_1$ is an important statistic which is defined using order statistics.

The joint p.d.f of $Y_1, Y_2, ..., Y_n$ is

$$
g(y_1, y_2, ..., y_n) = \begin{cases} n! f(y_1) f(y_2) \cdots f(y_n) & -\infty < y_1 \le y_2 \le \cdots \le y_n \le \infty \\ 0 & o.w \end{cases}
$$

The multiplier n! arises because $y_1, ..., y_n$ can be arranged among themselves in n! ways and the p.d.f for any such single arrangement amounts to $\prod_{i=1}^n f(y_i)$.

Definition

The largest value Y_n in the random sample is defined as follows

 $Y_n = \max\{X_1, X_2, ..., X_n\}$

For every given value of $y(-\infty < y < \infty)$

$$
G_n(y) = P(Y_n \le y) = P(X_1 \le y, ..., X_n \le y)
$$

= $P(X_1 \le y)P(X_2 \le y) ... P(X_n \le y)$
= $[F(y)]^n$

The p.d.f of Y_n is

 $g_n(y_n) = n[F(y_n)]^{n-1} f(y_n) \quad -\infty < y_n < \infty$

The smallest value Y_1 in the random sample is defined as follows

$$
Y_1 = \min[X_1, X_2, ..., X_n]
$$

For every given value of $y(-\infty < y < \infty)$

$$
G_1(y) = P(Y_1 \le y) = 1 - P(Y_1 > y)
$$

= 1 - P(X₁ > y, X₂ > y, ..., X_n > y)
= 1 - [1 - F(y)]ⁿ

The p.d.f of Y_1 is

$$
g_1(y_1) = n[1 - F(y_1)]^{n-1} f(y_1) - \infty < y_1 < \infty
$$

Definition

Let $Y_1 < Y_2 < \cdots < Y_n$ be the order statistics of a random sample of size n from a distribution of a continuous type with distribution function $F(x)$ and p.d.f $f(x) =$ $F'(x)$. If Y_r denote the rth order statistic, then the pdf of Y_r is

$$
g_r(y_r) = \frac{n!}{(r-1)!(n-r)!} [F(y_r)]^{r-1} [1 - F(y_r)]^{n-r} f(y_r)
$$

Theorem:

For a random sample of size n the distribution function of the rth order statistic is

$$
G_r(y_r) = \sum_{j=r}^{n} {n \choose j} [F(y_r)]^j [1 - F(y_r)]^{n-j}
$$

Example:

Let $Y_1 < Y_2 < Y_3 < Y_4 < Y_5$ be the order statistics of a random sample X_1, X_2, X_3, X_4, X_5 of size $n = 5$ from a distribution with pdf $f(x) = 2x, 0 < x < 1$, then $F_X(x) = \int_0^x f(t)dt = 2\frac{t^2}{2}x = x^2, 0 < x < 1.$

That is $F_X(y) = P(X \le y) = y^2$. Find:

1.
$$
g_1(y_1) = n[1 - F(y_1)]^{n-1}f(y_1) = 5[1 - y_1^2]^4 2y_1 = 10y_1[1 - y_1^2]^4
$$

\n $G_1(y_1) = 1 - [1 - F(y_1)]^n = 1 - [1 - y_1^2]^5$ 0 < y_1 < 1
\n2. $g_5(y_5) = 5[F(y_5)]^{5-1}f(y_5) = 5[y_5^2]^4 2y_5 = 10y_5^9$ 0 < y_5 < 1
\n $G_5(y_5) = [F(y_5)]^5 = [y_5^2]^5 = y_5^{10}$
\n3. $g_r(y_r) = \frac{n!}{(r-1)!(n-r)!} [F(y_r)]^{r-1}[1 - F(y_r)]^{n-r}f(y_r)$
\n $g_4(y_4) = \frac{5!}{3!1!} [y_4^2]^3[1 - y_4^2](2y_4) = 40y_4^7(1 - y_4^2)$, 0 < y_4 < 1
\n $G_4(y_4) = \sum_{j=4}^{5} {5 \choose j} [F(y_4)]^j [1 - F(y_4)]^{5-j}$

$$
= {5 \choose 4} [y_4^2]^4 [1 - y_4^2]^1 + {5 \choose 5} [y_4^2]^5 = 5y_4^8 (1 - y_4^2) + y_4^{10}
$$

4. $P(Y_4 \le \frac{1}{2}) = 5 \left(\frac{1}{2}\right)^8 \left(\frac{3}{4}\right) + \left(\frac{1}{2}\right)^{10} = \frac{15}{4} \frac{1}{256} + \frac{1}{1024} = \frac{16}{1024} = \frac{1}{64}$

Example:

Let X_1 and X_2 be a random sample from a distribution with pdf

$$
f(x) = e^{-x}, 0 \le x < \infty. \text{ What is the density of } Y_1 = \min(X_1, X_2).
$$

$$
F(x) = \int_0^x e^{-t} dt = 1 - e^{-x}
$$

$$
g_1(y) = n[1 - F(y)]^{n-1} f(y)
$$

$$
= 2[1 - 1 + e^{-y_1}]e^{-y_1} = 2e^{-2y_1} \quad 0 < y_1 < y_2
$$

Finally, the joint pdf of any two order statistics say $Y_i < Y_j$ is

$$
g_{ij}(y_i, y_j) = \frac{n!}{(i-1)!(j-i-1)!(n-j)!} [F(y_i)]^{i-1} [F(y_j) - F(y_i)]^{j-i-1} [1 - F(y_j)]^{n-j} f(y_i) f(y_j)
$$

The joint pdf of (Y_1, Y_n) would be given by

$$
g_{1n}(y_1, y_n) = \frac{n!}{(n-2)!} [F(y_n) - F(y_1)]^{n-2} f(y_1) f(y_n) \quad -\infty < y_1 < y_n < \infty
$$
\nExample

Let $Y_1 < Y_2 < Y_3$ be the order statistics of a random sample of size n=3 from a $U(0,1)$. Find the pdf of $Z_1 = Y_3 - Y_1$; the sample range.

Since $X \sim U(0,1)$: $F(x) = x$, $0 < x < 1$

The joint pdf of Y_1 and Y_3 is

$$
g_{13}(y_1, y_3) = \frac{3!}{1!} [F(y_3) - F(y_1)]^{3-2} f(y_1). f(y_3)
$$

= 6[y₃ - y₁]

$$
0 < y_1 < y_3 < 1
$$

In addition to $Z_1 = Y_3 - Y_1$, let $Z_2 = Y_3$.

