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Lecture 1

Point Estimation

Consider random variables for which the functional form of the pdf is known, but
the distribution depends on an unknown parameter (say, 0) that may have any value

in a set (say, Q) called the parameter space.

A point estimate of a parameter 0 is a single number that can be regarded as a good

guess for the true value of 0.

Recall that a statistic is a function of a random sample X, X», ..., X, that is free of

the population parameter 6.
Estimator and Estimate

Let X, X, ..., X, be arandom sample from f(x; 0). Any statistic that can be used to
estimate the value of 0 is called an estimator and is denoted by 8. The numerical

value of this statistic is called an estimate of 0.
Example

Let the random variable X ~N(8,, 6,), then 8, = X is an estimator of 6, and 8, =
% ™ .(X; — X)? is an estimator for 0,. But X and %Z?zl(xi — x)? are the observed

values of 6; and 6.
One of the basic problems is how to find an estimator of the parameter 6.
Method of Moments

Let X, X,, ..., X, be a random sample from a population X with pdf f(x; 0), where

0={0,, 6., ..., B} are unknown parameters. Define



E(X") = ffooo x" f(x; 8)dx, the rth population moment about 0. And m,. = %Z xi

the rth sample moment about 0.

In the method of moments, the first k sample moments are set equal to the first k

population moments that are given in terms of the unknown parameters. That is
E(X )=m , E@D=m, ,EXH=m; .. EX")=m

These k equations are then solved simultaneously for the unknown parameters.

Example
Let X, X5, ..., X, be a random sample from the exponential distribution with
parameter 0. Estimate 6 by the method of moments.

1 —x
f(x;0)=§eT 0<x<0,0>0

E(X) = fooox%e%dx =0
Set E(X) =m;, where m; = X
Hence, & = Xisanes of 0.

Example

Let Xi, Xy, ..., X, be a random sample from N (u, 6%). What are the moment

estimators for the population parameters p and 2.
We know that for the normal distribution E(X) = u and E(X?) = 02 + u?
Set E(X) =m, ,wherem; = X

Hence, i = X



Next, we find the estimator of 02 by setting E(X?) = m,

o? =

E(X?) = [E(XD]? =my —p?

Thus, 62 = ;Z?leiZ - X% = ~ =y (X — X)?

Example

Let X, Xa, ..., Xy, be a random sample from a distribution with pdf

fl; )= 0x%71, 0<x<1land0 <6 <
1. Using the method of moments, find an estimator of 6
2. If x; =0.2,x, = 0.6,x3 = 0.5,x, = 0.3 is a random sample of size n=4,
what 1s the estimate of 0.
Solution
_ (1 . _ (! 0-14 — o (1004 — O [..0+17F _ 6
I EQX) = [, xf(x;0)dx = [ x0x°"'dx = 6 [ x"dx = — [x ]0 =—
Set E(X) = m, ,wherem; = X
We get % = X and solving this equation for 8, the moment estimator is 8 =
X
1-X
2. x = Zi¥ _ 02H06+0.5403 0.4, then 8 = 2% = 25 an estimate of 6.
n 4 1-04 3
H. W.

1. Let X, X, ..., Xy, be a random sample from U(0, 0). Find an estimator of
0 by the method of moments.
2. Let Xy, Xs, ..., X,, be arandom sample from Gamma(a, ). Estimate a and
B by the method of moments.
3. Let X, Xa, ..., X,, be a random sample from b(n, p). What is the moment

estimator of p.
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Maximum Likelihood Estimation

Consider a random sample X, X, ..., X, from a distribution having pdf f(x; 0). The
joint pdf of X, Xs, ..., X, 1s

f(x1, X2, ..., Xn 5 0) = f(x1; 0) f(x2; 0) ... f(x4; 0)=[]1L, f(x;;0)

This joint pdf when regarded as a function of 0 is called the likelihood function of
the random sample.

L(8) = f(x1; 8) f(x2; 0) ... f(xn; 8) =[Ii, f (xi; 6)

When 0 is replaced by a statistic u(X;, Xy, ..., X;) in the likelithood function L, such
that

Llu(X;, Xa, ..., Xy)] 1s at least as great as L(0), then the statistic u(X;, X, ..., X,)
will be called a maximum likelihood estimator(mle) of © and will be denoted by 8

= u(X1, Xz, ey Xn)

In many instances there will be a unique mle 8 of a parameter 6, and often it may be

obtained by the process of differentiation.

Example

Let X, X,, ..., X, denote a random sample from a distribution with pdf
fx;0)=0(1-0)'* x=0,1, 0<0<1

The likelihood function is

n
L) = | |71 - 0y = oZEai(1 - gy

i=1



Since L(0) and its logarithm In L(6) have their maxima at the same value 6, it is

sometimes easier to maximize In L(6). Here

InL(0) = (Z xl-)ln@ + (n — in)ln(l —-0)

OInL(O) Yi,xi n—Yk,x

— = 1
d6 6 1-6 0 870
n n
1- B)in = Q(n—le)
i=1 i=1
n n n
in — Bin =nb — Bin
i=1 i=1 i=1
Hence, 6 = Zi=Xi ¥ is the value of © that maximizes L(0). That is the statistic

® = X is the mle of 0.

Note that

0?2 mox; n—Y.x;
——1InL(B)|, 5 = — 2521 Sl
a6z "L (Olo=s 62 (1-62?)
Because

1. 0% and (1- 0)? are non-negative numbers
2. X is a Bernoulli random variable taking the values 0 or land }j-; x; is
positive.

3. The largest value that )i, x; takes is n. So, (n-Y;i- x;) is always positive.
Example

Let X, X,, ..., X, be a random sample from N(0;, 6,). Find the mle of 8 = (6,, 6,).



- 1\ 1
L(O) = nf(xii 0) = (\/ﬂ) exp [_Z_BZZ(xi - 91)2]

n

n 1
= @n8,) 7 exp [~35= ) (x; = 61"

i=1

n

n n 1 5
InL(8) = —Eln(Zn) — Elnez — Z_QZZ(xi —6,)

i=1

dlnL(6 1 C 1
2 e DY - 6) =gy (k=8 =0

26, 20,

or 0, =%=Yisthemleofel

Now
dlnL(6) 1%
n n
= —— R . — 9 2 — 0
30, 26, © 9?2 Z(xl )
=
=1 (X; — X)? . n
202 20,

n
né, = Z(Xi _X)?
i=1



~ Ny )2
Hence, 8, = 2= 7 o the mle of 0,.
Example
Let X, X», ..., X, be a random sample from a geometric distribution with pdf

flop)= A—p)*'p x=1,2 3, .., 0<p<I.Find the mle of p.

L(p) = p"(1 — p)Zi= "

InL(p) =nlnp + (le —Tl) In(1-1p)

olnL(p) n Yi;xi—n
dp 14 1-p

n_ it X —n
p 1-p
n
n—np=py x-np
i=1
H p = —"— =2 is the mle of
ence, p = xR is the mle of p.
Example
Let X, X», ..., X, be a random sample from a uniform distribution with pdf

f(x;9)=% 0<x<0 ,0<0<w

Here L(6) = [[iv, f(x;0) = gin



Lecture 3

Since L(0) is a decreasing function of 0 and as such the maximum occurs at the left

1
(rpn’

endpoint of the interval (y,, ©). Thus L(6) can be made no larger than where

Y, =Max (Xj).

Hence, the mle of 0 is § = Y,

Invariance Property of Maximum Likelihood Estimators
Theorem

Let 6 be a maximum likelihood estimator of a parameter 6 and let g(0) be a function

of 8. Then the maximum likelihood estimator of g(0) is given by g(d) .

: S . 0 :
In our last example the maximum likelihood estimator of > the mean of the uniform

.
distribution is ?"

Example
5 [N 7 2 - ~AD Z?:l(Xi_X)Z
Let X ~N(u, 6°). The mle of pis fi = X and of 6°is,6° = e
n ,— V)2
Then the mle of ¢ is 6 = /M
— n V)2
And the mleof u-cisgi—o =X — /W
Example
Let X, X», ..., X, be a random sample from a uniform distribution with pdf
fapB) = — , o <x<P. Find the mle of\/a? + B2.

f—a



n
The likelihood function is L(a, 8) = [, — = (L) for all 0<x; (i=1, 2, ..., n)

=1 BTa B—a
and for all f>x; (i=1, 2, ..., n). Hence the domain of L(a, B)is @ = {(a,8); 0 < a <
Yiand Y, < f < oo}, where Y ,=Min(x;) and Y,=Max(xi).

