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Lecture 1
Sampling Concepts |
Definition: Random sample
The random variables X, X,, ..., X,, are said to constitute a random sample of size
nif
1. X;,X,, ..., X, are independent random variables.
2. Every X; has the same pdf f(x); that is
filx1) = f(x1), foalxz) = f(x2) oo, fn (X)) = f(xn) , so that the joint pdf:
fGea, 22, e x0) = f0)f () oo f(n) = Tlizy £ ()
In other words, if the random variables X;,X,, ..., X,, are independent and
identically distributed (iid), then these random variables constitute a random

sample of size n from a common distribution.

Definition: Statistic

A function of one or more random variables that does not depend upon any
unknown parameter is called a statistic. Therefore, a statistic
UX) = U(Xy, X5, ..., X,,) is a function defined on the space of all possible sample
points of the random variable X is also a random variable. Once the sample is
drawn, a lowercase letter 1s used to represent the calculated or the observed value
of the statistic

Example:

The sample mean X is a statistic

The sample variance S? is a statistic

Xy = max(X;, Xy, ... Xp,) is a statistic

X1y = min(Xy, X, ... X,) is a statistic

The sample median is a statistic

But the random variable Y = % 1s not a statistic unless ¢ and o are known

numbers.



Definition: Sampling Distribution
The sampling distribution of a statistic is the probability distribution for the
possible values of the statistic that results when random samples of size n are

repeatedly drawn from the population.

Example 1:

Let X;, X, and X5 be independent random variables each have the pdf f(x) = 2x,
0 < x < 1, zero elsewhere. The joint pdf f(xq, x5, x5) 18 f(x1). f(xy). f(x3) =
8x,x,%3,0 < x; < 1,i=1,2,3, zreo elsewhere. Let Y = max(X;, X5, X3).

The distribution function of Y is

G)=PY <y)=PX,2y,X, <y, X3<y)

Yy Y oy
= j j j 8x1x,x5 dxq dx,dx;
o Jo Jo

Accordingly, the pdf of y = max(X,, X,,X3) is

=y% 0<y<1

gly)=6y°5, 0<y<1

=0 elsewhere

Example 2:

Let n be a positive integer and let the random variables X;, i = 1,2, ...,n, be
independent, each having the same pdf f(x) = p*(1 — p)1™*, x = 0,1 and zero
elsewhere. If Y =Y",X;, then Y is b(n,p) with pdf

n
gly) = (y) p’A-p)"™? y=01..,n
It should be noted that the statistic Y = Y1, X; does not depend upon the

parameter p.



Definition: The Sample Mean and The Sample Variance
Let X1, X,, ...., X, denote a random sample of size n from a given distribution.

The statistic

n

X = %X‘ is called the mean of the random sample (sample mean).

And the statistic

1 7 1 6
§% = Ez?zl(xi —~X)? = E[ iy X7 —nX?]

1s called the variance of the random sample (sample variance).

Theorem

Let X;, X5, ..., X,, be a random sample of size n from a population with mean u

— _ 2
and variance ¢2. Then E(X) = p and var(X) = %
Proof:

- 1 1
EQR) = E (I, %) = =L, E(X)

1 1
=Nl = onp=p
and

- 1 1
var(X) = var (; ?lei) =— v var(X;)
2
= %n g% = % because X;’s, 1=1, 2, ..., n are independent

The theorem states that regardless of the form of the population distribution, one
can obtain the mean and standard deviation of the statistic X in terms of the mean

and standard deviation of the population. Notice that the variance of each X; is

. = . o? Cy .
a2, where the variance of X is —, which is smaller than % forn > 2.

Theorem
Let X;,X5, ..., X, be a random sample from a population with mean p and

variance o2. Consider the sample variance



n

1 _
Sz - mZ(XL - X)Z

i=1
Show that E( $?) = o2

1 = 1 —
§?=— (X - X)* = —y (Z?:1Xi2 - nXZ)

n—1
1 _

E(S?) = E( i E(X?) ”E(Xz))

Using the fact that

E(X?) =var(X) + [E(X)]? = 02 + p?

Also

2

E(X?) = var(X) + [EX)]? = =+ p?
We have the following

E(S%) =ﬁ[naz+nuz—n(dz ‘|‘M2)]

n
=2 [na?+nu?—o? — nu?]
n—1
_ 1 2 _ 2
=— (n—1o o
This shows that the expected value of the sample variance is the same as the
variance of the population under consideration. Hence S? is called an unbiased

estimator of g2.



Lecture 2

Distributions of Functions of Random Variables
1. The cumulative Distribution Function Technique
Assume that a random variable X has a distribution function Fy (x) and that
Y = U(X) is a function of X.
Then Fy(y) = P(Y < y) = P(UX) < y)
The pdf of Y 1s found by differentiating Fy (y).
Example:

2e72%% x>0

Suppose that fy(x) = { 0 o

Consider Y = e*. Find fy (y).

A={X:x €R,0<x < o0}

B={V:yeER,1<y< o}

Fy(y) =P(Y <y) =P(e* <y) =P(X <Iny) = Fx(Iny)

In - - -2
=[72e® dx=1—e72In7 =1 ¢V

=1—y?
Hence
fro) =2 =2y 1<y <o
Example:
Let X be a random variable with pdf fy(x) = {gx O=x i \j,

and let U = 3X — 1. Find the pdf of u.

FU(u)=P(USu)=p(3X—1§u)=p(XSuT+1)

u+1 u+1

= i+ fubodx = f,+ 2xdx = (22)’
A={X:x€R0<x<1}
B={U:u€eR, -1<u<?2}
0 , u<-—1
Fy(uw) = (uTH) —1<su<?
1 u>2



o (W) = dFU(u) {z(u+1) —1<u<?
() =
0 0.W.

Example
Let f(x) = % ,—1 < x < 1 and zero elsewhere, be the pdf of a random variable

X. Define the random variable Y= X?. Find the pdf of Y.
-1<x<1=50<y<1

FO) =pY <y)=pX?<y)=p(-y<X <.y

K 1 1
_ e — [V —
_ j ~dx = 5[5 =y
—y
The Distribution function is
0 y<0
Fiy) =3y 0<y<1
1 1<y
dFr(y) L 0<yx<i
The pdf of Y is f(y) = L& { 7 Y
4y 0 o0.w.

Let us consider the case Y = g(x) = X2, where X is a random variable with

distribution function Fy(x) and pdf fy(x). g(x)
Fr() =P(Y <y)=PX?><y)

=p(-y<sx<fy)= [ 5 ()dx \/
5 NG

= Fx(Vy) = Fx(=/)

In general
Fy()’)={FX(\/;)_FX(_\/;) y>0
0 o.w.
On differentiating with respect to y,
L 1
) = {fx(‘/;) (ﬁ) + fx(=/y) (ﬁ) y>0
0 o.w.

Or



fr) = {ﬁ [x(Vy) + fx(=V¥)] y>0

o.w.

Example:

Let X be a random variable ~N(0,1) and let Y = g(x) = X2. Find the pdf of Y .

fr@) = =2 and () = fu(—) = = e "2

1 1 -y 1 -y 1 1 -y
fy(}’)—ﬁ[zez+\/7—ﬂt92]—ﬁ\/7_ﬂ 262]
1
11 yn
= yzl—ey ,y>0 Recall that Vo = F(l)
@21(3) 2

Which is the pdf of the gamma distribution with a = % and f = 2.
Hence, Y ~ )((21).
Hence, if the random variable X~N(0,1), then the random variable Y = X?~ )((21).

Example:

Let the random variable X has the pdf

2x e~ X" O0<x<o
X) =
fX( ) {O 0.W.

Let Y = X2 Find the pdf of Y.

Foy3) = 2J7e and fy(—y5) = 0
gy(y) = #72\/31_(3’ =eV, 0<y<o

Which is exponential with A = 1.