The inverse function of $z_1 = y_3 - y_1$ and $z_2 = y_3$ are

$$
y_1 = z_2 - z_1
$$
 and $y_3 = z_2$

The corresponding Jacobian of the one-to-one transformation is

$$
J = \begin{vmatrix} \frac{\partial y_1}{\partial z_1} & \frac{\partial y_1}{\partial z_2} \\ \frac{\partial y_3}{\partial z_1} & \frac{\partial y_3}{\partial z_2} \end{vmatrix} = \begin{vmatrix} -1 & 1 \\ 0 & 1 \end{vmatrix} = -1
$$

Thus, the joint p.d.f of Z_1 and Z_2 is $h(z_1, z_2) = 6z_1 \mid -1 \mid = 6z_1 \quad 0 < z_1 < z_2 < 1$ Accordingly, the pdf of the range $Z_1 = Y_3 - Y_1$ is

$$
h_1(z_1) = \int_{z_1}^1 6z_1 dz_2 = 6z_1 [z_2]_{z_1}^1 = 6z_1 [1 - z_1], \ \ 0 < z_1 < 1
$$

Definition

The sample median is defined to be the middle order statistic if n is odd and the average of the middle two order statistics if n is even. That is

$$
m = \begin{cases} \frac{Y_{\left(\frac{n+1}{2}\right)}}{Y_{\left(\frac{n}{2}\right)} + Y_{\left(\frac{n}{2}\right)+1}} & \text{when } n \text{ is odd} \\ \frac{Y_{\left(\frac{n}{2}\right)} + Y_{\left(\frac{n}{2}\right)+1}}{2} & \text{when } n \text{ is even} \end{cases}
$$

Example:

Let $Y_1 < Y_2 < Y_3$ be order statistics having pdf $f(x) = e^{-x}$, $0 < x < \infty$. Find 1. The joint pdf of $Y_1 < Y_2 < Y_3$

$$
g(y_1, y_2, y_3) = 3! f(y_1). f(y_2). f(y_3) = 6 e^{-y_1} e^{-y_2} e^{-y_3}
$$

$$
= 6 e^{-(y_1 + y_2 + y_3)}
$$

2. The marginal p.d.f's of Y_1 and Y_3

$$
g_1(y_1) = n[1 - F(y_1)]^{n-1} f(y_1) = 3[1 - (1 - e^{-y_1})]^{2} e^{-y_1}
$$

= 3e^{-3y₁} y₁ > 0

$$
g_3(y_3) = n[F(y_n)]^{n-1} f(y_n) = 3[1 - e^{-y_3}]^{2} e^{-y_3}
$$

$$
=3e^{-y_3}[1-2e^{-y_3}+e^{-2y_3}] \qquad y_3>0
$$

3. The joint p.d.f of Y_1 and Y_3

$$
g(y_1, y_3) = \frac{3!}{1!} [F(y_3) - F(y_1)] f(y_1). f(y_3)
$$

= 6[1 - e^{-y₃} - 1 + e^{-y₁}]e^{-y₁} e^{-y₃} = 6e^{- (y₁+y₃)}[e^{-y₁} - e^{-y₃}] 0 < y₁ < y₃ < \infty
4. The p.d.f of the median and the value of the median.

$$
Y_{\frac{n+1}{2}} = Y_2 = m
$$

\n
$$
g_2(y_2) = \frac{3!}{1!1!} [F(y_2)][1 - F(y_2)]f(y_2) = 6[1 - e^{-y_2}][1 - 1 + e^{-y_2}]e^{-y_2}
$$

\n
$$
= 6e^{-2y_2}(1 - e^{-y_2}) \qquad \qquad 0 < y_2 < \infty
$$

 $F(m) = F(Y_2) = \frac{1}{2}$ $1 - e^{-y_2} = \frac{1}{2} \implies e^{-y_2} = \frac{1}{2} \implies -y_2 = \ln \frac{1}{2} = \ln 1 - \ln 2$ \therefore $y_2 = m = \ln 2$ (median) $P(Y_1 > m) = \int_m^{\infty} g(y_1) dy_1 = \int_{\ln 2}^{\infty} 3e^{-3y_1} dy_1 = -e^{-3y_1} \Big]_{\ln 2}^{\infty}$ $= -[0 - e^{-3 \ln 2}] = e^{\ln 2^{-3}} = \frac{1}{2^3} = \frac{1}{8}$

Example:

Find the probability that the range of a random sample of size $n = 4$ from a $U(0,1)$ is less than $\frac{1}{2}$.

We have $f(x) = 1$, $0 < x < 1$. Then $F(x) = x$

Let $Z_1 = Y_4 - Y_1$ denote the sample range and we will find $P\left(Z_1 < \frac{1}{2} \right)$.

$$
g(y_1, y_4) = \frac{4!}{2!} [F(y_4) - F(y_1)]^2 f(y_1) f(y_4)
$$

= 12 [y_4 - y_1]^2 0 < y_1 < y_4 < 1

Let $Z_1 = Y_4 - Y_1$ and let $Z_2 = Y_4$. The inverse functions of $z_1 = y_4 - y_1$ and $z_2 = y_4$ are $y_1 = z_2 - z_1$ and $y_4 = z_2$

$$
J = \begin{vmatrix} \frac{\partial y_1}{\partial z_1} & \frac{\partial y_1}{\partial z_2} \\ \frac{\partial y_4}{\partial z_1} & \frac{\partial y_4}{\partial z_2} \end{vmatrix} = \begin{vmatrix} -1 & 1 \\ 0 & 1 \end{vmatrix} = -1
$$

 $h(z_1, z_2) = 12 [z_2 - z_2 + z_1]^2$. $|-1| = 12 z_1^2$ $0 < z_1 < z_2 < 1$

$$
\therefore g(z_1) = \int_{z_1}^1 12 z_1^2 dz_2 = 12z_1^2 [z_2]_{z_1}^1 = 12 z_1^2 [1 - z_1], \quad 0 < z_1 < 1
$$

Hence

$$
P\left(z_1 < \frac{1}{2}\right) = \int_0^{1/2} 12z_1^2 (1 - z_1) dz_1 = 12 \int_0^{\frac{1}{2}} z_1^2 - z_1^3 dz_1
$$
\n
$$
= 12 \left[\frac{z_1^3}{3} - \frac{z_1^4}{4}\right]_0^{\frac{1}{2}} = 12 \left[\frac{4z_1^3 - 3z_1^4}{12}\right]_0^{\frac{1}{2}}
$$
\n
$$
= 4 \left(\frac{1}{8}\right) - 3 \left(\frac{1}{6}\right) = \frac{8 - 3}{16} = \frac{5}{16}.
$$

Assignment

1. Let $Y_1 < Y_2 < Y_3 < Y_4$ be the order statistics of a random sample of size n=4 from a uniform distribution with pdf $f(x) = 1, 0 < x < 1$. Find the pdf of Y₃ then find

 $p\left(\frac{1}{3} < Y_3 < \frac{2}{3}\right)$.

2. Let $X_1, X_2, ..., X_n$ be a random sample from a U (0,1).

a. Find the pdf of the kth order statistic Y_k .

b. Find the joint pdf of Y_2 and Y_5 .

3. Let $Y_1 < Y_2 < Y_3$ be the order statistics of a random sample of size n=3 from a uniform distribution with pdf $f(x) = \frac{1}{\theta}$, $0 < x < \theta$. Find

- 1. The joint pdf of Y_1 , Y_2 , and Y_3
- 2. The marginal pdf of Y_1 and Y_3 .
- 3. The joint pdf of Y_1 and Y_3 .
- 4. The pdf of the median and the value of the median.

