


Part Two 

Point Estimation 

Consider random variables for which the functional form of the pdf is known, but 

 

A point 

 

Recall that a statistic is a function of a random sample X1, X2 n that is free of 

 

Estimator and Estimate 

Let X1, X2, n 

. The numerical 

 

Example 

Let the random variable X 1 2), then  1 and 

 2. But  and  are the observed 

1 2. 

 

Method of Moments 

Let X1, X2 n be a random sample from a population X with pdf f(x; ), where 

={ 1 2 k} are unknown parameters. Define 



, the rth population moment about 0. And , 

the rth sample moment about 0.

In the method of moments, the first k sample moments are set equal to the first k 

population moments that are given in terms of the unknown parameters. That is 

  ,      ,    

These k equations are then solved simultaneously for the unknown parameters.

Example

Let X1, X2 n be a random sample from the exponential distribution with 

Set E(X) = m1, where  

Hence, 

Example

Let X1, X2 n
2). What are the moment 

2.

We know that for the normal distribution  

Set , where 

Hence, 



Next, we find the estimator of  by setting  

 

Thus,  

Example 

Let X1, X2 n, be a random sample from a distribution with pdf   

 

1. Using the method of moments, find an estimator  

2. If  is a random sample of size n=4, 

 

Solution 

1.  

Set  , where  

We get  and solving this equation 

 

2. , then   

 

H. W. 

1. Let X1, X2 n

the method of moments. 

2. Let X1, X2 n

 

3. Let X1, X2 n, be a random sample from b(n, p). What is the moment 

estimator of p. 



 

Maximum Likelihood Estimation 

 

Consider a random sample X1, X2 n from a distribution having pdf f(x; ). The 

joint pdf of X1, X2 n is  

f(x1, x2 n ; ) = f(x1; ) f(x2; )  f(xn; ) =  

This joint pdf when regarded as a function of is called the likelihood function of 

the random sample.  

L( f(x1; ) f(x2; n; ) =  

When  is replaced by a statistic u(X1, X2 Xn) in the likelihood function L, such 

that   

L[u(X1, X2 Xn)] is at least as great as L( ), then the statistic u(X1, X2 Xn) 

will be called a maximum likelihood estimator(mle) of  and will be denoted by  

= u(X1, X2 Xn). 

In many instances there will be a unique mle  , and often it may be 

obtained by the process of differentiation. 

Example 

Let X1, X2 Xn denote a random sample from a distribution with pdf  

f( x (1- )1-x    x = 0, 1,   0   1 

The likelihood function is 

 



and its logarithm ln  have their maxima at the same value it is 

sometimes easier to . Here 

 

 

 

 

Hence,  that maximizes  That is the statistic  

 . 

Note that 

 

Because 

1. 2 and (1- )2 are non-negative numbers 

2. X is a Bernoulli random variable taking the values 0 or 1and  is 

positive. 

3. The largest value that  takes is n. So, (n- ) is always positive. 

Example 

Let X1, X2 n be a random sample from N( 1, 2). Find the mle of  = ( 1, 2). 



 

 

 

 

 

 

or   1 

Now 

 

 

 



Hence,    is the mle of 2. 

Example 

Let X1, X2 n be a random sample from a geometric distribution with pdf  

      p . Find the mle of p. 

 

 

 

 

 

Hence,   is the mle of p. 

Example 

Let X1, X2 n be a random sample from a uniform distribution with pdf 

   x < , 0<   

Here  



maximum occurs at the left 

endpoint of the interval (yn no larger than , where 

Yn =Max (Xi). 

 is  

Invariance Property of Maximum Likelihood Estimators 

Theorem 

Let  be a maximum likelihood estimator  be a function 

. Then the maximum likelihood estimator ) is given by g( ) . 

In our last example the maximum likelihood estimator of  , the mean of the uniform 

distribution is  

Example 

Let X 2). The mle of  2 is ,  

 

And the mle of -     

Example 

Let X1, X2 n be a random sample from a uniform distribution with pdf  

   . Find the mle of . 



The likelihood function is i  

and for all xi ( . Hence the domain of L(   is 

, where Y1=Min(xi) and Yn=Max(xi). 

 and . And using the invariance 

property of the mle, the mle of  is . 

 

 



 Properties of Estimators 

The Unbiased Estimator 

Definition: Any statistic whose mathematical expectation is equal to the parameter 

 

 

The bias of   is  

Example 

Let  2). 

1. Is the mle  u  

Since , we have E(X)=  2 

Then  . Hence E( ) =  

  is an unbiased estimator of  

2. Is  2? 

 

 

 

 

Therefore, the mle of  is a biased estimator. 

