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Chapter Four 

Discrete Distributions 

Discrete Uniform Distribution 

    If the random variable X is equally likely to be each of the n integers 

1, 2, …, n. Then the pdf of X is:  
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Example: 

Throwing a die once yields the following pdf: 
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Then X has a discrete uniform distribution. 

Example: 

One ball is selected at random from 5 balls numbered from 1 to 5. Find 

the pdf of the number of the selected ball. 

Let X be the random variable of the selected ball, then 
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Lemma: 

If X is has discrete uniform distribution, then 
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Bernoulli distribution: 

If an experiment has two possible outcomes, "success" and "failure" and 

their probabilities are, respectively, p and (1-p), then the number of 

successes Y = 1 or Y = 0 has a Bernoulli distribution. 

The pdf  is given by: 

 p(y)= py (1-p)1-y             y = 0, 1   
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𝑀𝑌
′ (𝑡) = 𝑝𝑒𝑡 

𝑀𝑌
′ (0) = 𝑝𝑒0 = 𝑝 = 𝐸(𝑌) = 𝜇 

𝑀𝑌
′′(𝑡) = 𝑝𝑒𝑡 

𝑀𝑌
′′(0) = 𝑝𝑒0 = 𝑝 

Var(Y) = p - p2= p(1-p) 

The characteristic function is: 

ϕX(t) = E eitx = MX(it) =(1-p)+peit=1-p(1-eit) 

     

Various examples of Bernoulli trials are: tossing a coin (head or tail), 

firing a target (hit or miss), fighting an election (win or not win), playing 

a game (win or lose), etc. 

 

Binomial distribution: 

   The inspection of a single item taken from an assembly line is a 

Bernoulli random variable. Suppose we independently inspect n items and 

record values for Y1,Y2, …,Yn where Yi= 1 if the inspected item is defective 

and Yi=0 otherwise. The random variable 
=

=
n

i

iYX
1

 denotes the number of 

defectives among n items possesses a binomial distribution with pdf   

nxppCxXp xnxn
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In general, a random variable X has a binomial distribution if: 

1. The experiment consists of a fixed number n of identical trials. 

2. Each trial can result in one of two possible outcomes, “success” or 

“failure”. 

3. X is the number of successes among the n trials. 

4. The probability of “success” is constant from trial to trial = p. 

5. The trials are independent. 

Remark: 

The binomial expansion if n is a positive integer is 



Dr. Tasnim Hasan                                                                                                                    Lec. 9 

 

(𝑎 + 𝑏)𝑛 = ∑ 𝐶𝑥
𝑛𝑎𝑥𝑏𝑛−𝑥

𝑛

𝑥=0

 

The mean and the variance of the binomial distribution are: 
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Let n-1= m , x-1 = y 
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Let n-2=m, x-2=y, then 

𝐸(𝑋(𝑋 − 1)) = 𝑛(𝑛 − 1)𝑝2 ∑
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                       = n(n-1)p2[p+1-p]m = n(n-1)p2 

Var(X) = E(X(X- 1))+E(X)- [E(X)]2 

           = n(n-1)p2+ np – n2p2= n2p2-np2+np – n2p2 

           = np(1-p) 

Or, since the random variable X is the sum of n Bernoulli random 

variables, then 
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The moment generating function of X is 
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Using the formula for the binomial expansion with a = 1-p and 
tpeb =
 

We see that 
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for all real values of t. The first two derivatives of MX(t) are: 
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The characteristic function for the binomial distribution is: 

 ϕX(t) = E eitx = MX(it) =[(1-p)+peit]n=[1-p(1-eit)]n 

 

Example 1: 

A large lot of fuses contain 10% defectives. If 4 fuses are randomly 

sampled from the lot. 

a. Find the probability that exactly one fuse is defective. 

b. Find the probability that at least one fuse is defective. 

      p = 0.10,  n = 4 
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E(X) = np = 0.4 

Var(X) = np(1-p) = 0.36 

 

Example 2: 

Find the probability that 7 of 10 persons will recover from a tropical 

disease, if we can assume independence with probability of recovery 0.80. 

x = 7          n = 10         p = 0.8 

20.0)20.0()8.0(120)20.0()8.0()7( 373710
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   In actual practice, binomial probabilities are tabulated extensively for 

various values of p and n, and there exists an abundance of computer 

software yielding binomial probabilities as well as cumulative 

probabilities upon simple command, where 
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Example: 

For n = 10, p = 0.4; find the probability of 3 or more successes. 
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H.W. 

1. Three coins are tossed once. Let the r.v. X denote the number of heads 

that appears. What is the probability distribution of X? Find the 

probability of no heads, one head, two heads and three heads. 

Also find: P(X ≤ 2), E(X), and Var(X). 

2. The probability that a patient recover from a blood disease is 0.6. If it 

is known that 10 people caught the disease. What is the probability that: 

a) exactly 3 people survive.  b) at least 8 people survive.  

Also find: P(2 ≤ X ≤ 5), E(X) and Var(X). 

3. Team A has 2/3 chance of winning a game whenever it plays. If A plays 

4 games, find the probability of winning: 

1) Exactly two games. 2) At least one game. 3) More than two games.  
 