Therefore, the mle’s of o and f are & = Y; and ,[? = Y,,. And using the invariance

property of the mle, the mle of /@2 + B2 is /Y + V2.
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Properties of Estimators

The Unbiased Estimator

Definition: Any statistic whose mathematical expectation is equal to the parameter

0 1s called unbiased estimator. Otherwise it is said to be biased. That is
E(8) = E[u( Xy, Xo, .., X)) =6

The bias of §is b3(8) = E(§) — 6

Example

Let X;,X,, ..., X,, be a random sample from N(u, ¢°).

1. Is the mle X unbiased estimator of u?

Since X~N(u, 0%), we have E(X)= u and Var(X)= ¢°
— 2 —
Then X~N(u, %) . Hence E(X) =u

- X is an unbiased estimator of y

2. Is &2 unbiased estimator of 62?

17’1
52 =~ N (X, — X)?
D (X=X
1=1
1w 1 1 ©
_ n — _
“Nx. -2l =k X; —X)?
n}(l ) nn_1.§1<l )
— i=

- Z(x )] :—5(52)

E(6?) =E

n—1
= o2 # 02
n

Therefore, the mle of 62 is a biased estimator.



Example
Let X;,X,,...,X, be a random sample from U(0, 6). Find an unbiased
estimator of 6.

We have seen that for the uniform distribution the mle of 0 1s Y,=Max(X)

n—1 y n-—1 1
gn(yn) = n[F(yn)] f(yn) = Tl[g] 5
7}
n yn+1 n 9n+1
E(Y,) = fyngn(yn)dyn f —y"dy, = T 1] 1 0"
0
E(Y,) = 6
() n+1

Hence, the unbiased estimator of 0 is nTH Y,,. Check!

Minimum Mean Square Error (MSE)

Definition

Let Y = u( Xy, X,, ..., X)) be an estimator of an unknown parameter 6. The
mathematical expectation

E(Y = 0)? = E[u(Xy, X5, .. X,) =0 | = E(8 - 0)

is defined to be the mean square error of the estimator Y. That is

MSE(8) = E(6 — 6)°

The mean square error is a measure of goodness or closeness of the estimator

Y to the true value of 6.

Lemma

MSE(9) = Var(8) + b5(6)

When 8 is unbiased estimator to 6, that is b% (6) = 0, then
MSE(8) = vVar(8)

Proof



MSE(9) = E(0 —0)" = E[(§ — E(8)) + (E(8) — 0]
= E[(0-£(0)) +2(0-E()) (E(@)-06)+(E® -06)"

=E(0—E®) +2(E(0) —E(0)) (E(6) - 0) + (E(®) - 8)
= Var(é) + 0+ bg(@)

Example
Let X;,X,, ..., X,, be a random sample of size n from a distribution with

unknown mean 1, -00< p<co and unknown variance ¢>>0. Show that the

L. s X+ 2Xp+An X . .
statistics X and Y = ——=Z5—" are both unbiased estimators of p.

2

Further, show that Var(X)< Var(Y).
Solution

We know that X is an unbiased estimator of u irrespective of the distribution

of .
n n n
n N 4 t n 4 n
=1 i=1
Now
X, +2X, + -+ nX 2 -
es e n
E(Y)=E| ——= n = E Z'X.
() n(n+1) nn+1) \« ti
2 i=1
—Z 3y : 2__n(n+1) .
ETCTE i=1 LE(X) = nm+1) =1l = n(nﬂ)%u = u (unbiased)

The variance of X is

n 2

_ X\ 1o 1 , o
Var(X) = Var — = FZ Var(X;) = —not =—
1=

And the variance of Y is



oy = v | KT B | 4 "_X
ar(Y) = Var n(n+ 1) " n?2(n+1)2 ar z ti
2 =1
4 n 4 n 452 n
o
— 'ZV X.) = i2s2 — P2
nz(n+1)ZZl ar (X,) nz(n+1)zz 1l d nz(n+1)zz 1l
1= 1= 1=

40 nn+1(@2n+1) 22n+10?
n2(n + 1)2 6 " 3n+1n

2(2n+ 1)
BECTM

Sinc 2(2n+1)
3(n+1)

ar(X)

> 1 for n>2, we see that Var(X)<Var(Y).

In statistics, between two unbiased estimators one prefers the estimator with

the minimum variance.

Definition

The statistic Y that minimizes MSE(Y) = E[(Y — 8)?]is the one with

minimum mean square error. And if E(Y)=0 (unbiased) then Var(Y) =

E[(Y — 08)?] is said to be the minimum variance unbiased estimator of 0

(MVUE).

Consistency

Definition: Convergence in Probability

Let {X,} be a sequence of random variables and let X be a random variable

defined on a sample space. We say that X, converges in probability to X

P
(X, = X) if for all € >0,
lim P[|X, —X|=€]=0
n—-oo
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or equivalently,

lim P[|X,, — X|<e]=1
n—-oo

In statistics, often the limiting of random variable X is a constant.

Theorem (Weak Law of Large Numbers)

Let {X,}be a sequence of iid random variables having common mean p and

1

— N
variance o°<eo. Let X, = —3L; X;. Then X, - p

Proof
— 2
We already know that the mean and variance of X,, is p and %, respectively.

Hence, by Chebychev’s Theorem, we have for every € >0,
_ _ Vn\ /o o?
P[I%, —pl = €] = P [lxn —ul = (e;) (ﬁ)] <

Taking the limit as n—o0 yields

lim P[|X, —ul = €] =0
n—-o0o

Hence, X,, L u

This theorem says that if n is large, then X,, becomes close to .

Definition: Consistency

An estimator Y, = u( Xy, X5, ..., X;;) 1s said to be consistent for 6 if it
converges in probability to 0. That is, if for all €0,

7111_{23 PllY,— 0] =€]=0

P
And we write ¥, = 6

If' Y, is consistent, then the probability that the estimator Y, differs from the
true 6 becomes small as the sample size n increases.

Definition



An estimator Y, = u( X, X5, ...,X,;) is said to be mean squared error

consistent for 0 if lim E[(Y, —8)?] =0
n—-oo

A sequence of estimators {Y,} is MSE consistent estimator of 0 if

1.

2.

2.

lim E(Y,,) = 6 (asymptotically unbiased)
n—-oo

lim Var(Y,)) =0

noo
Example

Let X;,X,, ..., X,, be arandom sample from N(u, 67). Show that X and 62
are consistent estimators for p and 2.

1. imE(X)= limu=u
n—-oo

n—-oo

2. lim Var(X) = lim C =62 limi=0

n—o n—-oo N n—ooon

.. X 1is a consistent estimator for pu.

Now
. A2N _ 1: l n _YN2 — 1 (Tl—l)SZ) T Tl_—l 2
. fim £(8%) = lim EG R0 = B)? = lim £ (B52) = lim 2o
1
=02 lim (1——) =o?
n—oo n
7111_{23 Var(6?) = 7111_{23 Var(% X=X = Ai_}rg)%Var[(n —1)S?]
_ U4V (n—l)SZ_l_ 042 O = 204 1 n—1
=z Ve 1= e e = D =207 i =

=202 lim[>——] = 0

n—-oo n n2

Hence, 62 is a consistent estimator for ¢°.

Example
Let X;,X,,..., X, be a random sample from U(0, 6). Show that the mle

6 = Y,= Max(X;) is consistent estimators for .



We have seen earlier that

gnOm) = (lFOI" L fGn) = nE" o= Zoymt 0<y<d
And

n
FO) =07 ?

0 0
0

n n
E(Y) = fyﬁgn(yn)dyn = fyze—ny"‘ldyn =9—nf y*tidy

0
0 0

n+2 n 9n+2 n

19 0°

_ny _ _
n+2 6" n+2

COnn 42

Hence,

n2 2

Var(Y,) = E(Y) — [E(Y)]*=—6% -

2 (n+1)2
o1 n o ((m+ 1) —n(n+2)
=né (n+2_(n+1)2>_n0 ( (n+2)(n + 1)2 )

L n“+2n+1—-—n%-2n B n 0
- ( n+2)(n+ 1)2 >_(n+2)(n+1)2

2

Now

L Jim £ = lim [(Z55) 6] = 6 tim =5 =0

nem1+z
] . n 2| — n21: .
2. rlll—>r23 Var(Y,) _7l1l—1>qc;lo (n+2)(n+1)29 ]_9 rlll—>r23 [(n+2)(n+1)2]
1
= 64 lim =0

"D

. Y, 1s consistent estimator for 0.



H.W.
1. Let X;,X,, ..., X, be arandom sample from exponential distribution
with pdf £ (x; 6) = %9_5, x>0.

a. Find the mle of the parameter 0.