The Moment Generating Function(mgf) Technique

The moment generating function method is based on the following uniqueness theorem.

Theorem

Let $M_X(t)$ and $M_Y(t)$ denote the mgf's X and Y, respectively. If both mgf's exist and $M_X(t) = M_Y(t)$ for all values of t, then X and Y have the same pdf.

This method can also be used to find the sum of two or more independent random variables. For example, if X and Y are independent random variables then $M_{X+Y}(t) = E e^{t(X+Y)} = E e^{tX} E e^{tY} = M_X(t) M_Y(t)$

Example:

Let $X \sim Poisson(\lambda_1)$ and $Y \sim Poisson(\lambda_2)$. If X and Y are independent, what is the pdf of $Z = X + Y$?

 $M_X(t) = E e^{tX} = e^{\lambda_1(e^t - 1)}$ and $M_Y(t) = E e^{tY} = e^{\lambda_2(e^t - 1)}$

Further X and Y are independent, then

$$
M_{X+Y}(t) = M_X(t). M_y(t) = e^{\lambda_1(e^t - 1)} e^{\lambda_2(e^t - 1)}
$$

= $e^{(\lambda_1 + \lambda_2)(e^t - 1)}$

That is $X + Y \sim Poisson(\lambda_1 + \lambda_2)$. Hence the pdf of $Z = X + Y$ is

$$
h(z) = \begin{cases} \frac{e^{-(\lambda_1 + \lambda_2)}(\lambda_1 + \lambda_2)^2}{z!}, & z = 0, 1, 2, ... \\ 0 & o.w \end{cases}
$$

Example

What is the pdf of the sum of two independent random variables each of which is gamma (α, θ) ? Let $X \sim gamma(\alpha, \theta)$ and $Y \sim gamma(\alpha, \theta)$ $M_X(t) = (1 - \theta t)^{-\alpha}$ and $M_Y(t) = (1 - \theta t)^{-\alpha}$ Since X and Y are independent $M_{X+Y}(t) = M_X(t) M_V(t) = (1 - \theta t)^{-\alpha} (1 - \theta t)^{-\alpha} = (1 - \theta t)^{-2\alpha}$ \therefore X + Y ~ gamma (2 α , θ)

Example

Let $X \sim binomial(n, p)$, find the probability distribution of $Y = n - X$

$$
M_Y(t) = E e^{tY} = E e^{t(n-X)} = e^{nt} E e^{-tX} = e^{nt} M_X(-t)
$$

Since $M_X(t) = (q + pe^t)^n$ and $q = 1 - p$

$$
M_X(-t) = (q + pe^{-t})^n
$$

Hence

$$
M_Y(t) = (e^t)^n (q + pe^{-t})^n = (qe^t + p)^n
$$

$$
\therefore Y \sim binomial(n, q)
$$

Example

Let X_1 and X_2 be independent random variables with $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$ respectively. Let $Y = X_1 - X_2$, find the pdf of Y.

$$
M_Y(t) = E e^{tY} = E e^{t(X_1 - X_2)} = E e^{tX_1} E e^{-tX_2} \qquad X_1, X_2 \text{ independent}
$$

$$
= exp\left(\mu_1 t + \frac{\sigma_1^2 t^2}{2}\right) exp\left(-\mu_2 t + \frac{\sigma_2^2 t^2}{2}\right)
$$

$$
= exp\left[(\mu_1 - \mu_2)t + \frac{(\sigma_1^2 + \sigma_2^2)t^2}{2}\right]
$$

Hence $Y \sim N(\mu_1 - \mu_2, \sigma_1^2 + \sigma_2^2)$

Theorem-1

Let $X_1, X_2, ..., X_n$ be independent random variables having respectively, the normal distribution $N(\mu_i, \sigma_i^2)$, $i = 1, ..., n$. The random variable $Y = a_1X_1 + a_2X_2 + \cdots$ $a_n X_n$, where $a_1, a_2, ..., a_n$ are real constants, is normally distributed with mean $a_1^2 \sigma_1^2 + a_2^2 \sigma_2^2 + \cdots + a_n^2 \sigma_n^2$ $a_1\mu_1 + a_2\mu_2 + \cdots + a_n\mu_n$, and variance *i.e* $Y \sim N(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \sigma_i^2)$

Proof

$$
M_Y(t) = E e^{tY} = E e^{t(a_1 X_1 + a_2 X_2 + \dots + a_n X_n)}
$$

= $E e^{ta_1 X_1} \cdot E e^{ta_2 X_2} \dots E e^{ta_n X_n} = \prod_{i=1}^n E e^{ta_i X_i}$ X_i are independent

Since
$$
X \sim N(\mu, \sigma^2)
$$

$$
M_X(t) = E e^{tX} = \exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right)
$$

Hence

$$
E e^{ta_i X_i} = \exp\left(\mu_i (a_i t) + \frac{\sigma_i^2 (a_i t)^2}{2}\right)
$$

$$
\therefore M_Y(t) = \prod_{i=1}^n \exp\left[(a_i \mu_i) t + \frac{\sigma_i^2 (a_i t)^2}{2}\right]
$$

$$
= \exp\left[(\sum_{i=1}^n a_i \mu_i)t + \frac{(\sum_{i=1}^n a_i^2 \sigma_i^2) t^2}{2}\right]
$$

But this is the mgf of a distribution that is $N(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \sigma_i^2)$. Thus Y has this normal distribution.

The next theorem is a generalization of theorem (1).

Theorem - 2

If $X_1, X_2, ..., X_n$ are independent random variables with respective mgf's $M_{X_i}(t)$, $i = 1, ..., n$, then the mgf of $Y = \sum_{i=1}^n a_i X_i$, where $a_1, a_2, ..., a_n$ are real constants, is $M_Y(t) = \prod_{i=1}^n M_{X_i}(a_i t)$

Proof

$$
M_Y(t) = E e^{tY} = E e^{t(a_1 X_1 + a_2 X_2 + \dots + a_n X_n)}
$$

=
$$
E e^{a_1 t X_1} E e^{a_2 t X_2} \dots E e^{a_n t X_n}
$$
 X_i are independent

Since

$$
E e^{tX_i} = M_{X_i}(t)
$$
, also $E e^{a_i tX_i} = M_{X_i}(a_i t)$

Thus, we have that

$$
M_Y(t) = M_{X_1}(a_1t) M_{X_2}(a_2t) \dots M_{X_n}(a_nt) = \prod_{i=1}^n M_{X_i}(a_it)
$$