 



Example 

Let  

 

We have seen that for the uniform distribution n=Max(Xi) 

 

 

 

Hence, is . Check! 

 

Minimum Mean Square Error (MSE) 

Definition 

Let  be an estimator of an unknown . The 

mathematical expectation  

 

is defined to be the mean square error of the estimator Y. That is 

 

The mean square error is a measure of goodness or closeness of the estimator 

Y to the true value of  

Lemma 

 

When  is unbiased estimator , that is  , then 

 

Proof 



 

 

 

 

 

Example 

Let  be a random sample of size n from a distribution with 

unknown mean -  2>0. Show that the 

statistics  and  are both unbiased estimators of 

Further, show that Var( )< Var(Y). 

Solution 

We know that  is an unbiased estimator of  irrespective of the distribution 

. 

 

Now 

 

 (unbiased) 

The variance of  is 

 

And the variance of Y is 



 

 

 

 

 

 

Since  , we see that Var( )<Var(Y). 

In statistics, between two unbiased estimators one prefers the estimator with 

the minimum variance. 

Definition  

The statistic Y that minimizes is the one with 

minimum mean square error. And  then 

] is said to be the minimum variance unbiased estimator 

(MVUE). 

 

Consistency 

Definition: Convergence in Probability 

Let {Xn} be a sequence of random variables and let X be a random variable 

defined on a sample space. We say that Xn converges in probability to X 

  if for all >0, 

 



or equivalently, 

 

In statistics, often the limiting of random variable X is a constant. 

 

Theorem (Weak Law of Large Numbers)  

Let {Xn}be a sequence of iid random variables having common mean 

2 Let . Then   

Proof 

We already know that the mean and variance of  is , respectively. 

Hence, have for every  >0, 

 

Taking the limit as n    yields 

 

Hence,   

This theorem says that if n is large, then   

Definition:  Consistency 

An estimator   if it 

converges in probability . That is, if for all >0,  

 

And we write   

If  is consistent, then the probability that the estimator differs from the 

becomes small as the sample size n increases.  

Definition 



An estimator  is said to be  mean squared error 

if  

A sequence of estimators {Yn}  if 

1.  (asymptotically unbiased) 

2.  

Example 

Let  be a random sample from 2). Show that and  

are consistent estimators for 2. 

1.  

2.  

is a consistent estimator for . 

Now 

1.  

 

2.  

 

        

Hence,  is a consistent estimator 2. 

 

Example 

Let  be a random sample from U(0, ). Show that the mle 

= Max(Xi) is consistent estimators for  



We have seen earlier that 

          
And 

 

 

 

 

 

 

Hence, 

=  

 

 

Now 

1.   

2.   

 

 

 



H.W. 

1. Let  be a random sample from exponential distribution 

with pdf ,  x>0. 

a. Find the mle of the parameter  

b. Show that  is unbiased and has variance . 

2. Let  be a random sample from Poisson distribution with 

pdf     

3. Let  be the order statistics of a random sample of size n=3 

from a uniform distribution with pdf . Show that 

 

these unbiased estimators. 

4. Let  be a random sample of size n=3 from a distribution with 

- . 

Show that both  and  

Compare the variances of  and . 

 

 

 

 

  



Sufficiency 

Definition: Let X1, X2, …, Xn denote a random sample of size n from a 

distribution that has pdf ( ; ), . Let Y = u(X1, X2, …, Xn) be a statistic 

whose pdf is ( ; ), then Y is a sufficient statistic for if the conditional 

distribution of X1, X2, …, Xn, given Y= y, does not depend upon . That is

(x , x , … , x ;  )
( ; ) = (x , x , … , x )

Where H(x , x , … , x ) does not depend upon .

Example

LetX1, X2, …, Xn be a random sample from b(1, ). Show that =

is a sufficient statistic for .

( ; ) = (1 )                x=0, 1;    0 <  < 1

The distribution of the sample is

(x , x , … , x ; ) = (1 ) = (1 )

= (1 )

The Statistic = ~ b (n, ) has the pdf

( ; ) =  (1 )         y=0, 1, 2, …, n

The conditional probability 



(x , x , … , x |Y = y) =
(1 ) (1 ) … (1 )

 (1 )

=
(1 )

(1 )
=

1

Note that this conditional probability does not depend upon the parameter 

and the statistic = is a sufficient statistic for .

Remark

If we are to show by means of the definition that a certain statistic Y is or is 

not a sufficient statistic for a parameter , we must first of all know the pdf of 

Y, ( ; ). In many instances it may be quite difficult to find this pdf. 

Fortunately, this problem can be avoided by applying the following 

factorization theorem of Neyman.