~ . ) ) 62
b. Show that @ is unbiased and has variance —.

2. Let Xi,X5,...,X,; be a random sample from Poisson distribution with

-Agx
pdf f(x; 2) = &2

x=0,1,2, ... ,2>0. Find the mle of A.

3.Let Y; < Y, < Y; be the order statistics of a random sample of size n=3

from a uniform distribution with pdf f(x; 8) = % ,0 < x < 0. Show that

4Y,,2Y,, g Y5 are all unbiased estimators of 6. Find the variance of each of

these unbiased estimators.

4. Let X, X,, X5 be a random sample of size n=3 from a distribution with

unknown mean 1, -oo<q1<co and the variance is a known positive number.

2X1+X,+5X3

Show thatboth 8, = X and 8, = are unbiased estimators for p.

Compare the variances of 8, and 8,.



Lecture 6
Sufficiency

Definition: Let X;, X5, ..., X, denote a random sample of size n from a
distribution that has pdf f(x; 8),0 € Q. Let Y = u(X;, X,, ..., X,) be a statistic
whose pdf is g(y; 8), then Y is a sufficient statistic for 8 if the conditional
distribution of X, X», ..., X, given Y=y, does not depend upon 6. That is

f(X1,X5, e, X 0)
9(y;0)

= H(X{,X9, v.., Xp)

Where H(x4, X5, ..., X,) does not depend upon 8 € Q.
Example

LetX;, X, ..., X, be a random sample from b(1, 8). Show that ¥ =Y X;

1s a sufficient statistic for 6.
flx;0) =0*(1 —0)1™> x=0,1; 0<6<1

The distribution of the sample is

f(Xl, X2, -, Xn) 0) = exl(l — 0)1_xi = 02?:1xi(1 — Q)n_Z?zlxi

l

= 9Y(1— )Y

n
=1

The Statistic Y = X7, X; ~ b (n, 6) has the pdf
g:0) = CFo¥A—0)"Y  y=0,1,2,...n

The conditional probability



0%1(1 — @)1~*19%2 (1 — )%= ... §%n(1 — §)1~*n
Cr6Y(1— G)nY

f(X1!X2! '"!anY = Y) =

gri=i¥i(1 — g)"Tiza X 1

n ONLiM(1— ) Tk Gy

i=1 i i:lxi

Note that this conditional probability does not depend upon the parameter 6
and the statistic Y = )}, X; is a sufficient statistic for 8.

Remark

If we are to show by means of the definition that a certain statistic Y is or is
not a sufficient statistic for a parameterf, we must first of all know the pdf of
Y, g(y;0). In many instances it may be quite difficult to find this pdf.
Fortunately, this problem can be avoided by applying the following
factorization theorem of Neyman.

The Factorization Theorem (Neyman)

Let X;, X5, ..., X, be a random sample from a distribution that has pdf
f(x;8),0 € Q. The statistic Y=u(X;, X, ..., X,,) is a sufficient statistic for 8

iff we can find two non negative functions, K; and K,, such that
f(x1, %9, o, x5 0) = Ky [u(Xq, X5, ..., Xp); 0] K5 (X4, X5, oo, Xp)
where K,(x4, X5, ..., X,) does not depend upon 6.

Example

Let X;, X5, ..., X, be a random sample from Poisson(}), where A> 0. Show

that X is a sufficient statistic for A.



By using the factorization theorem

_Az?zlxie_nl — (nx,—-ni 1
f(x1; X2) ey X A) - X1! X5 xp! - (A € )(X1!X2!...Xn!)

n
i=1%i

where X = . Hence X is a sufficient statistic for .

Remark:

In the previous example, if we replace nx¥ by Xi-,x;, it is obvious
that ).}, x; is also a sufficient statistic for A. In general if Y is sufficient for a
parameter 0, then every single—valued function of Y not involving 6, but with

a single valued inverse, 1s also a sufficient statistic for 6.

Example

Let X, X,, ..., X, be a random sample from a distribution with pdf
f(x;0) = 6x°~1 | 0<x<1.Find a sufficient statistic for 6.

The joint pdf of X, X, ..., X, 1s

F 1,2 X 6) = 9n<ﬁx">9_l ) 0<Hx> ( - ">

i=1 i=1

In the factorization theorem, let

K [u(x{, X3, ...,%5); 0] = 6™ (1_[ xi>

i=1

0



and

1
K>(X1,Xg, ., Xp) = =7
i= 1xl
Since K,(xX4,X, ...,Xy) does not depend upon 0, the product [}, x; is a

sufficient statistic for 0.
Example

Let X;, X», ..., X, be a random sample from a distribution that is N (8, 52),

n

' . _ X .
~0 < 0 < o and the variance g2 > 0 is known. Show that X = —“; “is a

sufficient statistic for 0.

The joint pdf of X, X, ..., X, 1s

1 \" ST (x1-6)2
. —_ 2 =1 2
f(xl,xz,...,xn,e)—( Znaz) e 20

Since

D =072 =) [ -0+ E-0 = ) (-0 +n(x—0)?

Then

T 271'0'2

( 1 )ne_#[zl{,':l(xl_f)z'l'n(f—e)z] (x 9)2] [e Zo_zzl 1(xl .X') ]
2102
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Because the first factor depends on X4,Xs,...,X, only through x, and the
second factor does not depend upon 0, hence, according to the factorization
theorem, the sample mean X is a sufficient statistic for 0, the mean of the

normal distribution.

We now state a theorem that tells us to restrict our search for an unbiased

minimum variance estimator to functions of the sufficient statistics if it exists.
Theorem: (Rao - Blackwell)

Let X;, X,, ..., X, be a random sample from a distribution with pdf
f(x;0),0 € Q. Let YiI=u; (X;, X5, ..., X, ) be a sufficient statistic for 6, and
let Y, =u, (X;, Xs, ..., X, ) be an unbiased estimator of 6, where Y, is not a
function of Y, alone. Then E(Y,| y;) = u(y;) defines a statistic u(Y,), a
function of the sufficient statistic Y;, which is an unbiased estimator of 6, and

1ts variance is less than that of Y,. That 1s
1.Elu(Y;)] =6

2. Var[u(Yy)] < Var(Y)

Proof

Let g(yy1, ¥2; 6) be the joint pdf of Y; and Y,. Let g4 (yy; 6) be the marginal
of Y. The conditional pdf of Y, given Y =1y, is

gy, y2; 0)
g1(¥1; 0)

h(yzly1) =



This equation does not depend upon 8, since Y is a sufficient statistic for 6.

In the continuous case

gy, y2; 0)
g1(y1; 0)

u(y,) = E(Yzly,) = J v2 h(yzly1) dy, = J Va2 dy,

So Sz

Efu(¥)] = j UG (01 8) dyy

S1

9y v2:0) )
Ll (Lzyz 900 0) V2 | 91(v1; 6) dyq

= J J Y291, y2;0) dy,dy,

S1 $2

= Jszg(yl,yz:H) dy, dy, = JYZQZ(YZJQ)dYZ =0

Sa S1 Sa

because Y, is an unbiased estimator of 6. Thus u(Y,;) is also an unbiased

estimator of 0.
Now, consider
Var(Y,) = E(Y, — 0)2 = E[(Y; —u(Yy) +u(Yy) — 0)2]

= E[(Y, — U(Y1)]2 + Efu(Y;) — 9)]2 + 2E[(Y, —u(Y))(u(Yy) — 6)]



But the third expression is equal to

2 J J (Y2 —uy))u(ys) — 0)g(ye, y2; 0)dy, dy,
S, /s,

=2 j (¥ — uD)WO) — OhGly) g1 015 6) dysdy,
S

1 YS2

=2 (@) - 0){ 2 —u())h(y2ly1) dy, }gl(yl; 0)dy, =0
S1

Sa

because u(y;) is the conditional mean of Y, in the conditional distribution

given by h(y,|y,). That is

(2 —u@1))h(y2ly1) dy, = E(Y,ly,) —u(y,) =0

S2
Thus
Var(Y,) = E[(Y, —u(YD]? + E[u(ty) — 6)]?
= E[(Y; —u(Y)]? + Var[u(¥y)]
The first term is the expected value of a positive expression. Therefore
Var[u(Y;)] < Var(Y,) O

Furthermore, there is a connection between sufficient statistics and maximum

likelihood estimates, as shown in the following theorem:



Theorem

Let X;, X5, ..., X, denote a random sample from a distribution that has pdf
f(x;0),0 € Q, If a sufficient statistic Y= u(X;, X,, ..., X,,) for 0 exists, and if
a maximum likelihood estimator 6 of 0 also exists uniquely, then 8 is a

function of the sufficient statistic Y=u(X;, X,, ..., Xy).
Example

Let X, X,, ..., X, be a random sample from the exponential distribution with

X

pdf f(;0) =278 0<x<o0,0>0,

1. Find a sufficient statistic Y for 0 and show that the mle for 0 1s a function of

Y.

