
Chapter Two 

Joint Marginal, and Conditional Distributions 

 
    The definition of a random vector is a straightforward generalization of 

the concept of random variables. 

Def: Given the probability space (Ω, 𝒜, P), an n- dimensional random 

vector X=(X1, X2, …,Xn) is a function X: Ω →Rn  such that   ∀ 𝜔 𝜖 Ω, we 

have X(𝜔)=(X1, X2, …,Xn)(𝜔)=(X1(𝜔), X2(𝜔), …,Xn(𝜔)). 

 The vector valued function X is a random vector if and only if its components 

Xi is a random variable. 

In other words, a random vector is a measurable function from Ω to Rn  

just as a random variable is a measurable function from  Ω to the real line 

R. 

Discrete Joint Distributions: 

    Def: If X and Y are discrete random variables, the function given by 

fX,Y(x , y) = p(X=x, Y=y)for each pair of values within the range of X and 

Y is called the joint probability function of X and Y. 

  A bivariate function can serve as the joint probability distribution of a 

pair of discrete random variables X and Y if and only if its values, fX,Y(x, 

y), satisfy the conditions: 

1. fX,Y(x, y)  0 for each pair of values (x, y) within its domain. 

2.  fX,Y(x, y) = 1 where the double summation extends over                                                                                                                                                                             

all possible pairs (x, y) within its domain. 

 

Example 1:  

Let X and Y be random variables with the joint distribution: 
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Example 2: 

 Determine the value of k for which the function given by:                 

f(x,y)= kxy             for x = 1,2,3 ;  y = 1,2,3 , can serve as a joint 

probability distribution. 

f(1,1) =k            f(2,1) = 2k             f(3,1) = 3k  

f(1,2) = 2k          f(2,2) = 4k             f(3,2) = 6k                                                                                 

f(1,3) = 3k          f(2,3) = 6k             f(3,3) = 9k 

K + 2k + 3k + 2k + 4k + 6k + 3k + 6k + 9k = 1 

36k = 1      k = 1/36 

Joint Distribution Function: 

Def: If X and Y are discrete random variables, the function given by: 


 
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where f(s,t) is the value of the joint probability distribution of X and Y at 

(s,t), is called the joint distribution function, or the joint cumulative 

    Y      

X   
1 2 sum 

1 2/21 3/21 5/21 

2 3/21 4/21 7/21 

3 4/21 5/21 9/21 

sum 9/21 12/21 1 



distribution, of X and Y. 

Properties of bivariate cumulative distribution function 

1. 𝐹 (−∞, 𝑦) = lim
𝑥→−∞

𝐹(𝑥, 𝑦) = 0   for all y, 

   𝐹 (𝑥, −∞) = lim
𝑦→−∞

𝐹(𝑥, 𝑦) = 0   for all x, and 

lim
𝑥→∞
𝑦→∞

𝐹(𝑥, 𝑦) = 𝐹(∞, ∞) = 1 

2. 𝐼𝑓 𝑥1 < 𝑥2𝑎𝑛𝑑 𝑦1 < 𝑦2, 𝑡ℎ𝑒𝑛 𝑃[𝑥1 < 𝑋 ≤ 𝑥2, 𝑦1 < 𝑌 ≤ 𝑦2] =  

𝐹(𝑥2, 𝑦2) − 𝐹(𝑥2, 𝑦1) − 𝐹(𝑥1, 𝑦2) + 𝐹(𝑥1, 𝑦1) ≥ 0 

3. 𝐹(𝑥, 𝑦) is right continuous in each argument. That is, 

lim
0<ℎ→0

𝐹(𝑥 + ℎ, 𝑦) = lim
0<ℎ→0

𝐹(𝑥, 𝑦 + ℎ) = 𝐹(𝑥, 𝑦) 

 

Example: With reference to example 1 
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Joint Probability Density Function:  

Def: A bivariate function with values fX,Y(x,y), defined over the xy-plane 

is called the joint pdf of the continuous random variables X and Y if and 

only if: 

dydxyxfAYXp
A
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for any region A in the xy-plane. 

A bivariate function can serve as a joint pdf of a pair of continuous 

random variables X and Y if its values, f(x, y), satisfy the conditions 

 1. ∀ (𝑥, 𝑦) 𝜖 R2 ,  fX,Y (x, y)  0       


−



−

= 1),(.2 , dxdyyxf YX  

Example: 

 Show that the following function is a joint pdf. 
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And find p(0 < x < 1/2, 1< y < 2). 

    f(x, y)  0                     for - < x <  ,  - < y <  
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  f(x, y) is a joint pdf 
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Joint Distribution Function: 

Def: If X and Y are continuous random variables, ∀ (𝑥, 𝑦) 𝜖 R2   the 

function given by: 
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where,  f(s, t) is the value of the joint pdf of X and Y at (s, t), is called the 

joint distribution function of X and Y. 

Analogous to the relationship 
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differentiation of FX,Y(x,y) leads to: 
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wherever these partial derivatives exist. 

 

Example: 



If the joint pdf of X and Y is given by: 
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1. Find the distribution function of X and Y. 
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2. Find  p(0.5 < x < 2, -1 < y < 1.5). 
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Example: 

 Find the joint pdf of the random variables X and Y whose joint 

distribution function is: 
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Also find p( 1 < x < 3, 1 < y < 2). 

Since partial differentiation yields: 
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