Exercise :

Suppose that X have a continuous distribution with distribution F(x) and pdf
f (x) prove the following:

1-If Y = F(x) then show that Y~U(0,1).

2-1f U = —log(F(x)), then show that U~exp(1)

3-IfV =-2 log(F(x)), then show that V~)((22).



The Transformation of Variables Technique
This method 1s also called the change of variable technique.
1. Discrete case
Let X be a discrete r.v. having pdf f(x). Let A denote the set of discrete
points, at each of which f(x) > 0, and let y = u(x) define a one -to-one
transformation that maps A onto B. Consider ther.v.Y = u(x). If y € B,
then x = w(y) € A. Accordingly, the pdf of Y is

g) =PY =y)=PuX) =y) =PX =w())

=f(w() ,y€B,andg(y) =0 ,0.W.
Example:
re = 0,1,2
Let X have the passion pdf f(x) = { x! X = ULs...
0 0.w

Define anewr.v. Y = 4X . Find the pdf of Y .

A={x:x=0,123,...}

B={y:iy=048,12,...}

The function y = 4x maps the space A onto space B such that there is one -

to-one correspondence between the points of A and those of B.
g0 =P =y)=P@x=y)=P(x =2

_ A/te?

T (/)

= 0,4,8, ...
=0 o.w.
Example: Let X~b (3,%). Find the pdf of ¥ = X2
We know that If x~b(n,p) then f(x) = (Z) p*(1—p)"™* x=01,..,n

So that

flx) = — (Z)X (1)3_x x=0,123

x!'(3—x)! § 3




Lecture 3

The transformation y = u(x) = x? maps A = {x:x = 0,1,2,3} onto

B ={y:y =0,1,49}. Since x = w(y) = [y,

g =P¥ =y)=PX*>=y)=P(X =.[y) =f(Jy) =

! V¥ 11\3-VF
m@@g T y=0149

In the bivariate case, let f(x;, x,) be the joint pdf of two discrete r.v’s X; and
X, with A the set of points at which f(x;,x,) > 0

A ={(xy,x5): f(x1,x5) > 0}. Let y; = uy(xq,x,) and y, = u,(x,, x,) define a
one-to-one transformation that maps A onto B. The joint pdf of the two new

rv'sY; = u(xqg, x,) and ¥, = u, (x4, x5) 1
gL Y) =Py =y,Y, =y,) = P(Y1 = uy(x1, %), Y, = uz(xpxz))
= P(X1 =w (Y1, ¥2), Xy = Wz()’p)’z))

= f(W1(Y1»yZ);W2(}’1;YZ)) (y1,¥2) € B

=0 e.w

Where x; = w, (v, ¥y,) and x, = w,(y;, y,) are the single valued inverse of
y1 = Uy (xy,x2) and ¥, = u, (x4, x,) . Form the joint pdf g(yy,y,) we may
obtain the marginal pdf of ¥; by summing on y, or the marginal pdf of ¥, by

summing on yj.
Example:
Let X; and X, be two independents r.v.’s that have Poisson distributions with

means p, and p,, respectively. Find the pdf of Y; = X; + X,

M1X1 #zxz e Hi—Hz
f(xqg,x5) = T x=012,..,x, =0,1,2, ...
1+ Xo!

We need to define a second r.v. y, = X, . Then y; = x; + x5, and y, = x,
represent a one-to-one transformation that maps A onto

9



B={y,y):y,=01,...,y;and y; = 0,1,2,...}.
Note that if (y4,y,) € B, then 0 < y, < y,. The inverse functions are given by
X1 =Yy —yzand x; = y;.
The joint pdf of ¥; and ¥, is

yi—y2 ‘uzy2 e_”l_ﬂZ

g(}’p}’z) =& (}’1;}’2) € Biyl = 0,1,2,"',_')11 =

1=y2)! y;!
0,1,2, yl

The marginal pdf of y; is

e_ﬂl_ﬂZ y1 yll
yy! Y2=0 (y,-y,)! yy!

9:(n1) = §l=o 9y, y2) = 1772 1y

e H1—H2 y1 (‘u1+‘u2)y1 e H1—H2

V1!

= Zyimo Gy T =
Recall (a + b)" =Y (R a* "% y; =0,1,2,..
Hance Y; = x; + x;~p(pq + 143).

Example: Let the stochastically independent r.v.’s such that X;~b(n,,p)
and X,~ b(n,,p).  Find the joint pdfof ¥; = X; + X, and ¥, = X,. Find
also the pdf of Y;.

fly) = CZiP"l(l —p)™ x;,=0,1,..,n; and
flxy) = CZ;PXZ (1—p)™==* x,=01,..,n,
O, x5) = G G2 p¥at¥e (1 — p)ratme—¥a2s
Yi=X1tXy Y2 =X

X1=YV1— Y2 Xo = Yo

fuy2) = Gl GZpYr (1 = p)™* ™y = 0,1, .,1y + 15, ¥, =

0,1,..,7

10



fO1) = 53,20 Gy, Gip™ (L= )i

— pYi _ ni+ny,—=y; W1 Vi ny
PYi(1-P) J’ZZOCJ’1—J’2 CJ’Z

(Since Y ,C% CP_ . =CP_ ) then
f(yl) — C;,lll"'nzpyl (1 _ P)nl_nz_yl Y, = 0,1, v,y + 1y
Hance Y, ~b(n, + n,, P)

2. Continuous case
Let X be a continuous r.v. having pdf f(x). Let A be the space where
f(x) > 0. Consider the r.v. Y = u(x), where y = u(x) defines a one-to-

one transformation that maps the set A onto the set B. Let the inverse of

y = u(x) be denoted by x = w(y) and let the derivative Z—; = w(y) be

continuous and not equal zero for all points y in B. Then the pdf of the
rv.Y =u(x)is
g =f(w) wyl  yeB

= f(w®)

Where | = Z—; = w(y) is reffered to as the Jacobian of the transformation.

Example:

Let X ber.v. having pdf f(x) = 2x, 0<x < 1. Definether.v.
Y = 8X3. Find the pdf of Y.

A={x:0<x <1}

B={y:0<x<8}

y = u(x) = 8x°
x=W(}’)=%i/; |]|_|__%__2
=g =flwM)ll = Zgi/;d%)z - 6%?

11



Example:
Let the r.v. X~U(0,1) show that r.v. Y = —2In x has a Chi square
distribution with 2. d.f.

y= u(x) =2lnx ~x= W(y) = e V/2

]ZZ_; z_%e—y/z
£ 90 = FwM) = 1.5e/20 <y < oo

~Y~x%(2)
Example:

m 7T

Let y~U(——,—) . Show that Y = tan X has a Cauchy distribution.
272

f&x) =

y =u(x) = tanx then x=tan 'y ifx=-w/2then tan(-—m/

1 with Ty <l
n/2—(-1/2) = wi 2 X3
2) = —o0 ,andifx = m/2 then tan m/2 = o
g(y) = f(tan™" y)|/|

]_dx_ 1
_dy_1+y2

g = —w<y<o

w(1+y2)

In the bivariate case, let y; = u,(x4,x,) and y, = u, (x4, x,) define a one -to-

one transformation that maps a set A in the x; x,- plane onto a set B in the y, y,-

plane if we express each of x; and x, in terms of y; and y,, we can write x; =

w1 (1, ¥2), X2 = wo (¥4, ¥2).