2. Determine an unbiased estimator of 0 that is a function of the sufficient

statistic alone.
Solution

1. The joint pdf (likelihood function) is

n
=1 %i

L(0;Xq,X9,...,Xp) =07 e 6

Hence, by the factorization theorem Y = Y-, X; is sufficient for 0, since

n
Li—g %

K [u(x, X2, ...,%5); 0] =07 " & and K,(X{,X3,..,%Xp) =1

The log likelihood function is



n
i=1Xi

log L(0; x4,X3, ...,Xn) = —nlog 0 —

)
Taking the partial with respect to 0 and setting it to zero results in the mle of 6
é — ?=1Xi — X
n

Hence, the mle X is a function of the sufficient statistic Y = Y1, X;
2.E(Y) = E(S)y X,) = X1, E(X) = nf
Thus

E(X)ZE i=1 X =n0=0
n n n

That is X is that function of the sufficient statistic for the parameter 0 that is

unbiased. Thus the statistic X is an MVUE of 6.

H.W.
1. Let X, X,, ..., X, be a random sample from N(O, (52).

a. Show that Y = ¥, X? is a sufficient statistic for 6°.
b. Show that the mle for ¢° is a function of Y.

c. Is the mle for 62 unbiased?

2. Let X, X,, ..., X, be a random sample of size n from a distribution whose
pdf f(x;0) =0x%1 0<x<1.

1. Show that Y =[], X; is a sufficient statistic for 6.

2. Show that the mle is a function of Y.



Lecture 8

Fisher Information and the Rao — Cramer Inequality

Definition

Let X be a random variable from a distribution with pdf f(x; ) of a
continuous type such that the parameter 8 does not appear in the
endpoints of the interval in which f(x;8) > 0 and that we can
interchange integration and differentiation with respect to 0. The Fisher

information, I(0), in a single observation X about 0 is given by

1(6) —f [alnf(xe)] F(x:0) dx = El 31nf(X9) ]

That is, I(0) 1s the expected value of the square of the random variable

Inf(X;0)
90

Lemma
The Fisher information I(6) contained in a single observation about the

unknown parameter can be given alternatively as

10) = [, T2 £(x; 0) dx = — [

Proof
Since f(x; #) 1s a pdf, we have that

f fx;0)dx =1

By taking the derivative with respect to 0

[feo,

e x=0



which can be rewritten as

af (x; 6
m%ﬂ o ‘f onf(i0) oo
o f:8) T T T ae
If we differentiate again it follows that
® [82Inf(x; 0) 0f(x;0) dlnf(x; 0)
LO ) + 2 ax =0

Rewriting the last equality, we have

LGP LCT) 9f (x 9)
Lo gz S +—7g f(,e)

fx; 9)‘ dx =0
which 1s

“ [0%Inf(x;0) onf(; 0\ ~
f_ool 302 f(x,6')+(T) fx; 9)] dx =

and we see that

o . 2 o a2 .
f (alnf(x, 6)) Fx 0)dx = _f 904Inf(x; 8) £ 0)dx

a9 d6?
Hence
_|romfexs N [9%Inf(x; 0)
I(B)—E[(T) ]——E[ 302 |
Example 1

Let X be a single observation taken from N (8, 6%), where —o0 < 8 <

and o2 is known. Find the Fisher information in X about 0.



e ~7e 2(x—(?,'i)2

flx;8) = ~00 < X < o0
_ A2
Inf(x;0) = —EZH(ZEGZ) — (xzcg)
olnf(x;8)  2(x—-0)(-1) x-—6
00 T 207 o2

~1(8) = El () ] =E [(’:—f)zl = LE[(x -0 =5 =2
Or
Inf(x;0) 1

062 - o2
L [ffe)] o 1y 1
-2

Sometimes, one expression is easier to compute than the other, but often
we prefer the second expression.

Example 2

Let X~ b(1, 8). Find the Fisher information in X about 6.

fl;0) =01 —-0)* x=0,1

Inf(x;8) =xind + (1 —x)In(1 — 0)

onf(x;8) x 1-x

8 1-8
”Inf(x;0)  x 1—x

982 82 (1-9)2
_ B *Inf(X;0)] _ E(X) 1-EX)
”’(e)‘_E[ 362 ]‘"l_ 82 (1-0)2



[ecture 9

e+ 1-0 _1+ 1 1-6+6 1
92 (1-6)2 6 1-86 6(1-96) 6(1-9

which means that the information is larger for 8 values close to zero or

one.
Fisher Information of a Random Sample

We have already seen that
[ 2B £ (x; ) dx =

This equation represents the following expectation

dnf(X;8)|
E[ 26 a

Inf(X;6) .

%6 1s 0, and the variance

That is, the mean of the random Variable

of this random variable is the Fisher information I(8);1.¢.,
Var (alnf(X :0) _E l 6lnf(X 9) ] — 1(6)

Let X, X5, ...,X, be a random sample from a distribution having pdf

f(x; 8). The likelihood function L(6) 1s
L(6) = f(x1;0).f(x2,0) ... f(x; 0)
InL(8) =Inf(x;0) + Inf(x,,08) + -+ + Inf(x,; 0) = Y=, Inf(x;; 0)

AInL(6)  ~_ 0lnf (x; 6)
0 _Z a0

i=1
The summands are i1id with common variance I(6). Hence the

information in the sample is

Var (311:.9(9)) (Zn 31nf(X£ 9)) :;1 Var (0lnf;;(g;9))




v dInL(8)\ _ 18
ar( 30 )—n()

Thus, the information in a random sample of size n is n times the
information in a single observation.

So, in examples 1 and 2, the Fisher information in a random sample of

. . n . 1
size nis — and respectively.

n
8(1-8)

Theorem (Rao — Cramer Lower Bound)

Let X4, X5, ..., X,, be 1id with common pdf f(x;8) for 8 € Q. Assume
that the parameter 6 does not appear in the endpoints of the interval in
which f(x;8) >0 so that we can interchange integration and
differentiation with respect to 6. Let Y = u(X;, X,, ..., X,, ) be a statistic
(an estimator of 0) with mean E(Y) = E[u(X,, X, ..., X, )] = k(0).
Then

[k (8)]*

Var(Y) = nl—(e)

Proof:

For the continuous case, the mean of Y can be written as

k(@) = f_oooo f_ozo u(xy, Xz, oo, Xp) fx130)f (x2;0) ... f(xy; 6)dxq ... dxy

Differentiating with respect to 6, we obtain

k'(0) = Z Z MO R n) [chxl,;; ) af(;; 9)]

X flx1;0)f(x9;0) ... f(xp;0)dxq ...dx,,.




k'(0) = f f w(xy, Xy o) n)’ al”f (x“ﬂ

X f(x;0)f(x2;0) .. f(x; O)dxy ...dxy. (*)
n dnf(Xy;8)
ae

dlnf(x; 9) dlnf(X; 0) _
f_m S F(x; 0)d [—ae ]-

Define the random variable Z = }-, . We know that

And

onf(x;0)\ [/omfx;\?]
ar (T) =E [(T) ] =1(6)

Hence, E(Z) = E [amf (X;8)

And

Var(Z) = Z Va (alnf(X 9)) ni(0)

So, we can express equation (*) as k'(8) = E(YZ)
Recall that the correlation coefficient between Y and Z 1s

_E(YZ) -E(Y)E(Z)
B Oy 0y

Hence

k'(8) =E(YZ) =EXY)E(Z) + poyay

Using E(Z) = 0 and Var(Z) = ni(8)
K

Oy+f n1(9)



Because p? < 1. We have

[k (6)]?
oynl(0) =1

Hence

[k (8)]°
—_—

Var(Y) = 21(0)

Corollary

Under the assumptions of the theorem, if ¥ = u(X{,X,,...,X,) i1s an

unbiased estimator of 0, so that E(Y) = k(8) = 6,
then the Rao — Cramer inequality becomes

1
Var(Y) = nl_(e)

Back to example 1, we have I(8) = iz and nl(8) = % LetY = X, then

E(X) =0and Var(X) = — So Var(X) = 1(9) %2

Back to example 2, we have I(8) = =5 and ni(0) = o
Y =X, then E(X) = 0 and Var(X) = 9(1_9).

So Var(X) = nrge) = 9(11:9).