Corollary

If X_1, \ldots, X_n are observations of a random sample from a distribution with mgf $M_X(t)$, then the mgf of $Y = \sum_{i=1}^n a_i X_i$, where $a_1, a_2, ..., a_n$ are real constants, is $M_Y(t) = \prod_{i=1}^n M_{X_i}(a_i t).$

a. Let
$$
a_i = 1, i = 1, ..., n
$$
, then the mgf of $Y = \sum_{i=1}^{n} X_i$ is
\n
$$
M_Y(t) = \prod_{i=1}^{n} M_{X_i}(t) = [M_X(t)]^n
$$
\nb. Let $a_i = \frac{1}{n}, i = 1, ..., n$, then the mgf of $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is

$$
M_{\bar{X}}(t) = \prod_{i=1}^{n} M_{X_i}\left(\frac{t}{n}\right) = \left[M_X\left(\frac{t}{n}\right)\right]^n
$$

Example

Let $X_1, X_2, ..., X_n$ denote the outcomes of *n* Bernoulli trials. The mgf of X_i , $i =$ $1, \ldots, n$, is $M_{X_i}(t) = (1-p) + pe^t = q + pe^t$, where $q = 1 - p$. If $Y = \sum_{i=1}^n X_i$, then $M_Y(t) = \prod_{i=1}^n M_{X_i}(t) = \prod_{i=1}^n (1-p+pe^t) = \prod_{i=1}^n (q+pe^t) = [q+pe^t]^n$ Hence, $M_Y(t) = [M_X(t)]^n = [q + pe^t]^n$ Thus $Y \sim binomial(n, p)$

Example

Let X_1, X_2, X_3 be the observations of a random sample of size $n = 3$ form the exponential distribution having mean β .

$$
f(x) = \frac{1}{\beta} e^{-x/\beta} \quad x > 0
$$

$$
M_X(t) = \frac{1}{1 - \beta t}, t < \frac{1}{\beta}
$$

1. The mgf of $Y = X_1 + X_2 + X_3$ is

 $M_V(t) = [M_X(t)]^n = [(1 - \beta t)^{-1}]^3 = (1 - \beta t)^{-3}$

Which is that of a gamma distribution with $\alpha = 3$ and β i.e $Y \sim gamma(3, \beta)$

2. The mgf of $\bar{X} = (X_1 + X_2 + X_3)/3$ is

$$
M_{\overline{X}}(t) = \left[M_X\left(\frac{t}{n}\right)\right]^n = \left[\left(1 - \frac{\beta t}{3}\right)^{-1}\right]^3 = \left(1 - \frac{\beta t}{3}\right)^{-3}, t < \frac{3}{\beta}
$$

Hence $\bar{X} \sim gamma(3, \beta/3)$.

Theorem - 3

If $X_1, X_2, ..., X_n$ are observations of a random sample of size *n* from the normal distribution $N(\mu, \sigma^2)$, then the distribution of the sample mean

$$
\bar{X} = \sum_{i=1}^n X_i / n \text{ is } N(\mu, \sigma^2/n).
$$

Proof

$$
M_X(t) = \exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right). \text{ From theorem (2)}
$$

$$
M_{\overline{X}}(t) = \left[M_X\left(\frac{t}{n}\right)\right]^n = \left\{\exp\left[\mu\left(\frac{t}{n}\right) + \frac{\sigma^2(t/n)^2}{2}\right]\right\}^n
$$

$$
= \exp\left\{\mu t + \frac{(\sigma^2/n)t^2}{2}\right\}
$$

Hence $\bar{X} \sim N(\mu, \sigma^2/n)$

Theorem - 4

Let $X_1, X_2, ..., X_n$ be independent random variables that have respectively the chisquare distributions $\chi^2_{(r_1)}, \chi^2_{(r_2),...}, \chi^2_{(r_n)}$. Then the random variable $Y = X_1 + X_2 +$ $\cdots + X_n$ has a chi-square distribution with $r_1 + r_2 + \cdots + r_n$ degrees of freedom. That is $Y \sim \chi^2(r_1 + r_2 + \cdots + r_n)$.

Proof

$$
M_Y(t) = E e^{tY} = E e^{t(X_1 + X_2 + \dots + X_n)} = E e^{tX_1} e^{tX_2} \dots e^{tX_n}
$$

= $E e^{tX_1} E e^{tX_2} \dots E e^{tX_n}$ X_i are independent
= $(1 - 2t)^{-\frac{r_1}{2}} (1 - 2t)^{-\frac{r_2}{2}} \dots (1 - 2t)^{-\frac{r_n}{2}}$, $t < \frac{1}{2}$

Thus

$$
M_Y(t) = (1 - 2t)^{-(r_1 + r_2 + \dots + r_n)/2}
$$

But this is the mgf of a distribution that is $\chi^2(r_1 + r_2 + \cdots + r_n)$. Accordingly, $Y \sim \chi^2(\sum_{i=1}^n r_i)$

Example

Let the random variable $Z \sim N(0,1)$. Use the method of mgf to find the pdf of Z^2 .

$$
M_{Z^2}(t) = E e^{tZ^2} = \int_{-\infty}^{\infty} e^{tz^2} f(z) dz = \int_{-\infty}^{\infty} e^{tz^2} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz
$$

$$
= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-z^2(\frac{1}{2}-t)} dz = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}(1-2t)} dz = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2(1-2t)^{-1}}} dz
$$

$$
= \frac{1}{(1-2t)^{\frac{1}{2}}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi} (1-2t)^{-\frac{1}{2}}} e^{-\frac{z^2}{2(1-2t)^{-1}}} dz
$$

The integrand of the integral is a normal pdf with mean zero and variance $(1-2t)^{-1}$ and the integral is equal to one. Hence

$$
M_{Z^2}(t) = \frac{1}{(1-2t)^{1/2}} = (1-2t)^{-\frac{1}{2}}
$$

:. $Z^2 \sim gamma\left(\frac{1}{2}, 2\right) or \chi_{(1)}^2$. And for $Y = Z^2$

$$
f_Y(y) = \begin{cases} \frac{y^{\frac{1}{2}-1} e^{-y/2}}{\Gamma(\frac{1}{2})(2)^{\frac{1}{2}}} & y \ge 0\\ 0 & 0. w \end{cases}
$$

Theorem - 5

Let $X_1, X_2, ..., X_n$ denote a random sample of size *n* from a distribution that is $N(\mu, \sigma^2)$. Then the random variable $Y = \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2$ has a chi- square distribution with n degrees of freedom.