The Jacobian of the transformation will be

dx; dxq
dy; dy,
dx, dx,
dy; dy,

12



Lecture 4
The joint pdf of ¥; = u;(x1,x,) and Y, = u,(xq,x,) is g(yq, y2) =
h[Wl(yliyZ);WZ(yliyZ)]ljl (yliyZ) € B

And the marginal pdf g, (y,) of Y; can be obtained from g(y,, y,) by
integrating on y,, and the marginal pdf g,(y,) of ¥, can be obtained from

g (1, y2) by integrating on y;

Example:

Let y, and y, denote ar.s. from U(0,1). The joint pdfis then f(x;,x,) =
flx)f(x) =1 with 0<x;, <1

LetV;=X;+X,andY, =X, — X, 0<x,<1
Find the joint pdf of ¥; and Y,
A={(x,%,):0<x, <1, 0<x,<1}

To determine the set B onto which A is mapped under the transformation, note

thaty1+y2=x1+x2+X1_Xz =2x1

Y1— Y2 = X1+ X3 — X + x5 =2x,
1
x; =wi(y1,¥2) = 5(}’1 +¥2)

1
Xy = Wo(y1,¥2) = 5(}’1 —¥2)

Xz
R Y 1,1
(1,1) K
2
X:=0 X.=1 \U/;\x };
B (2,0)
X, =0 X1 P Ya
SN A
» A
N4 4
¢
(1I_1)

13



Now to determine the set B, the boundaries of A are transformed as follows:
1

X =020=-01+y) >y =—n
1

X =121=-1+y) =y =2-n
1

X=020=-01—y) >y =0

1
X=121=-(1—y) >y, =y —2

dxl dxl 1 1
J= dy, dyz| _ |2 2 |__1 1_ 1
dJ’1 dyz 2 2

90Lys) = 501 +¥2).5 61 = y)| U

=1-%=% (1 —y2) €B

= 0 e.w.

Where B = {(y1,y,):0<y, <2, —-1<y,<1}
Example:

Let x4, x, be ar.s. of size n = 2 from N(0,1).
DefineY; = X; + X, and Y, = X; — X, . Find the joint pdf of ¥; and Y, and

show that ¥; and Y, are stochastically independent.

1 1
fO,x) = fOr)-f(r) = —exp [ -5 (2 +1,2)| —e0<x <o
Vi =% +x; =12
VYo = X1 — Xy A={(x,x,) —00 < x; < 0,i = 1,2}

B ={(y1,y2):—o0 <y; <oo,i = 1,2}

1
y1ity:=2x = x 25(3’1 +¥2)

1
Vi = Y2 = 2% = % = - (y1 = ¥2)

dxl dxl 1
J= dy, dy;| _ |2 2 |_ 1 1_ 1
dy, dy, 2 2

The joint pdf of Y; and Y, is

14



I, y2) = f (1 31 +32) 2 1 —¥2) ) Ul
=—exp|—5(S0n +32)? +;00 —¥2)?)] 3
=—exp |- (0% + 202 + 32D +2 00— 1))
= % exp -2 (2 2n? + 2,0)) 2

=—exp [ (y12+y2 )] %

=—exp[——(y1 + 2 )] —oo <y <ooi=1.2

= a2
gn) = f_oog(}’pYZ)dYZ = € ol f o dy,

1 1 w1 _17%

:\/ﬁ\/z_ 2 2 f—oo\/ﬁ\/— e 2z dyz
1 _iyi
_\/ﬁ\/z_e 2 2 —oo<y1<oo

That is Y; ~N(0,2) similarly Y,~N(0,2) and g(y;,¥y,) = g1 (v1). 9.(y,)
Therefore Y; and Y, are stochastically independent.

Example: Let x4, ¥, be arandom sample of size n = 2 from exponential

and

distribution with A = 1. Define the random variables Y; = —
1 2

Y, = x; + x, . Find the joint and marginal pdf’s of ¥; and Y, and show that ¥;

and Y, are stochastically independent

fxy,x) = e17%2 = g~ (ratx2) 0<x; <00 i=1,2
A={(x,%,)0<x;<o,i=12}
A={(y,y):0<y, <1, 0<y, <o}

x1

x1
V1= =>y1=;=>x1=y1y2

Vo=X1+ Xy D Yo =Y1Y2 T X = X3 =Y — V12

=y,(1—yy1)

15



dx,; dxq

d d Y2 Y1
J= o an| =12y, 12y, ==90 =) +mys =y —yiyz +
dy, dys
Y1¥2 = Y2

w9, y2) = 1y ¥ — y1y2)l|
=y,e 2 0<y;<1,0<y, <o

90 = [ g0 y)dy, = [ v 2dy, =1 0<y, <1

1 1 _ -
9202) = [, 91, y2)dy = [ y.672dy; =672 0<y, <o
That is Y; ~V(0,1) and Y,~G(1,2)

G1(01)-92(¥2) = y2e772 = g(y1, y2)
~ Y, and Y, are stochastically independent
Example: Let y, and y, have the joint pdf
Forun (X1, x2) = A2e~Hxa+x2) x; > 0,x, >0
=0 e.w.
Find the joint pdf of Y; and Y, if Y, = y; + yo and Y, = y,
A={(x;, %)%, >0,x, >0}

B={(y1,y2):0>y, <y;,0 <y; <oo}

x>0
Y1 = X1+ X Y2 = X yi—y2>0
X1 =Y1 1TV Xy = Y2 Yi=>Y2 0T Y2 < Vg
ax;  dx;
_ldyy dys| |11 -1
J=ln oa|=lp 11=1
dy, dy;
S 9L y2) = fn —y2,y2)- 1
= 270 1 = )220 0<y, <y <o

16



The marginal pdf of Y; is
910 = [ g, y)dy, = [ 22 dy,
= e~ foyl dy, = F2e™M1y,]%,

=1y, e y; >0
Exercise :

Let y-, and have in dep gamma with parameters a, 8 and 3, 8 respectively.

X1

Consider Y; = and Y, = x; + x,. Find the joint and marginal pdf’s of ¥}

X1+x;

and Y, and show that they are stochastically in dep.

=~ Y; and Y, are stochastically in dep.

17



Lecture 5

The marginal pdf of Y; is
910 = [ g, y)dy, = [ 22 dy,
= e~ foyl dy, = F2e™M1y,]%,

=1y, e y; >0
Exercise :

Let y-, and have in dep gamma with parameters a, 8 and 3, 8 respectively.

X1

Consider Y; = and Y, = x; + x,. Find the joint and marginal pdf’s of ¥}

X1+x;

and Y, and show that they are stochastically in dep.

=~ Y; and Y, are stochastically in dep.

Gamma Distribution:
X ~ I'(a, 8) = Gamma(a, )
The corresponding probability density function in the shape-rate parametrization is

A% 2 1 Bz
f(z;a,B) = - il forz >0 a,8>0,
I'(a)

where I'( ) is the gamma function. For all positive integers, I'(a) = (a — 1)1

The Beta Distribution

Let X; and X, be two independent random variables that have gamma
distributions with parameters (a, 1) and (£, 1) respectively. The joint pdf is

h (xq1,%,) =
B>0.

1
I'(e) T(B)

x4 x,f e < x;<o0,i=12 a>0,

LetY; = X; + X, and ¥, =

XL Show that Y,~Beta(a, B).

1+X3

17



A={(x,%,)0<x; <o0,i=1,2}
B={(y1,y:):0<y; <o0,0<y, <1}

v =u(xq, %) = %1 + xp

X1

Vo = Uy (xy,x5) = o

Hence,

X1 =y1y2 and X, =y, — V1Y, = y1(1— y3)

d d ) Y1
J=lax dn| =12y, —y|= V2= +ny.=-n
dy: dy;
1 _ — —
9IOLY2) = Vivgr (12" Uy (1 —yy) 1F e

_ y Tt A—y)ft a+pf-1 ,-y
= T TR V1 e 1 0<y; <o0,0<y, <1

0{—1(1_ )ﬁ—l o0 _ _
9:02) = Z o ra— Jy e dy,

_ I(@+pB) a-1714 _ -1
RO y2' T (1 —ys) 0<y, <1

This pdf is that of a beta distribution with parameters a and .

Since g(1,¥2) = 91(y1)- g2(2), the pdf of ¥, is
1
'(a+pB)

g1(y1) = 9P le™ 0 <y <o

Which is that of a gamma distribution with parameter values of « + B and 1.