In both cases, the unbiased estimator X of 8, which is based upon the

sufficient statistic for 6, have a variance that is equal to the Rao— Cramer

lower bound. That is Var(X) = — ( 5
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Efficiency

Definition (Efficient Estimator)

Let Y be an unbiased estimator of a parameter 0. Then the statistic Y is
called an efficient estimator of 0 if and only if the variance of Y attains

the Rao - Cramer lower bound. That 1s

1
VaT(Y)==;afaj

Definition (Efficiency)
The ratio of the Rao - Cramer lower bound to the actual variance of any

unbiased estimator of a parameter is called the efficiency of that

estimator.
EFF(Y) = RCLB <1
Var(Y)
If equality holds, then the statistic Y is an efficient estimator by
definition.
Example

Let X;, X, ..., X,, be a random sample from a Poisson distribution. Show

that X is an efficient estimator of 9.

—Bex
flx;8) = ,x =012, ..
Inf(x;8) = —06 + xInB — Inx!
olnf(x; 9) x—0

x
a0 8 9
1(6) :El alnf(x 9)) ] E(X 9)2 B




Or
*Inf(x;0)  x

902 @2
3%Inf(x;0) E(X) o6 1
16) = - |52 ]— =2 =% =3

-~ 1(0) = —and ni(0) =-

Thus the RCLB i1s m =

We know that § = X is the mle of 6 and E(8) = E(X) = 8 (unbiased).

slo

The variance of X is % = w the RCLB.

Hence, X is an efficient estimator of 0.
Example

Let X,,X,, ..., X,, be a random sample from the exponential distribution

X

with pdf f(x;8) = %9_5 0 <x <, > 0. Show that X is an efficient
estimator of 9.

Inf(x: 6) = —Ind —g

olnf(x;8) 1+x
o 0 02

18) = Elalnf(xe) ] El —0+x ]=9%E(X—8)2=g—i=i

Or



PInf(x;0) 1 2x

202 9z @3
3%Inf(x;0) 6-2x] _ _ 0-2E(x)] _ -6+20 _ 1
10) = —F [ZL22] = -5 [Z2] = - | o0 _ L
92
Thus the RCLB 1s — = —
(9) n

We know that § = X is the mle of 0 and E(8) = E(X) = 8 (unbiased).

2

The variance of X is % = W the RCLB. Hence, X is an efficient

estimator of 0.

Definition (Asymptotic Efficiency)

If lim,, Eff(Y) =1, we say that Y is asymptotically efficient
estimator of 0.

Example

Let X, X5, ..., X,, be a random sample from N(u, 6). Assuming p is

known; show that §% = —Z (X; — X)? is an asymptotically efficient
=1
estimator of 9.
f(x;0) = e_ﬁ(x_”)z -0 < x < a0
1 (x — w)?
InF(x:0) = —=n(21) — =Ing — ——#2_
nf(x;0) 2ln( ) 2ln9 >

Inf(8) 1 (x—w?
30 20 202

Inf(x;8) 1 (x—p)?
362 282 @°




aZInf(X 9) 1 E(X-p)? _ _i i 3 i
262
Thus the RCLB i1s —— = —
I(G) n

We know that E(§%) = o2 = 8 (unbiased), and

2\ — 1 on el — Tiz, (Xi=X)?
Var(s?) = Var [ i, (; - 0)?| = I Var [#=222]
. (n=1)s% B (X=X)?
Since —— = "~ 2 (n-1)
2N _ ot _ 267
Var(§°) = 1)2 Var()((n_l)) Z(n -1 = — =
Hence,
282 262
Var(§?) = > RCLB = —
n-—1 n
zez/n
RCLB n—1

and Eff(§%) = = =

Var(s?) 292/n-1 n

n-—1 1
lim Eff($?) = lim = lim (1——)=1
n—oo n-o N n—oo n

~ §2 is an asymptotically efficient estimator of 0.

H W.

1. Show that X, the mean of a random sample of size n from N(8, ¢2) is
an efficient estimator of 0.

2. Show that X, the mean of a random sample of size n from b(1, 8), 0 <

0 < 1 1s an efficient estimator of 0.
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Interval Estimation (Confidence Intervals)

In pomnt estimation we find a value for the parameter & given a sample
data. It 1s sometimes more valuable to be able to specifv an interval for
which we have a certmin degree of confidence that 8 hes withn. To
obtain such an mterval estimator, we make use of the probability

distribution of the point estimator

Defimtion :( Confidence Interval)

Let Xy, X5, ... X, be a random sample from a populauon with pdf
f(x;8),8 €0 LetD < @ < 1 be specified Let L (X, X5, ..., X,) and

U (X;, X5, ..., X,,) be two staustics with L< U. We say that the mterval
(L. U 1s a (1-a) 100%s confidence mterval for 8 1f

(1—a)=PFglb € (L, U)] That is, the probability that the interval
includes 815

PiL=b=slU)=1~-a

The random vanable L is called the lower confidence limit and U is
called the upper confidence limit. The number (l-u) 15 called the
confidence coefficient or the confidence level of the interval

Let xy, x5, ..., X, be a set of sample data, then the value of the confidence
interval 1s (1, u). an interval of real numbers.

A very wide confidence interval gives a message that there i1s a great
deal of uncertamty concerming the value of 8. A shorter confidence

nterval gives more precise estimate of 6,



A procechre for obtamnmg confidence wmervals is based on a pivor random
vartable. The pivot 1s a function of an estumator of 8 and the parameter and,
further. the distnbution of the pivot 1s known.

Example

Let X;, X5, ... X, be a random sample from N(p, o). Then a pivot random

variable for p 1s Z = ==, smce 1t 1s a function of the maximum likelihood
=
Vi

estunator X and the parameter ji and has a distribution that 1s N(0, 1),

In general, if W 1s a pivot random vanable, then a (1-¢) 100% confidence

mterval for 8 may be constructed as follows

I. Find two values a and b such that
PlasW<h)=1-a

2, Convert the mequalitya =W <bmtothefoormL <8 < U.
Confidence Intervals for Means

- Confidence Interval for the Mean p of a Normal Distribution when

a® is known.

Let X,, X, ..., X,, be a random sample from a nommal distribution N(u, a*),
where the vanance o2 is known. Construet a confidence mterval for the

unknown parameter ji.

The pivot random vanable Z = :_f;" ~N(0,1).
Wn

For the probability 1-a. we can find a number za; from the standard normal

table such that



P[_zﬂfz <Z< zﬂ.l"lz) =]1-a

X—u
:Tfﬁ
P :—z{:ﬁ(%) =X —u < Zay, (%)I =1—-a

P :-f—zufz(%) < =i = -f+zaf,z (%)I =1l—-a

T

P_fﬂzafz(r){ﬁﬁf+zuf (j_)|= 1—a

S0, the probability that the random nterval

P "_E'ﬂ'jfzﬂ Ezﬂfz =1""E'

[R — zay, ( ) X+ zuh{ )] includes the unknown mean p is |-u.

For example. if 1-a =0.95, then @=0.05 and za;, = Zg 55 = 1.96. Then

a 95% confidence interval for p1s [.r = 1.96 (F) ¥+ 196 (r)]

Also 1f 1-a =0.90, then 0=0.10 andza;, = zgos = 1.645. Then a 90%

confidence mnterval for p 1s [.r — 1.645 ( 1.,_) ¥ + 1.645 (_ 1‘,ﬁ)]

It 15 useful to mention that higher the confidence level. bigger is the
length of the confidence interval

We now consider the case when the distnbution of the pivot random

. R . . : . .
vanable W =f_,—'u is not normal We can still obtain an approximate

Nw



confidence mterval for p. The Central Limit Theorem shows that the
distnbution of W 1s approximately N(0, 1).

Theorem: (Central Limit Theorem)

Let Xy, X5, ..., X, denote the observanons of a random sample from a

distnbution that has mean p and fimte vanance a2 Then the distribution

. ; £- e
funciion of the random vanable W, = ﬁf"—-:mwerges o @, the distnbution
Vn

function of the N(0, 1) distnbunon, as n = .

In thus case

II','|."' i
P —E"-:III.Iz < £

=F Ezufz =]-a

n

And that [f - Zay, (f‘ﬁ)‘f'b'z"ﬂ'z (;-:;)I is an approximate (1-a)100%

confidence mterval for p.

- Confidence Interval for the Mean p of a Normal Distribution when

a? is unknown.

Let X, X5, ..., X, be a random sample of size n from N(pu, o%). where p

and o? are unknown. Find a confidence interval for p.