Proof

Recall that if the random variable $Z = \frac{X-\mu}{\sigma} \sim N(0,1)$, then $Z^2 \sim \chi^2(1)$. Since X_i 's are independent. Hence by theorem (4) with $r_i = 1$, $i = 1, ...n$ the

random variable $Y = \sum_{i=1}^{n} Z_i^2 = \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi^2_{(n)}$

Example

Let X_1 and X_2 be two independent standard normal random variables. Let Y_1 = $X_1 + X_2$ and $Y_2 = X_2 - X_1$. Use the mgf method to find the joint pdf of Y_1 and Y_2 .

$$
M_{(Y_1,Y_2)}(t_1, t_2) = E e^{Y_1 t_1 + Y_2 t_2} = E e^{(X_1 + X_2)t_1 + (X_2 - X_1)t_2}
$$

= $E e^{X_1 t_1 + X_2 t_1 + X_2 t_2 - X_1 t_2}$
= $E e^{(t_1 - t_2)X_1} E e^{(t_1 - t_2)X_2}$ X_1 and X_2 are independent
= $M_{X_1}(t_1 - t_2) \cdot M_{X_2}(t_1 + t_2)$

Since X_1 and $X_2 \sim N(0,1)$, we have $M_X(t) = \exp\left(\frac{t^2}{2}\right)$

$$
M_{(Y_1, Y_2)}(t_1, t_2) = \exp\left[\frac{(t_1 - t_2)^2}{2}\right] \cdot \exp\left[\frac{(t_1 + t_2)^2}{2}\right]
$$

=
$$
\exp\left(\frac{t_1^2 - 2t_1t_2 + t_2^2 + t_1^2 + 2t_1t_2 + t_2^2}{2}\right)
$$

=
$$
\exp\left(\frac{2t_1^2 + 2t_2^2}{2}\right) = \exp\left(\frac{2t_1^2}{2}\right) \cdot \exp\left(\frac{2t_2^2}{2}\right)
$$

=
$$
M_{Y_1}(t_1) M_{Y_2}(t_2)
$$

Hence Y_1 and Y_2 are independent random variables and each $\sim N(0, 2)$

Chapter Two

Limiting Distributions

Sequences of Random Variables

We denote a sequence of random variables $X_1, X_2, ...$ by $\{X_n\}_{n=1}^{\infty}$, with a corresponding sequence of distribution functions $F_n(x) = P(X_n \le x)$ for each $n = 1, 2, ...$. The subscript *n* make the dependence on the sample size *n* more explicit.

When the distribution of a random variable depends upon a positive integer n , clearly the pdf, cdf and mgf are all depend upon n . For example

- If the random variable $X \sim b(n, p)$, then $f(x)$, $F(x)$ and $M_X(t)$ are all involve n
- If \overline{X} is the mean of a random sample of size *n* from a distribution that is $N(\mu, \sigma^2)$, then $\bar{X} \sim N(\mu, \sigma^2/n)$ depends upon n.

Also, the distribution of the random variable $Y = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{(n-1)}$ depends upon n, where S^2 is the sample variance of this random sample from the normal distribution.

In the previous chapter we considered various methods of determining the distribution of a function of random variables, but sometimes, we may face difficulties in using a particular method.

Example

If \overline{X} is the mean of a random sample of size *n* from $U(0,1)$ distribution, then

$$
f(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & 0, w \end{cases}
$$

The mgf of X is given by $M_X(t) = E e^{tX} = \int_0^1 e^{tx} f(x) dx = \frac{e^t - 1}{t}$, $t \neq 0$ $= 1$ $\tau = 0$

The mgf of \overline{X} is

$$
M_{\overline{X}}(t) = E\left(e^{t\overline{X}}\right) = \left[M_X\left(\frac{t}{n}\right)\right]^n = \left[\frac{e^{\frac{t}{n}}-1}{\frac{t}{n}}\right]^n, t \neq 0
$$

= 1, t = 0

Since $M_{\overline{X}}(t)$ depends upon n, the distribution of \overline{X} depends upon n. But the pdf of \overline{X} could not be easily derived. Hence, one of the purposes of limiting distributions is to approximate, for large values of n , some of the complicated pdf's.

Convergence in distribution

Definition

The sequence of random variables $\{X_n\}_{i=1}^{\infty}$ is said to converge in distribution to the random variable X if: $\lim_{n \to \infty} F_n(x) = F(x)$

for all values x at which $F(x)$ is continuous. The distribution of X is called the limiting distribution of X_n . Or $X_n \stackrel{D}{\rightarrow} X$.

Note that by saying $X_n \to X$, we mean that the distribution of X is the asymptotic distribution or the limiting distribution of the sequence $\{X_n\}$. Or we may say that X_n has a limiting distribution with distribution function $F(x)$.

Example

Let $X_1, X_2, ..., X_n$ be a random sample from $U(0, \theta)$ and let Y_n be the nth order statistic. Find the limiting distribution of Y_n .

$$
f(x) = \begin{cases} \frac{1}{\theta} & 0 < x < \theta, \ \theta > 0 \\ 0 & 0, w. \end{cases}
$$

The pdf of Y_n is $g_n(y_n) = n[F(y_n)]^{n-1} f(y_n) = n \left(\frac{y_n}{\theta}\right)^{n-1} \frac{1}{\theta}$

$$
g_n(y_n) = \begin{cases} \frac{ny_n^{n-1}}{\theta^n} & 0 < y_n < \theta \\ 0 & o.w. \end{cases}
$$

The distribution function of Y_n is

$$
F_n(y_n) = \begin{cases} 0 & y_n < 0\\ \int_0^{y_n} \frac{nz^{n-1}}{\theta^n} dz = \left(\frac{y_n}{\theta}\right)^n & 0 \le y_n < \theta\\ 1 & \theta \le y_n < \infty \end{cases}
$$

Since $y_n < \theta$,

$$
\lim_{n \to \infty} F_n(y_n) = \begin{cases} 0 & -\infty < y_n < \theta \\ 1 & \theta \le y_n < \infty \end{cases}
$$

Now,

$$
F(y) = \begin{cases} 0 & -\infty < y < \theta \\ 1 & \theta \le y < \infty \end{cases}
$$

is a distribution function, and $\lim_{n\to\infty} F_n(y_n) = F(y)$ at each point of continuity of $F(y)$. Thus Y_n , $n = 1,2,... \rightarrow Y$ a random variable that has a degenerate distribution at the point $y = \theta$.

Definition

The function $F(y)$ is the distribution function of a degenerate distribution at the value $y = c$ if

$$
F(y) = \begin{cases} 0 & y < c \\ 1 & y \ge c \end{cases}
$$

That is; $F(y)$ is the distribution function of a discrete distribution that assigns probability one at the value $y = c$ and zero otherwise.

Example

Let $X_1, X_2, ..., X_n$ be a random sample from a standard normal $N(0,1)$, then $\bar{X}_n \sim N\left(0, \frac{1}{n}\right)$. Find the limiting distribution of \bar{X} .

The distribution function of \overline{X} is

$$
F_n(\bar{x}) = \int_{-\infty}^{\bar{x}} \frac{1}{\sqrt{2\pi} \sqrt{1/n}} e^{-nw^2/2} dw
$$

Let $v = \sqrt{n}w$ then $dv = \sqrt{n} dw$
Hence, $F_n(\bar{x}) = \int_{-\infty}^{\sqrt{n}\bar{x}} \frac{1}{\sqrt{2\pi}} e^{-v^2/2} dv$
It is clear that

$$
\lim_{n \to \infty} F_n(\bar{x}) = \begin{cases} 0 & \bar{x} < 0 \\ \frac{1}{2} & \bar{x} = 0 \\ 1 & \bar{x} > 0 \end{cases}
$$

The function

$$
F(\bar{x}) = \begin{cases} 0 & \bar{x} < 0 \\ 1 & \bar{x} \ge 0 \end{cases}
$$

Is a distribution function and $\lim_{n\to\infty} F_n(\bar{x}) = F(\bar{x})$ at every point of continuity of

 $F(\bar{x})$. (Note that $F(\bar{x})$ is not continuous at $\bar{x} = 0$)

Accordingly, the sequence $\{\bar{X}_n\}_{i=1}^{\infty}$ converges in distribution to a random variable that has a degenerate distribution at $\bar{x} = 0$.

