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Probability Density Functions: 

A function with values fX(x), defined over the set of all real 

numbers, is called a probability density function of the 

continuous random variable X if and only if: 
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b
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dxxfbxap )()(    for any real constants a < b 

Note: When X is a discrete random variable p(X = a) = fX(a), but 

when X is a continuous random variable p(X = a) = 0. So we can 

look for probabilities of X taking values in intervals. 

   The probability that X takes on a value in the interval [a, b] is 

the area under the graph of the density function. 

   A function can serve as a probability density of a continuous 

random variable X if its values, fX(x), satisfy the following 

conditions: 

1. fX(x) is a piece-wise continuous, with space R that is an 

interval or union of intervals. 
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Example 1: 

If X has the probability density 
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Is fX(x) a p.d.f.? 

1. f(x) ≥ 0 
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Example 2: 



 

Dr. Tasnim Hasan                                                                                                            Lec.3 

 

2 

If X has the probability density: 
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Find k and P(0.5≤ X ≤ 1). 
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Distribution Function: 

If X is a continuous random variable and the value of its 

probability density at t is fX(t) ,then the function given by: 
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  is called the distribution function, or the cumulative distribution 

of X. 

Suppose that fX(x) and FX(x) are the values of the probability 

density and the distribution function of X at x, then: 

)()()( aFbFbXap XX −=   for any real constants a and 

b with a ≤ b. 

Remark: 

If X is a continuous random variable and a, b are real constants 

with a ≤ b, then: 
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)()()()( bxapbxapbxapbxap ===  

= 𝐹𝑋(𝑏) − 𝐹𝑋(𝑎) = ∫ 𝑓𝑋(𝑡)𝑑𝑡 − ∫ 𝑓𝑋(𝑡)𝑑𝑡 = ∫ 𝑓𝑋(𝑡)
𝑏
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Also, for every  𝑎 ∈ ℝ , 

𝑃(𝑋 > 𝑥) = 1 −  𝑃(𝑋 ≤ 𝑥) = 1 − 𝐹𝑋(𝑥) 

Finally, for continuous random variables, 

dx

xdF
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)( =  ,    where the derivative exists. 

Remark: 

We will use the term probability density function to represent 

both discrete and continuous random variables. 

Example 1: 

   Find the distribution function of the random variable X of the 

last example.  
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To determine p(0.5 ≤ X ≤ 1) = F(1) – F(0.5) 

                                              = ( ) ( )5.13 11 −− −−− ee  = 0.173 

 

Example 2: 

Find a pdf for the random variable whose distribution function is: 
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Example 3: 

Let X be a random variable with: 
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Example 4: 
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Let the random variable X be the length of life of an electron 

tube. Suppose that the probability model foe X is: 
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1. Is f(x) a pdf? 

2. Find the probability that this electron tube lasts more than 100 

hours. 
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)(xf X is a pdf. 
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Or  P(X> 100) = 1-P(X≤ 100) = 1- FX(100) = 1- [1- e-1] = e-1

 

 

H.W.: 

1. Show that the following function is a pdf  
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Find the distribution function and p(3< X <5). 

 

2. The pdf of the random variable X is: 
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Find k, and then find the distribution function of X. 

3. Let X be a continuous random variable with distribution function: 
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𝐹𝑋(𝑥) = {
𝑎𝑥2        0 < 𝑥 < 2
0                   𝑥 ≤ 0
1           2 ≤ 𝑥

 

Find  fX(x) of X , P(1<X<1.5), and P(X ≥0.8). 

4. Let X be a random variable with pdf  

𝑓𝑋(𝑥) = {
𝑘𝑥2       − 1 < 𝑥 < 1

0                          𝑜. 𝑤

 

- Find the value of k and FX(x). 

- Find P(0 < X < 1), P(0 < X ≤ 3), P(X= ½) and P(-1 < X < ½).  