Assignment: Find the mean and the variance of the beta distribution.

18



- Lecture 6
Definition;

Student’s t-distribution has the probability density function given by
w1

1) = ‘/1;—,,1()_)(1 v2) 7

2

where v is the number of degrees of freedom and I is the gamma function.

Theorem
Let W denote a random variable that is N(0,1); let V denote a random
variable that is )((Zn); and let W and V be independent.

w T . .
ThenT = \/ﬁ has a t distribution with n degrees of freedom. Its pdf is

9 = 7= F(n/Z[)(?:jgz//Zr]L)(”+1)/2 TSt <®

Proof:

The joint pdf of W and V is

h(w,v) =\/%_ﬂe_%wz W vrles —o<w<o,0<v <o
Define a new random variable T = \/“;l;_n

w . .
Lett = \/ﬁ and u = v define a one-to-one transformation that maps
A={(w,v)i—00 <w < 00,0 < v < o}onto
B={(tu):—o0<t<owl<u<own},

Sincew =t /u/nand v =u

N
_at au| _ |- =—= _Vu

]_ dv dv| — n n 2Ju \/ﬁ
dt du 0 1

Accordingly, the joint pdf of T and U is

g(tw =h(5%,u). 1]
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- o ()

n

The marginal pdf of T is

9:(0) = [ g(t,wdu

o0 1 (n+1)_

ZIOWu 2 1exp[—%(1+§)]du

2
Letz=2[1+t—]thenu=2—z2 and du = szz
2 n 4

1 2 = 2
. o0 zZ —-Z
gl(t) = fo mr(g)zn/z <1+§> e <1+ﬁ> dz

1 1 00 -1 —
= 2D/2 (P e 7 dz
/_ﬂnr(%)z(n+1)/2 ( tZ)nTH 0

Thus, if W~N(0,1), V~)((2n), and if W and V are independent. Then

w

[V/n ~t(n)

It is, in general, difficult to evaluate the distribution function of T. Some

T =

approximate values of p(T < t) = f_too g1 (w)dw are found for selected values

of n and t in special tables. The t distribution is symmetric about t = 0. That is
E(T) = 0 where n > 2. When n =1 the t— distribution reduced to the
Cauchy distribution.
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Lecture 7
Example
Let X~t(;) ,then
P(X < 1.415) = 0.90
And P(X < —1.415) = 1 — P(X < 1.415) = 0.10

Theorem

n

n-2"’

Let T~t(y.Then E(T) = 0,n = 2 and Var(T) = n=3

Proof

Using the definition of T and the independence of W and V

E(T)=E Wi E(W)E <ﬂ> =0

\/Z VV

n

Since W~N(0,1) , E(W) = 0,Var(W) = 1
Var (T) = E(T?) — [E(D)]?

2
2\ _ w _ 2 1
E(T?) = E(W) = nE(W?)E (;)
Ew?) =1
- 0o 1 _ 2_1 _r
E(Vl)zfomleZ e z2dv
2
. 1 co 2_1)_1 _Y
e VT e
Lety = g, then v=2yand dv=2dy
1N 1 00 E—1)—1 - _ 1 —1n(n
EV™) = F(%) 2m/2 fO (2y)(z e 2dy l“(%)2"/2 27 F(z 1)

Ev)=2mr(2-1)= (erinl)

r(3) (1)

RecallthatT'(a) = (o« — DI'(a — 1)
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E(T?) = n E(W?) E (5)

E = Var (T)

) 2y — 1
“E(T?) =n1l—

The F- distribution
Theorem:

If U and V are independent chi-square random variables with n and m degrees
of freedom respectively, then

F = U/m has an F- distribution with n and m d.f.
V/m

Proof:

The joint pdf of U and V' is

n u+v

. 1 —_—1yy——1 ——
h(u’v)_r(%)r(%)z(mm)/z 2z V2 Te : O<u<ow,l<v<om
. . U/n
Define the new random variable W = —
V/m
The equations w = :/L:l and z = v define a one-to-one transformation that

maps the set A = {(u,v): 0 < u < 0,0 < V < oo} onto the set
B={(w,2):0<w<,0<z< o0}

. u v n . .
Since —= Wzthen u= sz and v = z. The Jacobian is

du

du

n n
_law dz| _ |72 —wW| _n
] = v  dv| — | m _EZ
—_— — 0 1
dw dz

The joint pdf of the random variables W and Z is

L
)2

The marginal pdf of W is g, (W) = fooog(w, z) dz

L —5(£w+1
Z2 e 2\m

1

(w,z) = -
OGO

(— wz
m

)=,

m
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—Z 2 2
lety = - (m w +1)then z v
2
dz = (%w+1) dy

= L D) O<w<oo
rGr(3) (1epw) 2
/

This pdf is usually called an F-distribution and the ratio F = ‘l/]/—:l has an F-

distribution with n and m d.f. Approximate values of P(F < b) = fob g1 (w)dw
are available for selected values of n,m and b.

Example:

Whenn =7,m = 8,P(F < 3.50) = 0.95

When n =9,m = 4,P(F < 14.7) = 0.99

Remark:

i = um 1_vm
Since F = m F(n,m), thenF =T F(m,n)

For example, if F~F(4,9) such that P(F(4,9) < ¢) = 0.01

ThenP( ! >1)=0.01orP(

1 1
F(49) ~ ¢ = _) =0.99

F(49) — ¢

Which is equivalent to P (F(9,4) < %) = 0.99
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From F tables = = 14.7 . ¢ = — = 0.0682
c 14.7

Theorem

If X~F (n,m), then E(X") = (m)r +r)r(—) m> 2r
T n/ o r(3)r(3)

Proof

. _U/n 2 2
Since X~F(n,m), then X = vim where U~x(,y and V~xin

E(X") =E (U—/”)r - (%)r EQUT) E(V)~"

V/m
EWUN —f u’ f(u)du—f u’ wr e T du
(5)2(2)
foo —+r 1e 2 du

F(2)

Letyzg thenu =2y and du = du = 2dy

E(UT) = —= f @2y)z"" e 2dy

F(E)

P e dy = (B4 )

( ) (3)

EVT)=[ v f(v)dv

Letyzg thenv =2y and dv=2dy

1

r(z)2lz)

E(V-T) = [Py e 2dy
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_ m?*(n+2)
T n(m-2) (m—4)

m?(n+2) _ m?
n(m-=2)(m-4) (m-2)2

“Var (X) = EX?) — [E(X)]? =

_ m?#(n+2)(m—-2)-m?n(m-4)
o n(m-2)?(m-4)

m?[(n+2)(m-2)-n(m-4)] m?(nm+2m—2n—4—-nm+4n)

n(m-2)?(m-4) o n(m-2)2(m-4)

_ m?(2m+2n-4) _ 2m?*(m+n-2)
T n(m-2)2(m-4) n(@m-2)2(m-4)

25



Lecture 9

Order statistics

Let the random variables X3, X,, ..., X;, form a random sample of size n from a

distribution for which the pdfis f (x) and the distribution function is F (x).