Example

Let $X_1, X_2, ..., X_n$ be a random sample from $U(0, \theta)$ and let Y_n be the nth order statistic. If $Z_n = n(\theta - Y_n)$, find the limiting distribution of Z_n .

$$
g_n(y_n) = n \left(\frac{y_n}{\theta}\right)^{n-1} \frac{1}{\theta} \qquad 0 \le y_n < \theta
$$
\n
$$
Z_n = n(\theta - Y_n) \Longrightarrow \frac{Z_n}{n} = \theta - Y_n
$$

$$
\therefore Y_n = \theta - \frac{Z_n}{n}
$$

$$
J = \frac{\partial y}{\partial z_n} = -\frac{1}{n}
$$

$$
|J| = \left| -\frac{1}{n} \right| = \frac{1}{n}
$$

The pdf of Z_n is

$$
h_n(z_n) = n \left(\frac{\theta - \frac{z_n}{n}}{\theta}\right)^{n-1} \frac{1}{n\theta} = \frac{1}{\theta^n} \left(\theta - \frac{z_n}{n}\right)^{n-1} \qquad 0 \le z_n < n\theta
$$

And the distribution function of Z_n is

$$
G_n(z_n) = \int_0^{z_n} \frac{1}{\theta^n} \left(\theta - \frac{w}{n}\right)^{n-1} dw = -\frac{n}{\theta^n} \int_0^{z_n} \left(\theta - \frac{w}{n}\right)^{n-1} - \frac{1}{n} dw
$$

\n
$$
= -\frac{n}{\theta^n} \frac{\left[\theta - \frac{w}{n}\right]^n}{n} \bigg|_0^{z_n} = -\left[\left(\frac{\theta - \frac{z_n}{n}}{\theta}\right)^n - \left(\frac{\theta}{\theta}\right)^n\right]
$$

\n
$$
= 1 - \left(1 - \frac{z_n}{n\theta}\right)^n \qquad 0 \le z_n < n\theta
$$

\n
$$
\therefore G_n(z_n) = \begin{cases} 0 & \text{if } z < 0 \\ 1 - \left(1 - \frac{z_n}{n\theta}\right)^n & \text{if } 0 \le z_n < n\theta \\ 1 & \text{if } n\theta \le z_n \end{cases}
$$

Hence

$$
\lim_{n \to \infty} G_n(z_n) = \begin{cases} 0 & z_n < 0 \\ 1 - e^{-\frac{z_n}{\theta}} & 0 \le z_n < \infty \end{cases}
$$

Recall that:
$$
\lim_{n \to \infty} \left(1 - \frac{z/\theta}{n}\right)^n = e^{-z/\theta}
$$

Now

$$
G(z) = \begin{cases} 0 & z < 0 \\ 1 - e^{-z/\theta} & 0 < z \end{cases}
$$

is a distribution function that is everywhere continuous and $\lim_{n\to\infty} G_n(z_n) = G(z)$ at all points of continuity of $G(z)$.

Thus Z_n has a limiting distribution with distribution function $G(z)$; i.e.,

 $Z_n \stackrel{D}{\rightarrow} Z$, where Z is an exponentially distributed random variable.

Convergence in Probability

Theorem Markov Inequality

If X is a random variable that takes only nonnegative values, then for any value $t > 0$

$$
p(X \ge t) \le \frac{E(X)}{t}
$$

Proof

$$
E(X) = \int_{-\infty}^{\infty} x f(x) dx
$$

\n
$$
= \int_{-\infty}^{t} x f(x) dx + \int_{t}^{\infty} x f(x) dx
$$

\n
$$
\geq \int_{t}^{\infty} x f(x) dx
$$

\n
$$
\geq \int_{t}^{\infty} t f(x) dx
$$

\n
$$
E(X) > t \int_{-\infty}^{\infty} f(x) dx = t P(X > t)
$$

Hence, $E(X) \ge t \int_t^{\infty} f(x) dx = tP(X \ge t)$

And

$$
P(X \ge t) \le \frac{E(X)}{t}
$$

Theorem: Chebyshev's Inequality

Let X be a random variable with mean μ and variance σ^2 , then for any value $k > 0$

$$
p(|X - \mu| < k\sigma) \ge 1 - \frac{1}{k^2}
$$

Proof

By Markov inequality, we have $p((X - \mu)^2 \ge t^2) \le \frac{E(X - \mu)^2}{t^2}$ for all $t > 0$ Since $(X - \mu)^2 \ge t^2$ if and only if $|X - \mu| \ge t$, we get $p((X - \mu)^2 \ge t^2) = p(|X - \mu| \ge t) \le \frac{E(X - \mu)^2}{t^2}$ for all $t > 0$ Hence $P(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2}$

Letting $t = k\sigma$, we see that

$$
P(|X - \mu| \ge k\sigma) \le \frac{\sigma^2}{k^2 \sigma^2} = \frac{1}{k^2}
$$

Hence $[1 - P(|X - \mu| < k\sigma)] \leq \frac{1}{\nu^2}$

Or

$$
P(|X - \mu| < k\sigma) \ge 1 - \frac{1}{k^2}
$$

Definition: Convergence in Probability

A sequence of random variables X_1, X_2, \ldots converges in probability to a random variable X if, for every $\epsilon > 0$,

 $\lim_{n\to\infty} P(|X_n - X| < \epsilon) = 1$

Or equivalently $\lim_{n\to\infty} P(|X_n - X| \geq \epsilon) = 0$

That is, we say that $X_n \to X$ if one of the above limits is true.

Remark:

 $\lim_{n\to\infty} P(|X_n - c| \geq \epsilon) = 0$ is often used for the convergence of a random variable X_n to a constance c and we write $X_n \stackrel{P}{\rightarrow} c$

Theorem: The Weak Law of Large Numbers

Let $X_1, X_2, ...$ be a sequence of independent and identically distributed random variables with $\mu = E(X_i)$ and $\sigma^2 = Var(X_i) < \infty$ for $i = 1, 2, ... \infty$.