Let X and S° denote the sample mean and the sample vanance,

. . . X- C
respectivelv. The pivot random vanable T = g—e-has a t distribution
vn

with n-1 degrees of freedom. For 0 < a < 1, select tay,,-y) such that



X—u
F —[-nj.lll:'n_l'] E 5 E Iﬂ;i{n_ll = 1 et 4

Vi

P(‘_hr"z"t“—” (U%) <X-p< Lery, 1) (%)) =1-a

P(f = tagyin-1) (%) susX+ L /tn-1) (%)) =1—-a

Thus, if the observations of a random sample xy, x3, ..., x,, provide ¥ and

sZ_then a (1-u)100% confidence interval for p 1s given by

[f = tay,in-1) (ﬂ'iﬁ) X+ tayn-y) (%)I 1:1.‘]:1::1'&1"%H 1s the estimate of the

standard deviation of X, which is referred to as the standard error of X

In the case where the population 1s not normal. but u and o are both
unknown, approximate confidence interval for p can sull be constructed
X-p
i
approximation 1s quite good if the distribution 1s symmetric. ummaodal

using T = which now has an approximate t distribution. This

and of continuous tvpe,
HW.

I. Let X equals the length of lite of a certain Kind of light bulbs. Assume
that X-N(u, 1296). A random sample of n=27 hight bulbs were tested
until they burned out, yielding a sample mean ¥ =1478 hours. Construct

a 95% confidence mnterval for p.
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2. Let X, X5, .., X, be a random sample of size n=11 from N(p,9.9). If
Zi=1 % = 132, Find respectively the 95% and 90% confidence mtervals for
.

3, Let X;, X5, ..., X, be a random sanple of size n=40 from a distnnbution with
known vartance and unknown mean p. If ¥, 2 = 286.56 and 0% = 10.

What 15 the 90% confidence mterval for .

- Confidence Intervals for the Difference of Means of Two Normal

Distributions when the Variances are known

Suppose that we are ierested i comparing the means of two normal
distnbutions. Let Xy, X5, ..., X, and ¥y, Y5, ..., ¥ be. respectively two random
samples of sizes n and m from two mmdependent normal distnbutions

N(jty, 02) and N{,HJ.,EF:E]. Suppose that a2 and r:l:_:. are known. The sample



means X and ¥ are also mndependent and have distmbutions H[p,,%} and
HU:_.,..%?—:I. respectively

Then the distnbution of X — ¥ 15
NGty = iy %+ 2y and that 2 = 2 l0) (o, 1),

Thus
P {—E‘ﬂll.': =L < E'rl'l,rz) =1l-a

F _Eﬂfzﬂ = 4 =]l—a
a; L%
n m

which can be wnitten as

::r:’ a5 r.r;‘ ay
P —Hay == —E(f ¥)— [;l —H}.Jﬂzufz ? g =1l=-a

o2 oz , a3
{‘f F}“3"f24_+‘£‘5i41“Fyﬂ{#“?}‘l-zu& in'-'l-‘;;'-::- =]-=m

Thus. 1f the observed sample means fand ¥ have been computed, then

ol o3
(& — F}—zrlfz —+E

provides a (1-0)100% confidence merval for ji, — py,.



Confidence Intervals for the Difference of Means of Two Normal
Distributions when the Variances are Unknown and the sample sizes
are small

Let X1, Xz, o, Xy and ¥y, ¥, .., ¥y, be, respectively two random samples of
sizes n and m from two independent normal dismbutions N{ji,, o) and

N(jty,05). The sample means X and ¥ are also mdependent and have

chstnbunions N {;i,,%’i} and N [p_.',.ff]_ respectively. Then the dismbution of

(—F)—(pa—pty)

K= is NGty =y, 2 +Z) and that 2 = N0, 1)
o

1]5I

~y2_, and Lumt ~yE _, and because X and Y are

We know that -

mndependent, these chi-square random vanables are mdependent. Hence the

1"]-'5-:_'_‘“' 1]5_.,. fe

distribution of =&

d": ﬂ_h' H.-I- m—2
(X-Fi-(pr—py)
,;E:“ *fr:?
A random vanable T = =2
||[n—1:|5§. (rm=1)57

at

A+ni-3

Assunung that o7 = oy = ¢ (common variance), then

{}.—r 1 ?} o (ﬂ.; o H:pl'/
1

T= ~lnsm-2

j{n— 153+ (m = 1)s,

n+m=—2



which is independent of 2. Thus
P (-——tq-fa{rl +m-2)=<T=< "“,f;'[" +m—= 2}) =1—-a

(n=1)53 +(m-1)57

Let 5, = _J ————be the pooled estimator of the common standard

deviatnon. Then

{f“f}_ {FI _"#}']{

1. % -
SPJ?F o
Solving for p, — py, vields
o MY | A
Pl(X=Y)—ta, (n+m—2)5, =+ iy — Yy

= 1 1
5{I—F}+taf1|{n+m—2‘js,, E+E =1-a

i —Tu‘,rzliﬂ +m=2)<

rql,fz{n +m=2)|=1-a

It 7, ¥, and 5, are observed values, then

(¥ = 7) — tay,(n + m = 2)s, ||§+;;-.i_’f — 7) + tay,(n +m = 2)s, ||§+$I

15 a (1-a)100% confidence mterval for . — u,.
If the sample sizes are large. and o7and o are unknown. we can replace
them with 57 and 53 the values of the unbiased estunates of the vanances.

This means that

52 52 s2 52
Iu—p} - Za, |ﬁ+?}l.{f-f}+zﬂh 'f+ ;ﬁ|

serves as an approxumate (1-a}100% confidence mterval for p, — 1.



Example

To reach maxumum efficiency m perfornung an assembly operanon m a
manufaciunng plant, new emplovees require approximately a one month
traiming period. Two traming methods were applied on two groups of mne
new emplovees each for three weeks penod A test was conducted to
compare the rwo methods. The length of nme (in minntes) required for each
employee to assemble the device was recorded:

Method 1; 32 37 35 28 41 44 35 31 34

Method 2: 35 31 29 25 34 40 27 32 3l

Assume that the assembly tunes are approxunately nommally distmbuted wath
approxunately equal vanances. And that the samples are mdependent.

Construct a 95% confidence imterval for the difference of means ji; — -

Wehaven=m=9 x; = 3522, %; = 31.56

o Ty — %)° _ 19556

i e 5 = 24.445
(g — %;)* _ 160.22
5= = = 20.027
: n=1 8 <
Hence

52 = (n=-1)57 +(m=1)57 _ B(24445)+8(20.027) _ 195564 160.22
B n+m-2 G+9-2 16

E'.ndsp =+22236 = 4.716

Notice that, because n = m = 9. 57 is a simple average of 5§ and 53,

= 22.236

Since la fanem-2) = Lonzscisy = 2.12, the observed confidence mterval 15

10



= = - 3
L= (% — %) = toozsae) Sp |F+E

= (35.22 — 31.56) — (2.12)(4.716) §+ % = 3.66—471 =-1.05

and

- = 1 1
u= (% — %)+ thoese 5p };“‘E

=(35.22 — 31.56) + (2.12)(4.716) §+§ = 3.66 + 4.71 = 8.37

The 95% confidence interval 1s [—1.05, 8.37]

It j1y — piz 15 positive. then iy > p; and the first method has larger assembly
tune than the second method. If yy — y; 1s negative the reverse 1s true.
Because the wmterval contams both posinve and negative values, neither

maing method can be said to produce a mean assembly time that differs
from the other.

! padl LSy A 5 0 ae Alals iy =y O ad A gty =y = 0 Aadl G L
il i L

HW,

Scores on a test m math. taken by college students joming moming and

evening siudies are N(j, 0®) and N(jiy,0%) respectively. Assune the

conunon vanance #° 15 unknown. A random sample of =9 studems from

moming studies vielded ¥ = 81.31 and 52 = 60.76 and a random sample of
w=15 students from evenmg studies vielded ¥y = 78.61 and Sj = 48.24

Construct a 93% confidence mterval for pe — .

11



Confidence Interval for Population Variance

Let Xy, X2, ..., Xy be a random sample from N(u, o), where both u and
a® are unknown. Construct a (1-a)100% confidence interval for the

population variance o Let §% be the sample variance. We know that

-1)5? o . .
L ; has a jya_jcistibution with (n-1) degrees of freedom. Thus we can

find constants a and b so that the probabiliry

n—1)5%
F"(HE ‘{—Hf'}—""_ib)=1—‘n'

wherea = Ilz,_rri,r,,[:ﬂ —1Dand b= f‘i.n"z{" -=1)

Rewnte the above mequality to obtam

P 1{—53 -r::l =1=-i
b= (n-1852"a)

o

o z P 2
P({n s _ . _(a-1s )

= < =1—-u
Igfz[" = 1} If_wll.rzf_ﬂ = 1}

That is, if 5% is the observed sample variance from a sample of n

observations, a (l-a)100°% confidence interval for a® s

l{n-]}sz [n-l]szl

2 - 13" y* -
Xe,,(n=1)' 13, (n=1)

or equivalently

L1 (%= x)* Li=g(x — £t
Xa,(n=1) " x{ o (n=1)

12



Lecture 13

Example
If n=13 and Y, (x; —%)* = 12841, a 90% confidence interval for the
variance o2 is [1 u] such that
_(n- 1)s* - 1268.41
T ee(12) 2103

and

L (n-Ds? 12841
T xi.s(12) 523

Accordingly, the 90% confidence mnterval for a2 1s [6.11. 24.537] and for o is
[2.47. 4.96].