We denote the ordered random variables Y; <Y, < --- <Y, the order statistics of
that sample. That is:

Y; is the smallest of X4, X,, ..., X,

Y, is the second smallest of X, X, ..., X,

Y, is the largest of X;,X,, ..., X,

The sample range R is the distance between the smallest and the largest
observation R =Y,, —Y; is an important statistic which is defined using order

statistics.
The joint p.d.fof ¥}, Y,, ..., Y, is

MfOIfFG) - fOn) —o<y; <y, <<y, <
0

g(yl;yz;---;yn)z{ 0. W

The multiplier n! arises because yjy, ..., ¥, can be arranged among themselves in n!

ways and the p.d.f for any such single arrangement amounts to [[}-, f(¥;) .
Definition
The largest value Y,, in the random sample is defined as follows

Y, = max{X,, X,, ..., X,;}
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For every given value of y(—o0 < y < o)
G,(y) =P, <y) =P(X, <y,..X, <)
=PX, <y)PX, <y)..P(X,,<y) Xiindependent
= [FO)I"
The p.d.fofY,, is
In) =n[FOII" 7 ) —o0 <y, <o
The smallest value Y; in the random sample is defined as follows
Y, = min[ X1, X, ..., X, ]
For every given value of y(—oo < y < o)
() =P <y)=1-P(Y;>y)
=1-PX, >y, X, >y, ..., >Y)
=1-[1-FO)]"
The p.d.fofY; is
g1(y) =n[1-Fy)]" ' f(y1) —o<y; <o
Definition

LetY; <Y, <. <Y, be the order statistics of a random sample of size n from a
distribution of a continuous type with distribution function F(x) and p.d.f f(x) =
F'(x). If Y, denote the rth order statistic, then the pdf of ¥, is
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!
9:00 = =yror=yy; O™ (L= FOOI""fG)

Theorem:

For a random sample of size n the distribution function of the rth order statistic is

G- () = z": (7) [F(y)V 1= F(y )]/
j=r

Example:

let V; <Y, <Y;<Y,<Y; be the order statisticc of a random sample

X1, X,,X3,X,, Xs of size n = 5 from a distribution with pdf f(x) = 2x,0<x < 1,
then Fx(x) = [ f(t)dt = 2%]36 =x2,0<x<1,

That is Fx (y) = P(X < y) = y2. Find:

L g1(r) =nl[1-F)I" ' f () = 5[1 - yi]* 2y, = 10y, [1 - ¥7]*

G =1-[1-FO)I"=1-[1-yf]° 0<y;<1

2. gs(s) = 5[Fs)>" f (¥s) = 5[y2]*2ys = 10y2 0<ys <1

Gs(¥s) = [Fs)]° = [¥5]° = y5°

3. 9:00) = o=y [FORI 1= FOII"F ()

5
9:v) = — WiP1— v Qy,) =40y/(1—yf), 0<y, <1

31!

610 = 55 () PO 11~ P
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Lecture 10

Q)21 11 - yA* + Q) 21° = 521 — y2) + vi°

4P<Y<1>_5<1> (3) (1)10_15 1 1 16 1
' t=2/) 7 7\2 4+2 _4256+1024_1024_64

Example:

Let X; and X, be a random sample from a distribution with pdf
f(x) =e™,0 < x < 0o, What is the density of ¥, = min(X;, X,).
F(x) = foxe‘tdt =1-—e*

g ) =n[1-FOI"f()

=2[1—-14eV1]e V1 =2e"21 0<y, <Y,

Finally, the joint pdf of any two order statistics say ¥; <Y is

n! j-i-1

9:i(yiyj) = DG =Dl [FIYF(y;) — F(v)]

[1=FO)]" For ()

The joint pdf of (¥;,Y,,) would be given by

n!

I ¥n) = 5y FOR) = FOOI" fOf () — 0 <y, <yp <o

Example

Let Y; <Y, < Y; be the order statistics of a random sample of size n=3 from a

U(0,1). Find the pdf of Z; = Y; — Y;; the sample range.
Since X~U(0,1) ~ F(x)=x, 0 <x<1
The joint pdf of Y; and Y5 is
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91301, ¥3) =2 [F(ys) = FDP™2 f(y0). f(3)

= 6[y; — ] 0<y; <y; <1
Inadditionto Z;, = Y; —Y,,letZ, =Y;.

The inverse function of z; = y; — y; and z, = y3 are

Y1 =Z;—zyandy3 =7,

The corresponding Jacobian of the one-to-one transformation is

oy

_ |9z, 0z -1 1y _

A U
0z, 02z,

Thus, the joint p.d.fof Z; and Z, is
h(Zl,Zz):6Z1 |_1| :6Z1 O<Z1<Z2<1
Accordingly, the pdf of therange Z, = Y; — Y] is

1
hl(Zl) = f 6Z1dZ2 = 6Z1[Z2];1 = 6Z1[1 - Zl]’ O < Zl < 1
Z1

Definition

The sample median is defined to be the middle order statistic if n is odd and the

average of the middle two order statistics if n is even. That is

Y n+1 when n is odd
(=)

Yins2) + Yin/2)+1
2

m )
whennis even
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Example:
Let Y; <Y, < Y; be order statistics having pdf f(x) = e™,0 < x < 0. Find

1.The jointpdfof¥; <Y, <Y;

91, Y2,¥3) =3 f (1) f(y2)- f(ys) =6 e e7r2e™3

=6 e~ 1ty2+ys)
2.The marginal p.d.f'sof ¥; and 3
g1 =n[1=Fy)" f) =3[1-(1—e?1)]Pe™
=3e" >0
93(¥3) = n[F)]" () = 3[1 — e™3]%e™s
=3e7[1-2e™V +e™2]  y; >0

3.The joint p.d.f of ¥; and Y5

9O y3) == [F(r3) = F)] £ f(s)

= 6[1 — e_yS — 1 _|_ e_yl]e_yl e_yS — 6e_(y1+y3) [e_yl — e_yS] 0 < yl < y3 < o0

4.The p.d.f of the median and the value of the median.

Ynan =1, =m
2

92(y2) = 1?—;, [FOIIL = Fy)lf (y2) = 6[1—e™2[1 -1+ e™2]e™2

= 6e"22(1 — e772) 0<y, <o
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Lecture 11
F(m) = F(Y,) =3

1—e™72 =§=>e‘3’2 =% = -y, =ln%=ln1—ln2

~ Yy, =m=1n2 (median)

P(Y, >m) = [ g(y))dy, = [, 31 dy, = —e™1]
— _[0 _ e—3ln2] — eln273 _ % _%

Example:

Find the probability that the range of a random sample of size n = 4 froma U(0,1)

is less than%.
Wehave f(x) =1, 0<x<1.ThenF(x)=x

Let Z, =Y, — Y, denote the sample range and we will find P (Z1 < %)

901 ¥s) == [Fr) = FDP FOn)f )
=12 [y, — »1]? 0<y; <y <1

Let Z, =Y, —Y,and let Z, = Y,. The inverse functionsof z; =y, —y, and z, = y,

arey; =z, —z;andy, = 2z,

oy oy

|0z 0z, -1 1] _

1= o ow|~lo 2=
dz; 0z,

h(zy,2,) =12 [z, — 2z, + z,]%. |-1| = 12 z?2 0<z,<z,<1
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v g(zy) = le 12 zf dz, = 1227 [2,];, = 122f[1—2z], 0<z <1
1
Hence

P(zl<5) f1/212 2(1—Z1)dZ1—12f z2 —z3 dz,

1 1

— 12 [___ — 12 [421 321]0

=4(3)-3(3)=%2==

Assignment

1l.LetY; <Y, <Y; <Y, betheorderstatistics of a random sample of size n=4 from

a uniform distribution with pdf f(x) = 1,0 < x < 1. Find the pdf of Y3 then find
1 2

p (g <Y< ;)

2. Let X4, X,, ..., X;, be arandom sample from a U (0,1).

a. Find the pdf of the kth order statistic Yx.

b. Find the joint pdf of Y,and Ys.

3. LetY; <Y, < Y;be the order statistics of a random sample of size n=3 from a
uniform distribution with pdf f(x) = %, 0<x<#6.Find

1. The joint pdf of ¥, Y,, and Y5

2. The marginal pdf of Y; and Y;.

3. The joint pdf of Y; and Y.

4. The pdf of the median and the value of the median.
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The Moment Generating Function(mgf) Technique

The moment generating function method is based on the following uniqueness

theorem.
Theorem

Let My (t) and M,,(t) denote the mgf's X and Y, respectively. If both mgf’s exist

and M, (t) = M, (t) for all values of t, then X and Y have the same pdf.