Then

 $\lim_{n \to \infty} P\left(\left|\frac{X_1 + X_2 + \dots + X_n}{n} - \mu\right| \ge \epsilon\right) = 0$ for every $\epsilon > 0$ Or equivalently, $\overline{X}_n \stackrel{P}{\rightarrow} \mu$

Proof

Let $\bar{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$

Recall that $E(\bar{X}_n) = \mu$ and $Var(\bar{X}_n) = \frac{\sigma^2}{n}$

By Chebyshev's inequality

 $P(|\bar{X}_n - \mu| \geq \epsilon) \leq \frac{Var(\bar{X}_n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$

Taking the limit as $n \to \infty$

 $\lim_{n\to\infty} P(|\bar{X}_n - \mu| \geq \epsilon) \leq \lim_{n\to\infty} \frac{\sigma^2}{n\epsilon^2}$ Which yields $\lim_{n\to\infty} P(|\bar{X}_n - \mu| \geq \epsilon) = 0$ Hence \bar{X}_n , $n = 1,2,3,...$ converges in probability to μ if σ^2 is finite which is written as $\overline{X}_n \stackrel{P}{\rightarrow} \mu$.

The weak law of large numbers states that the sample mean \bar{X} converges in probability to the population mean μ when n is large and $0 < \sigma^2 < \infty$.

Definition: The Strong Law of Large Numbers

Let X_1, X_2, \ldots be a sequence of independent and identically distributed random variables with a finite mean $E(X_i) = \mu$ for $i = 1, 2, ... \infty$. Then

$$
P(\lim_{n\to\infty}\bar{X}_n=\mu)=1
$$

In other words, as n approaches infinity \bar{X}_n converge to μ with probability 1. This type of convergence is called almost sure convergence.

Example

Let
$$
Y_n \sim b(n, p)
$$
, show that $\frac{Y_n}{n} \to p$
\n
$$
P\left(\left|\frac{Y_n}{n} - p\right| \ge \epsilon\right) = P(|Y_n - np| \ge n\epsilon)
$$
\n
$$
= P\left(|Y_n - np| \ge \frac{n\epsilon}{\sigma}\sigma\right) \le \frac{1}{\left(\frac{n\epsilon}{\sigma}\right)^2} = \frac{\sigma^2}{n^2 \epsilon^2}
$$
\n
$$
\lim_{n \to \infty} P\left(\left|\frac{Y_n}{n} - p\right| \ge \epsilon\right) = \lim_{n \to \infty} \frac{npq}{n^2 \epsilon^2}
$$
\n
$$
= \frac{pq}{\epsilon^2} \lim_{n \to \infty} \frac{1}{n} = 0
$$
\nHence, $\frac{Y_n}{n} \to p$.

The Central Limit Theorem (C.L.T)

The central limit theorem is one of the most important results in probability.

We have seen earlier that if $X_1, X_2, ..., X_n$ is a random sample from $N(\mu, \sigma^2)$, then $\bar{X} \sim N(\mu, \sigma^2/n)$, and as *n* increases, the variance of \bar{X} decreases.

Consequently, the distribution of \overline{X} depends on n. If we let $Z = \frac{\overline{X} - \mu}{\sigma \sqrt{n}}$, then

 $Z \sim N(0,1)$. The C.L.T states that even though the population distribution is far from begin normal, still for large sample size n , the distribution of the standardized sample mean is approximately standard normal.

Theorem: C.L.T

Let $X_1, X_2, ..., X_n$ be a random sample of size *n* from a distribution with mean μ and finite positive variance σ^2 . Then the random variable

$$
Y_n = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} = \frac{\sum X_i - n\mu}{\sqrt{n} \sigma}
$$

Has a limiting distribution that is $N(0,1)$. That is

$$
\lim_{n \to \infty} P(Y_n \le y) = \int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt
$$

A practical use of the C.L.T is approximating. Usually, a value of $n > 30$ will ensure that the distribution of Y_n can be closely approximated by a normal distribution; namely

$$
P(Y_n \le y) \approx \int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \Phi(y)
$$

Example

Let \overline{X} denote the mean of a random sample of size $n = 75$ from $U(0,1)$. Approximate $P(0.45 < \overline{X} < 0.55)$.

For the uniform distribution, $E(X) = \mu = \frac{1}{2}$, $Var(X) = \sigma^2 = \frac{1}{12}$.

The approximate value of

$$
P(0.45 < \bar{X} < 0.55) = P\left[\frac{\sqrt{n}(0.45 - \mu)}{\sigma} < \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} < \frac{\sqrt{n}(0.55 - \mu)}{\sigma}\right]
$$

$$
= P\left[\frac{\sqrt{75}(0.45 - 0.50)}{1/\sqrt{12}} < \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} < \frac{\sqrt{75}(0.55 - 0.50)}{1/\sqrt{12}}\right]
$$
\n
$$
= P(30(-0.05) < Z < 30(0.05))
$$
\n
$$
= P(-1.5 < Z < 1.5) = \Phi(1.5) - \Phi(-1.5) = \Phi(1.5) - [1 - \Phi(1.5)]
$$
\n
$$
= 2\Phi(1.5) - 1 = 2(0.9332) - 1
$$
\n
$$
= 1.8664 - 1 = 0.8664
$$

Example

Let \overline{X} denote the mean of a random sample of size $n = 15$ from a distribution whose pdf is $f(x) = \frac{3}{2}x^2$; $-1 < x < 1$. Approximate $P(0.03 \le \bar{X} \le 0.15)$.

$$
\mu = E(X) = \int_{-1}^{1} x \left(\frac{3}{2} x^2\right) dx = \frac{3}{2} \left[\frac{x^4}{4}\right]_{-1}^{1} = \frac{3}{8} [1 - 1] = 0
$$

\n
$$
E(X^2) = \int_{-1}^{1} x^2 \left(\frac{3}{2} x^2\right) dx = \frac{3}{2} \left[\frac{x^5}{5} = \frac{3}{10} [1 + 1] = \frac{3}{5}
$$

\n
$$
\therefore Var(X) = E(X^2) - [E(X)]^2 = \frac{3}{5}
$$

\n
$$
P(0.03 \le \bar{X} \le 0.15) = P\left(\frac{0.03 - 0}{\sqrt{3}/75} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le \frac{0.15 - 0}{\sqrt{3}/75}\right)
$$

$$
= P(5(0.03) \le Z \le 5(0.15)) = P(0.15 \le Z \le 0.75)
$$

$$
= \Phi(0.75) - \Phi(0.15) = 0.7743 - 0.5596 = 0.2138
$$

Example

Let $X_1, X_2, ..., X_n$ be a random sample of size $n = 100$ from $b\left(1, \frac{1}{2}\right)$. Approximate $P(48 < \sum X_i < 52)$.