=06.11

= 24.57

Confidence Interval for the Ratio 'ﬁ/ o2
2

There are occasions when 1t 15 of interest to compare the varnances of
two independent normal distributions.

Let Xy, X5, ... X, and ¥}, Y5, ... ¥y, be two independent random samples
from the respective normal distributions N (g, af) and N, #F). where

the four parameters are unknown. Constrict a (1-a)100% confidence interval

?
for the ratio of the variances ™ o2 Let .S'II and .5'21 be the respective sample

varnances of the two mdependent random samples of sizes n and m. We know

that the random variable L"—;ﬁ has a y2_,distribution and the random
1

. -1)53 T .
variable {ma:}sz has a yz_, distnbution and the two chi-square random
2

vanables are mdependent. Define the random variable

13



{m—1)82
_&;;..; /
m—1

2
jlﬁd

P {m-1 o &
S,
n—-1

has an F distribunon with (m-1) and (n-1) degrees

of freedom. Thus we can find constants a and b such that
Pla<sF<bhl=1-ua
where a = Fi_nﬁ{m —1}n=1)and b = Fn&{m = 1)}{n = 1). So that

f( 522/ al

i
1 $2 af Si )

P — === —Fa, (m=1}n=-1)|=1-a
(F"fzﬁﬂ"l]{m-l}siz of 53 N2 w=1

where

1

b U b 7oy e Tt

Thus, if 5§ and sf are the observed sample vanances, a (1-a)100%

- 2 1
confidence mterval for 71 52 18
F

2 4
| Fay, (n-1)(m—1) 5f

2
Fay (m—=1)(n - n:—;‘

14



Example

2
Construct a 98% confidence mterval for the ratio of vanances ﬂi/ i

if the observed values are n = 13, m = 9, s{ = 10.7 and si = 4.59,
l—a =098.%=001

Fay,(n=1)(m = 1) = Fy,(12)(8) = 5.67

Fay, (m—=1)(n = 1) = Fy,5,(8)(12) = 4.50

2
The 98% confidence interval for the ratio of variances 7} /ﬂ; 18
2

1 10.7 10.7

T 155 907Eg| = [0.41,10.49]

And the 98% confidence inferval for /,,, is [0.64, 3.24].

HW.
1. A random sample of size n=9 from N(j, %) vielded the observed
statisticsY [, ¥7 = 313 and Y., x; = 45. Construct a 95% confidence

mterval for o=,

15



Confidence Interval for the Parameter P of the Binomial
Distribution

Let X be a Bernoulh random vanable with probability of success p and
x=0, 1. Suppose X;,X;, ..., Xy 15 a random sample from the distnbution

of X. Then the number of successes ¥ =37, X; has a binomial

distribution bin, p). Let p = E = X be the sample proportion of success,

an unbiased estimator of p. That is E = X is the sample mean and that

Var G) =p{1:—pl_ By the central limit theorem the distribution of

. s
Z = -Ii;%% =-|'E[:—Lm has an approximate normal distnibution N(0, 1),
W L] n

provided that n 1s large enough. This means that an approximate

(1-a)100% confidence interval for p 1s given by

F(—z::‘,aI Efiznh)t e

16



Y p(l—p) Y p(l1—p)
P(—;—zufa’ = E—pE—;-F—Iu&’ = 'zi—a

Y 1 - Y 1 -
P(——Eﬂ:rr Pl p}£p£—+zn; pl Fj)xl-n
n 3.,] n n 2

In order to avoid the appearance -:rfp in the endpoints of the inequality,

we replace p(1-p) by its egun'mte Heme

(1-3) 1——
—-—Eﬂll,r {.I:I": +I-u'l|.l =l-a

serves as an approximate ( 1-a)100% confidence interval for p.
Example

In a certain political campaign, one candidate has a poll taken at random
among the voting population. The results are y=185 out of n=351voters
favor this candidate. Should the candidate feel very confident of
winning”?

The point estimate of the proportion of voters who favor the candidate 1s

- 155
i i 351 =0.527
An approximate 95% confidence interval for the fracuon p of the voting

population who favor this candidate 1s

17



y Vi 7 .
t===za;, [=(1-=) = 0527 - 1.96/(0.527)(0.473) = 0475

1-=) = 0.527 + 1.96,/(0.527)(0.473) = 0579

n

u:%-m& %(

or equivalently [0.475, 0.579]. Thus there 1s a good possibility that p 1s

less than 50% and the candidate should take this into account.

Confidence Intervals for the Difference of Proportions py — p»
Let X; and X5 be two random vanables with Bernoull distnbutions
bil, py) and b1, ps ). respectively. A random sample of size ny1s drawn
from the distnbunon of X; and a random sample of size n; 1s drawn
from the distnbution of X;. Let us say that they result in ¥; and Y5
successes, respectively. Assume that the samples are independent and

that n; + n; = n the total sample size.

Since the independent random variables :—‘iﬂnd:—i have respective

(1— (1- .
means py and p, and vanances Bi-p and M, then the difference

1 L

¥; ¥ ; pili-py)  pp(1-pa)
"-" - f must have mean p; — p, and variance = : i B ==
1 ] | z

L3

¥, b ; i .
Moreover, since ﬂ—‘r.'li"t.-:i1lqt have approximate normal distnbutions, then
1 2

. , ¥ : ol B
the difference ;-‘— - ;“'— would have an approximate normal distribution.
1 3

That 1s

18



Lecture 14

LA

- p(1—p) . p,(1-p,)
Jaenl,

L

~N(0,1)

for large nyand n;. If we replace pyand p; in the denominator by

¥, ¥; . i S
;‘- and f respectively, 1t 1s stull true that the new ratio will be
L 2

approximately N(0. 1). Thus the approximate (1-u)100% confidence
interval for py — p; 15

('ﬁ'_ﬂ]_{i’l —p2)

P -z"'lr'z = o L = I'I."'; =1l-a
Vi %) (L)
n; ny n; n;
'I'I:I * '."I.z

Hence, the random interval will take the following form

¥, ¥, Y. ¥;
I PO o

2
n, na

Let ¥, and ¥; be the observed number of successes m the two mdependent
samples, then the approxumate ( 1-a)100% confidence mterval for the
difference py — P2 18

w(-n) 2(-

n iy
(ﬁ—ﬂ)izw s =
m n; 2\ ny fy

19



Example

Two detergents were tested for thewr ability to remove suff stamns. An
mspector judged the first one to be successful on 63 out of 91
mdependent trnials. The second one was successful on 42 out of 79 tnals.

Construct an approxmmate 90% confidence mterval for the difference

= Pa.

s M1 _ 63
pl—nl—“—ﬂﬁ‘]?,
and

- ¥z _ 42 _

g = % 0532

An approximate %% confidence interval for py — p; 15

N(1-8) Jz2(1-12)

N Y2\ _ L. Ml M) mp\  mg)
l [ﬂ:l TIE] zﬂ‘fz H] T Hz
= (0.692 — 0.532) — 1. 645Jm 692)(0.308) iu.s::;r;uﬁm ~ 0038
Ay Ay X, X
Yi Yz nl(l nl) n;(l ni)
s s 1 -
My 2 My Mo

= (0.692 = 0.532) + 1.645 J “”“"‘””‘“ + ‘““ﬂ““’ 0.282

or equivalently [0.038, 0.282]. Accordingly, it seems that the first
detergent 1s better than the second one for removing these stains.

20



Tests of Statistical Hypotheses

A statistical hypothesis H i5 o statement or & conjecture about the distnbubion
f{x;8} ol a population X, This comjecture 15 usually about the parameter 8.

Diefimition {Simiple and Composite Hypotheses)

A hypothesis H s said to be simple hypothesis il it completely specify the density
Fx;8) of the population: otherwise 1t is called & composite hypothesis.