This method can also be used to find the sum of two or more independent random
variables. For example, if X and Y are independent random variables then

My,y (t) = EetC*) = EetX Ee' = My(t). M, (t)
Example:

Let X~Poisson(A,) and Y~Poisson(A,). If X and Y are independent, what is the
pdfof Z =X +7Y?

My(t) = Ee™® = eh(e™-1)  and My (t) = E e = e?z(e'-1)
Further X and Y are independent, then
M1y (£) = Mx(¢). M, (t) = ehi(ef-1) ghale-1)
= o) (et-1)
Thatis X + Y~Poisson(1; + A,). Hence the pdfof Z =X + Y is

e~Mitd) () +2,)?

z!
0 o.w

h(z) = z=01,2,..
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Lecture 12

Example

What is the pdf of the sum of two independent random variables each of which
isgamma (a, 8)?

Let X~gamma (a, 0) and Y ~gamma («, 8)

My(®)=(1-6t)y"% and M, (t) =(1—-6t)™“

Since X and Y are independent

Mysy () = Mx@ M, (1) = (1 -66)™* (1 - 6)™" = (1 — 6t)7*¢

X +Y~gamma (2a,0)

Example

Let X~binomial(n, p), find the probability distributionof Y =n — X
My(t) = EetY = EetX) = ot | o=tX = Nt M (—t)

Since My(t) = (@ +pe")*andqg=1—p

Mx(—t) = (q +pe™)"

Hence

My(t) = (e)" (q +pe )" = (qe" + p)"

~ Y~binomial(n, q)

Example

Let X; and X, be independent random variables with X;~N(y;,0?) and

X,~N(u,, 0%) respectively. Let Y = X; — X,, find the pdf of Y.

My (t) = EetY = Eet17X2) = FelXi fo—tXe X1, X, independent
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2

crlzt) (_ azztz)
) exp Ut + 5

(o2 +0'2)t2 ]

= exp (H1t +

= exp [(.U1 )t +
Hence Y~N(uy — piy, 0 + 04)
Theorem-1

Let X5, X,, ..., X, be independent random variables having respectively, the normal
distribution N(ui, al-z),i =1,...,n. The random variableY = a; X; + a, X, + --- +
a,X,, where a,,a,, ...,a, are real constants, is normally distributed with mean
a, iy + ax, + -+ a,u, , and  variance  a?0? + a30? + .-+ d’of

i.eY~N(TL; a;p;, Yy a?o? )
Proof

MY(t) — E etY — Eet(a1X1+a2X2+“‘+aan)

= E et®X1 [ ett®Xz | FelfnXn =TI, F e'%Xi  X;are independent

Since X~N(y, 0?)

th
M, (t) = Eet* = exp (ut + )
Hence
Eet@iXi = exp (Hl(a £) + l(a t)? )

£ (a;t)?
& My () = [Ty exp [ ()t + 252

(O aizaiz)tz]

2

= exp | (T @)t +
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But this is the mgf of a distribution that is N(XI-; a;u;, Yo aZ0?). Thus Y has

this normal distribution.
The next theorem is a generalization of theorem (1).
Theorem - 2

If X;, X5, ..., X,, are independent random variables with respective mgf’s
My (t),i = 1,...,n, then the mgfof ¥ = }I', a;X;, where ay, ay, ..., a, are real

constants, is My (t) = [[;2; My, (a;t)
Proof
My(t) = EetY = Fet(a1X1+azXo++anXy)
= EeMtXife%tX2  FeWnltXn  X. gre independent
Since
Eet¥i = My (t) , also Ee®'*i = My (a;t)
Thus, we have that
My (t) = My, (a,t) Mx,(a,t) ... My, (apt) = i1 My, (a;t)
Corollary

If X, ..., X,, are observations of a random sample from a distribution with mgf
My (t), then the mgfof Y = YL, a;X;, where a;, a,, ..., a,, are real constants, is

My (t) = [1iz; Mx,(a;t).

a. Leta; =1,i =1,...,n, thenthe mgfof Y = Y7, X; is
My (t) = [1i=1 My, () = [Mx (O]"

b. Leta; =

S e

,i = 1,...,n, then the mgf of X =% X s
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Mg(t) = [1i=1 My, (%) = [MX (%)]"

Example
Let X;, X5, ..., X;, denote the outcomes of n Bernoulli trials. The mgfof X;,i =
1,..,n,1s

My, (t) = (1—p) + pe' = q+pe’,whereq = 1 —p. IfY = 3, X;, then
My (8) = [1izy My, () =T12:(1 — p + pe®) = [1i21(q + pe") = [q + pe]"

Hence, My (t) = [Mx(O)]" = [q + pe]"
Thus Y~binomial(n, p)

Example
Let X;, X,, X5 be the observations of a random sample of size n = 3 form the

exponential distribution having mean f3.
f(x) =% e B x>0
1 1
My (t) = T’ t < 7
1.The mgfofY = X; + X, + X5 1s

My(0) = [My@®]" = [1-pO' P =(1-p0)7°
Which is that of a gamma distribution with @ = 3 and 8 i.e Y~gamma(3, B)

2.The mgfof X = (X; + X, + X3)/3 is

a0 = e () =[(1-2) T = (1-2) e <

Hence X~gamma(3,8/3 ).
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Lecture 13

Theorem - 3

If X;, X,, ..., X,, are observations of a random sample of size n from the normal

distribution N (u, 02), then the distribution of the sample mean
X =30, X /nis N(u,0?/n).

Proof

242
M, (t) = exp (ut + G; ) . From theorem (2)

Mx(© = M (5)] = fexp [u (&) + =)

(a2 /m)t?
-

= exp {ut +
Hence X~N(u,0?/n)
Theorem - 4

Let X;, X5, ..., X;, be independent random variables that have respectively the chi-

.....

.-+ X,, has a chi-square distribution with ry + 7, + ---+1;, degrees of freedom.

Thatis Y~y2(ry + 1, + -+ 13).
Proof

M, (t) = Eet¥ = EetXitXat+Xn) — [ otX1 otXa  otXn

= E et 1 EetXz  FEet¥n X; are independent
—(1-2t)"2 (1=-2)"2..(1=20)"2 t<s
Thus
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My(t) — (1 _ Zt)—(r1+r2+---+rn)/2

But this is the mgf of a distribution that is y*(r; + r, + --- + 7;,). Accordingly,
Y2 (Biea 1)
Example

Let the random variable Z~N(0,1). Use the method of mgf to find the pdf of Z2.

© tz? _ (® _tz2 1 722
Le¥ f(@dz=|__e = dz

M,(t) = Ee”" = |

2

2 z
o 1 —Zz(l—t) o 1 —Z—(l—Zt) o 1 T
= —c 2 dz = —_—e 2 dz = — e 202071z
f_oo 27T f—OO 21T f—OO V21

1 1 z?
co B
= - — — e 20-2071(z

(1-26)Z P \2m (1-2t)"Z

The integrand of the integral is a normal pdf with mean zero and variance

(1 — 2t)~! and the integral is equal to one. Hence

1

1
G- (-2

M, (t) =

~ Z%?~gamma G, 2) or x{yy - And forY = 72

1
yi_l e_y/z

)=y r (%) (2)2

0 0.wW

y=0

Theorem - 5

Let X;, X5, ..., X;, denote a random sample of size n from a distribution that is

N2
N(u,0?). Then the random variable Y = Y-, (%) has a chi- square

distribution with n degrees of freedom.
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Proof
Recall that if the random variable Z = % ~N(0,1), then Z*~x(, .

Since X;’s are independent. Hence by theorem (4) withr; = 1,i = 1, ...n the
. _vn 2 _vn (XitH 2 2
random variable Y = }}iL, Z7 = )L, (T) ~ X

Example
Let X; and X, be two independent standard normal random variables. Let Y; =

X; + X, and Y, = X, — X;. Use the mgf method to find the joint pdf of ¥; and V5.