We have $\mu = E(X) = \frac{1}{2}$, and $\sigma^2 = Var(X) = p(1 - p) = \frac{1}{4}$ Since $X \sim b\left(1, \frac{1}{2}\right)$ then $\sum X_i \sim b\left(100, \frac{1}{2}\right)$ $P(48 < \sum X_i < 52) = P\left(\frac{(48 - 0.5) - 100\left(\frac{1}{2}\right)}{\sqrt{100}\sqrt{\frac{1}{4}}} < \frac{\sum X_i - n\mu}{\sqrt{n}\sigma} < \frac{(52 + 0.5) - 100\left(\frac{1}{2}\right)}{\sqrt{100}\sqrt{\frac{1}{4}}} \right)$ $= P\left(\frac{47.5 - 50}{5} < \frac{\sum X_i - n\mu}{\sqrt{n}\sigma} < \frac{52.5 - 50}{5}\right) = P(-0.5 < Z < 0.5)$ $= \Phi(0.5) - \Phi(-0.5) = \Phi(0.5) - [1 - \Phi(0.5)]$ $= 2\Phi(0.5) - 1 = 2(0.691) - 1 = 0.382$

Some Useful Theorems on Limiting Distributions

- 1. If the random variable $U_n \stackrel{P}{\rightarrow} c$, then $\frac{U_n}{c} \stackrel{P}{\rightarrow} 1$ $c \neq 0$
- 2. If the random variable $U_n \stackrel{P}{\rightarrow} c$, then $\sqrt{U_n} \stackrel{P}{\rightarrow} \sqrt{c}$ $c > 0$
- 3. If the random variable $U_n \stackrel{P}{\rightarrow} c$, and the random variable $V_n \stackrel{P}{\rightarrow} d$, then
- $U_n + V_n \stackrel{P}{\rightarrow} c + d$
- $-\frac{U_n}{V_n}\stackrel{P}{\rightarrow}\frac{c}{d}$ $d \neq 0$
- U_n , $V_n \rightarrow c$, d
- 4. If the random variable U_n has a limiting distribution and the random variable $V_n \stackrel{P}{\rightarrow} 1$, then $W_n = \frac{U_n}{V_n}$ has a limiting distribution as that of U_n .

Lemma

Let X_1, X_2, \ldots, X_n be a random sample of size *n* from *X* with EX^{2k} exists, then $\frac{1}{n} \sum_{i=1}^{n} X_i^k \stackrel{P}{\rightarrow} E X^k$, $k = 1,2,3,...$

Lemma

Let X_1, X_2, \ldots, X_n be a random sample of size *n* fom *X* with $E(X^4)$ exists and $Var(X) = \sigma^2$, then

1.
$$
S_n^2 \xrightarrow{P} \sigma^2
$$
 where $S_n^2 = \frac{1}{n} \sum (X_i - \bar{X})^2$
\n2. $S_{n-1}^2 \to \sigma^2$ where $S_{n-1}^2 = \frac{1}{n-1} \sum (X_i - \bar{X})^2$

Proof

1.
$$
S_n^2 = \frac{1}{n} \sum X_i^2 - \overline{X}_n^2
$$

\nSince $\frac{1}{n} \sum X_i^2 \stackrel{P}{\rightarrow} E(X^2)$ and $\overline{X}_n = \frac{1}{n} \sum X_i \stackrel{P}{\rightarrow} E(X)$
\nHence $(\overline{X}_n)^2 \stackrel{P}{\rightarrow} [E(X)]^2$
\nThen
\n $S_n^2 = \frac{1}{n} \sum X_i^2 - \overline{X}_n^2 \stackrel{P}{\rightarrow} E(X^2) - [E(X)]^2 = \sigma^2$
\n $\therefore S_n^2 \stackrel{P}{\rightarrow} \sigma^2$
\n2. $S_{n-1}^2 = \frac{1}{n-1} \sum (X_i - \overline{X})^2 = \frac{n}{n-1} \sum_{n=1}^{\infty} (X_i - \overline{X})^2 = \frac{n}{n-1} S_n^2$
\nSince
\n $\frac{n}{n-1} \stackrel{P}{\rightarrow} 1$ as $n \rightarrow \infty$ then $S_{n-1}^2 = \frac{n}{n-1} S_n^2 \stackrel{P}{\rightarrow} 1$, σ^2
\nHence, $S_{n-1}^2 \stackrel{P}{\rightarrow} \sigma^2$

Theorem

Let $X_1, X_2, ..., X_n$ be a random sample from X with $E(X) = \mu$ and $Var(X) = \sigma^2$. Then

$$
T_n = \frac{\bar{X}_n - \mu}{s / \sqrt{n}} \sim N(0, 1) \text{ as } n \to \infty
$$

Proof

By the C.LT
$$
\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \sim N(0,1)
$$
 as $n \to \infty$.
\nSince $S^2 \to \sigma^2$ as $n \to \infty$
\nand $\frac{S^2}{\sigma^2} \to 1$ as $n \to \infty$
\nand $\sqrt{\frac{S^2}{\sigma^2}} \to 1$ as $n \to \infty$

Then

$$
T_n = \frac{\bar{x}_n - \mu/\sigma/\sqrt{n}}{\sqrt{s^2/\sigma^2}} = \frac{\bar{x}_n - \mu}{s/\sqrt{n}} \sim N(0,1) \text{ as } n \to \infty
$$

Theorem

Let $X_1, X_2, ..., X_n$ and $Y_1, Y_2, ..., Y_m$ be the items of two independent random samples of sizes *n* and *m* with $E(X) = \mu_X$, $E(Y) = \mu_y$, $Var(X) = \sigma_x^2$ and $Var(Y) = \sigma_y^2$. Then

1.
$$
\frac{(\bar{X}_n - \bar{Y}_m) - (\mu_x - \mu_y)}{\sqrt{\frac{\sigma_x^2}{n} + \frac{\sigma_y^2}{m}}} \sim N(0, 1) \text{ as } n, m \to \infty
$$

2.
$$
\frac{(\bar{X}_n - \bar{Y}_m) - (\mu_x - \mu_y)}{\sqrt{\frac{\sigma_x^2}{n} + \frac{\sigma_y^2}{m}}} \sim N(0, 1) \text{ as } n, m \to \infty
$$

Proof

1. By the C.L.T
$$
\overline{X}_n \sim N\left(\mu_x, \frac{\sigma_x^2}{n}\right)
$$
 as $n \to \infty$
and $\overline{Y}_m \sim N\left(\mu_y, \frac{\sigma_y^2}{m}\right)$ as $m \to \infty$
Then $\overline{X}_n - \overline{Y}_m \sim N\left(\mu_x - \mu_y, \frac{\sigma_x^2}{n} + \frac{\sigma_y^2}{m}\right)$ as $n, m \to \infty$
Hence $\frac{(\overline{X}_n - \overline{Y}_m) - (\mu_x - \mu_y)}{\sqrt{\frac{\sigma_x^2}{n} + \frac{\sigma_y^2}{m}}} \sim N(0, 1)$ as $n, m \to \infty$

2. We have already shown that

$$
\frac{(\bar{X}_n - \bar{Y}_m) - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \sim N(0, 1) \text{ as } n, m \to \infty
$$

And since $\sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}} / \sqrt{\frac{\sigma_x^2}{n} + \frac{\sigma_y^2}{m}} \stackrel{P}{\rightarrow} 1$ as $n, m \rightarrow \infty$

We have that

$$
\frac{(\bar{X}_n - \bar{Y}_m) - (\mu_X - \mu_Y)/\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}}{\sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}/\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \sim N(0,1) \text{ as } n,m \to \infty.
$$