The Factorization Theorem (Neyman)

Let X1, X2, …, Xn be a random sample from a distribution that has pdf 

( ; ), . The statistic Y=u(X1, X2, …, Xn) is a sufficient statistic for 

iff we can find two non negative functions, K1 and K2, such that

( , , … , ; ) = [ (x , x , … , x ); ] (x , x , … , x )

where K2(x , x , … , x ) does not depend upon .

Example

Let X1, X2, …, Xn

that 



By using the factorization theorem

( , , … , ; ) =
! !… !

=
! !… !

where = . Hence 

Remark:

In the previous example, if we replace  by , it is obvious 

that 

–

Example

Let X1, X2, …, Xn be a random sample from a distribution with pdf 

( ; ) = , 0 < x < 1. Find a sufficient statistic for .

The joint pdf of X1, X2, …, Xn is

( , , … , ; ) = =
1

In the factorization theorem, let

[ (x , x , … , x ); ] =



and

 (x , x , … , x ) =
1

Since  (x , x , … , x ) is a 

Example

Let X1, X2, …, Xn be a random sample from a distribution that is ( , ),

- > 0 is known. Show that = is a 

The joint pdf of X1, X2, …, Xn is 

( , , … , ; ) =
1

2
( )

Since

( ) = [( ) + ( )] = ( ) + ( )

Then

( ) ( ) = ( )  



Because the first factor depends on x , x , … , x only through , and the 

, hence, according to the factorization 

theorem, the sample mean 

normal distribution.

We now state a theorem that tells us to restrict our search for an unbiased 

minimum variance estimator to functions of the sufficient statistics if it exists.

Theorem: (Rao - Blackwell)

Let X1, X2, …, Xn be a random sample from a distribution with pdf

( ; ), . Let Y1= u1 (X1, X2, …, Xn , and 

let Y2 = u2 (X1, X2, …, Xn ) 2 is not a 

function of Y1 alone. Then E(Y2| y1) = u(y1) defines a statistic u(Y1), a 

function of the sufficient statistic Y1

its variance is less than that of Y2. That is

1. [ ( )] =

2. [ ( )] ( )

Proof

Let ( , ; ) be the joint pdf of Y1 and Y2. Let ( ; ) be the marginal 

of Y1. The conditional pdf of Y2 given Y1= y1 is

( | ) =
( , ; )

( ; )



This equation does not depend upon , since Y1 is a sufficient statistic for .

In the continuous case

( ) = ( | ) = ( | ) =
( , ; )

( ; )
  

[ ( )] = ( ) ( ; )  

=  , ;
( ; )  ( ; ) 

= , ;   

= ( , ; )   = ( ; ) =

because Y2 1) is also an unbiased 

Now, consider

( ) = ( ) = [( ( ) + ( ) ) ]

= [( ( )] + [ ( ) )] + 2 [( ( ))( ( ) )]



But the third expression is equal to

2 ( ( ))( ( ) ) ( , ; )

= 2 ( ( ))( ( ) ) ( | ) (  ; )  

= 2 ( ( ) ) ( ( )) ( | )  ( ; ) = 0

because u(y1) is the conditional mean of Y2 in the conditional distribution 

given by ( | ). That is

( ( )) ( | )  = ( | ) ( ) = 0

Thus

( ) = [( ( )] + [ ( ) )]

              = [( ( )] + [ ( )]

The first term is the expected value of a positive expression. Therefore

[ ( )] ( ) 

Furthermore, there is a connection between sufficient statistics and maximum 

likelihood estimates, as shown in the following theorem:



Theorem

Let X1, X2, …, Xn denote a random sample from a distribution that has pdf  

( ; ), , If a sufficient statistic Y= u(X1, X2, …, Xn

a maximum likelihood estimator is a 

function of the sufficient statistic Y= u(X1, X2, …, Xn).

Example

Let X1, X2, …, Xn be a random sample from the exponential distribution with 

pdf  ( ; ) =      

1. Find a sufficient statistic Y

Y.

2. Determine an unbiased

statistic alone.

Solution

1. The joint pdf (likelihood function) is

( ; x , x , … , x ) =

Hence, by the factorization theorem =

[ (x , x , … , x ); ] = and  (x , x , … , x ) = 1

The log likelihood function is



log ( ; x , x , … , x ) =  

    

= =

Hence, the mle is a function of the sufficient statistic =

2. ( ) = ( ) = ( ) =

Thus

= = =

That is 

unbiased. Thus the statistic is 

H.W.

1. Let X1, X2, …, Xn
2).

a. Show that = 2.

b. S 2 is a function of Y.
2 unbiased?

2. Let X1, X2, …, Xn be a random sample of size n from a distribution whose 

pdf  ( ; ) = 0 < x < 1.

1. Show that =

2. Show that the mle is a function of Y.






















































