M(Y Y)(tl tz) = EeY1t1+Y2t2 = Ee(X1+X2)t1+(X2—X1)t2
1,12 4

— EeX1t1+X2t1+ XZtZ_XltZ
= Ee(ti~ta)X1 Folti—t2)X; X,and X, are independent

= My, (&, — t5). My, (t; + t;)
. t2
Since X; and X,~N(0,1) , we have My (t) = exp (?)

(t1—t3)?

My, v, (t1, t2) = exp [T] . exp [(t1+2t2)2]

t§—2t1t2+t§+tf+2t1t2+t§)

- xp(F2tatt

= exp (*5) = exp (5) exp ()
= My, (t;) My, (t;)

Hence Y; and Y, are independent random variables and each ~N (0, 2)
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Chapter Two
Limiting Distributions

Sequences of Random Variables

We denote a sequence of random variables X;,X,,.. by {X,}n=1, with a
corresponding sequence of distribution functions F,(x) = P(X,, < x) for each
n =1,2,... . The subscript n make the dependence on the sample size n more
explicit.

When the distribution of a random variable depends upon a positive integer n,

clearly the pdf, cdf and mgf are all depend upon n. For example

- If the random variable X~b(n,p), then f(x), F(x) and M(t) are all
involve n
- If X is the mean of a random sample of size n from a distribution that is

N(u,0?), then X~N(u, 02 /n) depends upon n.

(n—1)52
0-2

Also, the distribution of the random variable Y = ~ )((zn_l) depends upon

n, where S? is the sample variance of this random sample from the normal
distribution.

In the previous chapter we considered various methods of determining the
distribution of a function of random variables, but sometimes, we may face

difficulties in using a particular method.

Example

If X is the mean of a random sample of size n from U(0,1) distribution, then

f(X) - {é ’ <O.XW< '

t_
The mgf of X is given by My (t) = EeX = foletxf(x)dx = et—l,t #0

=1 ,t=0
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Lecture 14

The mgf of X is
n L "
e = 5(e) = [ (] =[] e
=1 ,t=0

Since M (t) depends upon n, the distribution of X depends upon n. But the pdf
of X could not be easily derived. Hence, one of the purposes of limiting
distributions is to approximate, for large values of n, some of the complicated
pdf’s.

Convergence in distribution

Definition

The sequence of random variables {X,,};2; is said to converge in distribution to

the random variable X if: lim E,(x) = F(x)
n—-co
for all values x at which F(x) is continuous. The distribution of X is called the
D
limiting distribution of X,,. Or X,, — X.

Note that by saying X, 2, X, we mean that the distribution of X is the asymptotic
distribution or the limiting distribution of the sequence {X, }. Or we may say that
X,, has a limiting distribution with distribution function F (x).

Example

Let X;, X5, ..., X,, be a random sample from U(0, 8) and let Y,, be the nth order

statistic. Find the limiting distribution of Y.

f(X)={l O0<x<@g 6>0

0
0 o.W.
. y n—11
The pdf of Yy is  gn () = RIFOWI* () =n (%) 2
nyp~1
gn(yn)={ g~ 0<)Yn<¥
0 o.W.

The distribution function of Y,, is
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0 Vo <0
Yn nzn_l yn n
o dz=(—) 0<y,<80

E,(yn) = f
0
1 <y, <o

Since y,, < 0,

. (0 —oo<y, <86
A%F”(y”)_{l 0 <y, <o

Now,

(0 —o<y<#b
F(Y)_{l f<y<ow

is a distribution function, and lim F, (y,,) = F(y) at each point of continuity of
n—-oco

D
F(y). Thus Y,, n=12,..-»Y a random variable that has a degenerate
distribution at the point y = 6.

Definition
The function F(y) is the distribution function of a degenerate distribution at the
valuey = ¢ if

F(y):{o y<c

1 y=>c
That is; F(y) is the distribution function of a discrete distribution that assigns

probability one at the value y = ¢ and zero otherwise.

E.() F)

[y
[y
CD____\‘

0 5 >y 0
Example

Let X;,X,, ..., X;,, be a random sample from a standard normal N(0,1), then

X,~N (0,2). Find the limiting distribution of X.
n
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The distribution function of X is

E (f) = fx ; e—nWZ/Z dw
" —wV2m4/1/n

Let v = vnw then dv = Vn dw

Hence, E,(x) = _\/if\/%

e~V 2dyp

It is clear that

=
N

lim F,(%) =

n—-co

RN RO
x| =
A\VAR |
o O ©

The function

(0 %<0
F(x)_{1 >0

Is a distribution function and lim F,(x) = F(X) at every point of continuity of
n—-oo

F(x). (Note that F () is not continuous at X = 0)

Accordingly, the sequence {X,, };2, converges in distribution to a random variable
that has a degenerate distribution at X = 0.

LY

1

v

1/24

Example
Let X;, X5, ..., X, be a random sample from U(0, 8) and let Y,, be the nth order
statistic. If Z,, = n(8 —Y,,), find the limiting distribution of Z,,.

o n—1 1
gn(yn) =n (y?) 5 0< Yn < 6

Zy
Zy=n(-Y)="T=0-Y,
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6-== 1 1 2\ 1
hn(Zn):n< P ) —=9—n( —Z—) 0<2z,<nb

n

And the distribution function of Z,, is

Gulzn) = [7" 5= (6 —ﬂ)n_1 dw = —=- [ (8 —ﬂ)n_1 ~Ldw

0 0_” n en Y0 n n
n4Zn z

) Gy Bl "T"n_(g)”
Y T - 0 g

0

zZp\

—1_(1_E) 0<z,<nb

0 z<0

n

o G(2y) = 1—( —z—';) 0<z, <nb

1 no < z,
Hence
| ) {0 z, <0
im G,(z,) = Zn
noco M 1—e @ OSZn<OO

z/O0\"
Recall that: lim (1 — L) = ¢—2/0
n—co n
Now
0 z<0

G(Z):{l—e‘z/e 0<z
is a distribution function that is everywhere continuous and lim G,,(z,) = G(z)
n—-co

at all points of continuity of G (z).
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Thus Z,, has a limiting distribution with distribution function G(z); i.e.,

D
Z, — Z, where Z is an exponentially distributed random variable.

Convergence in Probability
Theorem Markov Inequality

If X is a random variable that takes only nonnegative values, then for any value
t>0

p(x 2t) < =2
Proof
E(X) = [ xf (x)dx

= L xf(Odx + [ xf (x)dx

> [ x f(x)dx

> [t f(x)dx because x € [t, )
Hence, E(X)> ¢ [ f(x)dx = tP(X = t)
And

P(X>t) <=2 E(X)

Theorem: Chebyshev’s Inequality

Let X be a random variable with mean y and variance o2, then for any value k > 0

pUX —ul <ko)21-13

Proof

By Markov inequality, we have p((X — p)? > t?) < M forallt >0
Since (X — u)? = t? if and only if | X — u| = t, we get

p((X -2 =) =p(X —pul =) <ZEE foraie>0

0'
Hence P(|X —u| = t) < =
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[.ecture 15

Letting t = ko, we see that

P(IX — | = ko) < =— ==

k202 k2

Hence [1— P(IX — ul| < ko)] <

Or
P(X —ul <ko) 21—

Definition: Convergence in Probability

A sequence of random variables X4, X5, ... converges in probability to a random
variable X if, for every € > 0,

lim P(|X,, - X|<e)=1
n—-co

Or equivalently lim P(|X,, —X| =€) =0
n—-co

P
That is, we say that X,, — X if one of the above limits is true.
Remark:

lim P(|X,, — c| = €) = 0 is often used for the convergence of a random variable
n—-co

P
X,, to a constance ¢ and we write X,, = ¢

Theorem: The Weak Law of Large Numbers

Let X;, X5, ... be a sequence of independent and identically distributed random
variables with u = E(X;) and 62 = Var (X;) < w fori = 1,2, ... .

Then
lim P (

_ P
Or equivalently, X,, - u

X1+X2++X—n_

—,u|26)=0 for every € > 0

n

Proof

= X +Xp+tX

n

2

Recall that E(X,,) = pu and Var(X,) = %
By Chebyshev’s inequality
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P(X, — |z &) < 78 = 2

€2 ne?
Taking the limit as n — oo

— 2
lim P(|X, — u| =€) < lim =
n—-co

n—co ne?
Which yields
lim P(|X, —ul=€)=0
n—-co
Hence X,,n = 1,2,3,... converges in probability to u if 02 is finite which is
P

written as X,, = L.

The weak law of large numbers states that the sample mean X converges in
probability to the population mean u when n is large and 0 < 02 < 0,

Definition: The Strong Law of Large Numbers

Let X1, X5, ... be a sequence of independent and identically distributed random
variables with a finite mean E(X;) = u fori = 1,2, ...c0. Then

P(lim X, = ) = 1

In other words, as n approaches infinity X,, converge to p with probability 1. This
type of convergence is called almost sure convergence.

Example

P
Let Y,~b(n,p), show that 1;—” —-p

P(

i—”—P| > 6) = P(|Y,, — np| = ne)

= P(lYn—an 2%0) <

Y, P
Hence, paind 2
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The Central Limit Theorem (C.L.T)

The central limit theorem is one of the most important results in probability.
We have seen earlier that if X;, X5, ..., X,, is a random sample from N (i, 62),

then X~N (u, 02 /n), and as n increases, the variance of X decreases.

then

Consequently, the distribution of X depends on n. If we let Z = \/_ ,
Z~N(0,1). The C.L.T states that even though the population distribution is far
from begin normal, still for large sample size n, the distribution of the
standardized sample mean is approximately standard normal.

Theorem: C.L.T

Let X1, X5, ..., X, be a random sample of size n from a distribution with mean u
and finite positive variance o2. Then the random variable

X—p _ RXi-np
a/\/ﬁ_ Vno

Has a limiting distribution that is N(0,1). That is

Y, =

llm P(Y,<y)= Oo\/_ e t’/2dt

A practical use of the C.L.T is approximating. Usually, a value of n > 30 will
ensure that the distribution of Y,, can be closely approximated by a normal
distribution; namely

t2
P(Y,<y)=~ [ \/__ e zdt = ®(y)
Example

Let X denote the mean of a random sample of size n =75 from U(0,1).
Approximate P(0.45 < X < 0.55).

For the uniform distribution, E(X) = u = %, Var(X) = 062 = =

The approximate value of

Vn(0.45 — 1) - V(X — - Vn(0.55 — p)

P(0.45< X <055)=P
o o o
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45 —0.50) Vvn(X—u) +75(0.55—0.50)
< o < 1
¥ev) v

= P(30(—0.05) < Z < 30(0.05))

lx/ﬁ(o.
=p T

=P(-15<Z < 15)=9(1.5) — P(—-1.5) = ¢(1.5) — [1 — ¢(1.5)]
=2d(1.5) —-1=2(09332) -1

= 1.8664 — 1 = 0.8664

Example

Let X denote the mean of a random sample of size n = 15 from a distribution

whose pdfis f(x) = %xz; —1 < x < 1. Approximate P(0.03 < X < 0.15).

1

u=EX) =f1x<—x2)dx=;

E(X?) = f_llxz ze) dx =§x =

3
“Var(X) = EX?) - [E(X)]? = 3

003—0 X—u 015-0

Prs 7

= P(5(0.03) < Z < 5(0.15)) = P(0.15 < Z < 0.75)

P(0.03<X<015 =P

= @(0.75) — #(0.15) = 0.7743 — 0.5596 = 0.2138

Example

Let X;,X,,...,X, be a random sample of size n =100 from b(l,%).

Approximate P(48 < Y X; < 52).
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We have u = E(X) = %, and 02 = Var(X) = p(1 — p) :%

Since X~b (1,2 ) then $.X;~b (100,3)

(48 — 0.5) — 100 (%) _ZXi—nu _(52+05) ~100 (%)

vioo 1 Yno vioo [2

P(48<¥X;<52) =P

_ <47.5 —50 § VX, — nu § 52.5 — 50
B 5 Vno 5

= (0.5) — (—0.5) = ®(0.5) — [1 — $(0.5)]

) =P(-05<7Z<0.5)

= 2d(0.5) — 1 = 2(0.691) — 1 = 0.382

Some Useful Theorems on Limiting Distributions

P P
1. If the random variable U,, — ¢, then % -1 c+0

P P
2. If the random variable U,, = c, then ,/U,, V¢ ¢ >0

P P
3. If the random variable U,, = ¢, and the random variable V,, — d, then

P
- U, +V,»c+d

UnPc

-= d+0
Vo d

P
- U,.V,—-cd
4. If the random variable U,, has a limiting distribution and the random

P
variable V,, » 1, then W,, = % has a limiting distribution as that of U,,.
n

Lemma

Let X, X,, ...X,, be a random sample of size n from X with EX?* exists, then

P
YL XF S EXK k=123,

n
Lemma
Let X;,X,,...X,, be a random sample of size n fom X with E(X*) exists and

Var (X) = o2, then
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P —
I. S2502  where S2 = =%(X; - X)?
P —
2. S2., - 02  where S2_; = —%(X; — X)?
Proof

1 =2
1. S2 :;ZXiZ—Xn
: layz P 2 = 1 P
Since ;ZXL- — E(X*) and X, =;ZXL-—>E(X)

Hence (X,)? 5 [E(X)]?
Then

1 _. P
Si = %X — X2 EX?) - [EX] =0
S% iaz
1 = 1 =
2. SE ==X~ X)? =—-N(X; - X)? = =5]
Since
P

P

n n

— 1—>1asn—> oo then S2_; =—1S,%—>1.02
—_— n_

2 P
Hence, S;_1 >0
Theorem

Let X;, X5, ..., X,, be a random sample from X with E(X) = p and Var(X) = o2.
Then

Xp—
T, = SN§~N(O,1) asn — oo

Proof

Xp—it
By the C.LT /T N(0,1) asn — oo,

P
Since S2—>¢g%2asn - o

sz P

and - lasn — o
le2

SZP
and |=—1lasn— o
le2
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Then

Xp—p/o/Vn _ Xn—p

Js2jez  s/\n

Theorem

T, = ~N(0,1)asn » o

Let X;,X5,...,X,, and Y;,Y,, ..., Y, be the items of two independent random
samples of sizes n and m with E(X) = p,, E(Y) = p,, Var(X) = of and
Var(Y) = o;. Then

1. (Xn—Ym)Z—(u;—“y) ~N(0,1) as n,m >
5 Cn=F)—(kety) ~N(0,1) as n,m = o
sz S3
ERET
Proof

2

. By the CL.T X,~N (1, Z) asn - oo

n

and Y,,~N (uy,%z’) as m — oo

— — 2 2
Then X, — Vo~ N (e — 1, Z+2)  asn,m - o0

(Xn_?m)_(lv‘x_lv‘y)
2 2
%%, %y
n m

Hence ~N(0,1) asn,m - oo

2. We have already shown that

(Xn—Ym)— (ﬂx_ lv‘y)

~N(0,1)asn,m — oo

2 g2
o
_x+_y

n m

3 |‘<qN

- si | Sy 0% P
And since |—=+ =/ [—=+—=—>1lasn,m > ©
n m n

We have that

— — 0-.726' O':?/
(Xn_Ym)_(ﬂx_ﬂy)/ ETR

s2 S5 62 o5
\/_x+_y/\/_x+_y
n m n m

~N(0,1) asn,m — oo,
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