Dietination { Null and Alternative Hypotheses)

A statistical hypothesis involves o separation of the parameter space {1 =
{#:0 < # < b} o two disjoint regions, @ and @', The hypothesis o be tested 15
called the mull hvpothesis and 15 denoted by H,. The negation of the null hyvpothesis
is called the alternative hypothesis and is denoted by #, . '

H_n: BEw
Hy#Ew
where w Nw' = 0 and a1 @' = (2

Foe example N1 8 = 8, 15 o simple hypothesis whereas
H B = <, ar # 8, 15 a composite hypothesis
Since we do not know the true value of the parameter, we must base our decision
on the observed value of X,
Definition

A test of a statistical hypaothesis is a procedure based on determining a partition of
the sample space into two sety, the critical region or rejection region C and its
compliment £ which is called the scceptance region. It x € €. then we regect I,
and if x € £°, then we do not reject (accept) M,

ol e s 3 gy el dad pdalt duce i el s e pesa) A )



Definition (Critical Region)

The eritical region for a test of hypothesis is the subset of the sample space that
corresponds to rejecting M.

Definition (Test Statistic)

A statistic used to define the cntical region is called a test statistic. It 1s a summary
of the daia used 1o help make the decision,

Delimuion ( Types of Errors)

In testing hypotheses. two types of errors we can make
Type I Error; Reject H, when H,, 15 true.

Type 1T Exror: Do not reject B, when H,, is false (His true).
Defimition (Significance Level)

The probability of type I error is called the sigmificance level ol the test or the size
ol the entical region.

a = P(Type | Error) = P(Reject H,|H, Is true)
= P(x € C|H, istrue) = P(x € C|A € w)
Delimitiom
The probability of tvpe 11 emror is defined as
ft = P(Type Il Error) = P(Accept H,|H,is trug)
=PlxeEl’|H)=Plxel’|FEW)

Decision H,, is True Hy 15 True
Reject H, a Correct Decision
_!_'u:l;cpt H, Correct Decision Ii-




Defimnon { Power Function)

The power function of a hypothesis test H- P Ew versus Hp #Ew 1wa
funetion ki {1 — [0, 1] defined by
wif) HEw (H,istrue)

k() =
1—-B(#) BEw (H,istrue)

That 15 kit 15 a function that gives the probability of rejectimg M, for cach
parumeter pomt i H, mmd H;. The value of the power fimetion at a parmmeter pomnt
15 the power of the test at that pomnt.

Remark

A good test is the one with small a(0) and Bi). but as a(f) increases D) decreases
and a5 o) decreases [WB) increases. Under certain assumptions because both
probabilines cannot be mimmzed. so we fix one, vsually «f@) and try to find that
test such that 3(6) 15 small.

Definttion

W say that the entical regaon 15 of size ail @ = maxge, Pix € C)
Thepowerof thetestis 1 —fi=Plxel|few’)

Hemark

It is useful to pomt out that sigmificance level, size of the eritical region, power
function when H,, 15 true and the probability of type I error are all equivalent.
Example

Let X~b(1,p), where 0 < p = ¥ Let Xy, Xy o0 Xy be a mndom sample of size
=20 from the disutbution of X and let ¥ = FL X, be the total number of
suceesses m the sample. A hyvpothesis H p = % 15 tested against Hip < i IfH, is
rejected when y = 3L, x; = 6, What is the probability of type [ ervor?



The random variable ¥ = TIL, X, ~b(20, p)
a = P(Type | error) = P{Reject H,|H, 15 trug)
¥ =
=pP(¥r=6lp=3) =503 (3) {ﬂ] " = 00577
Pefimition (P- Value)
The P-value of a test is defined as the smallest size o at which I, can be rejected
based on the observed value of the test statistie, I the P- value s small, we tend 1o

reject i1,
Example

Let X~N{u, 100), Suppose that we are testing H,: 0 = 60 against H,: p > 64). The
abserved sample mean £ = 63 based on n=32 observatons. What s the P-value of
this test?

P — value = P{X = T|u = 60)

-3 63-60 63 — 60
=.u'£ s N iaih|=prlz
7 10 ]
v L viZ
s zg—gf}_m =1~ ﬂ]—?‘_m
;",;53 J”w.f’s_z

=1—$(2.163) = 1 — 09843 = 0.0157

Smce the P-value 15 small < 0L05, we reject Hy: o= 60 and conclude that p = 6.
HW.

. Let X~b(L p). where 0 < p < ¥ Let X;, X7, .., X be a mndom sample of sire
n=100 from the distibution of X and let ¥ = /L, X, be the total number of
successes m the sample. A hypothess H,:p = i 15 tested agamnst Hyp < i IfH, s
rejected when y =YL v € 2

a. What 15 the prohability of tvpe [ ermor o?
b. What is the power of the test when p = i’.’

Best Critical Region

Let f(x: ) denote the pdf of a random vanable X. Let Xy, X5, ..., X, denote a
random sample from this disinbunon. Consider the test of the sumple null
hvpothesis H,: 8 = 8, agmnst the sumple altemative hvpothesis Hy 8 = 8.



Let C be a eritical region of size a. that 15, o = P{x € M.} Then € is called a
best entical region of size a 1f tor every other entical region A of size n

= Plx € A|H,), wehavethat Pla € CjHy) = Pix €-A|l, ).

Thus a best enitical region of size w15 the entical region that has the greatest power
amoeng all entical regions of siz¢ & An mportant theorem that provides a
systematic method of detenmining a best eritical region follows

Theorem {Neyman - Pearson)

Let Ay, Xs, ... &y, be a random sample from a population with pdf £(x; 7). The joint
pdf of Xy, Xz, o Xy 18

L8y Xy vy Y = gz @ sy 8) i ol 8 =100 F (25 8)

Let 8, and @, be distinet fixed values of 0 so that {1 = |#:68 =8, &, } If there

exist o positive constant k and & subset C of the sample space such that

I Pl(xy %, ey Xy) ECIH, | = ot

- ;-I”Jui Xy Xa -y
-

}: -
<k L gty o ERANTES. .
Liggi kg ®s =2l bor ( 14 vy El }

L!_ﬂu.i Xy X, u.-:l:'”_l'
3 L‘H';:jh.f:. Y

3 E k EIJI' L.-T;_;.T;.u-.Iu E‘:.ll}

Then O a5 a best entical repron of size « for testng H 08 = 8, agamst H: 8 = 4,

Example

Let Xy, Xz, ..., Xy be a random sample from N(#, 1). Tt 3s desired to test H 8 =
H, = Dagamst H:# =8, = 1. A random sample of size n=25 15 observed. Find a

best entical regiom ¢ of size o, and the power of the test 1- .

; — P afi
r{;f;g:]:,.%?f Sl e e
g



Eluyxf
EEay: 2,25, o 29) ey Nt

L H : 4 " (LR} x = 1 - 'EJ -l:l'i
(6 x5, x5 Al (2n)- i E..E_sz

;dl II
rrE TP " : il ___EI:_IF-;J-'H'%} =k
L-i IE ‘_E.'JEI::] J:'|'+ﬂ E{.}..u.-: -rl'i

[

By takmg natural loganthm. we get

n
n
= Z x=<ink- 3
=1
or equivakently

i
z,!:'. = —~In.ﬁ:+%=r
=]

In this case the best critical region 15 the set

P

{xi. %2 ....x,.}:z.ﬂ e
i=1

The event ¥, %, = ¢ 1s equivalent to the event 2 :t; = ¢y Then of H, is true, the

statistic X~ H{n.i]. So that P(X 2 ¢;|H,) = a. where ¢ can be found from

standard normal tables for o grven sample size n and a given sigmificance level o,
Now

PR = cy|H,) = P iﬁu =9

o lf.urz—E

= P(Z = 5¢;) = 0.05



1 =p({5¢,) = 0.05, or ®(5¢,) = 0.95. Hence

Sc=1.645 and ¢, =0.329.

That 15, we reject N2 8 = 0 with significance level o=0.0% if the sample mean
T = 0,329 The power of the est 1z

-8 =1
1-f=P Rzl =P -

=7
N e

=P{Z 25(0.329 - 1)) = 1 = P(Z < —3.355) = 1 — ®(—3.355)
Hence. 1 —fi =1 —[1 — ®(3.355)] = $(3.355) =0.999.

Now for the same example lei the bvpothesisbe H 1 8 = 8, = 0 agansi
Hy:8 = 8; = =1. To find the best entical region we proceed as follows

L(Byi X1 Xgo won i) (20)72 .«;'ﬂl”i'ﬂ

e 1]
L{Hﬂ Lo Lgy wany -'I'"J ::__Eﬁ_'}_ul';l E_-EI![E:E'.T!E

<k

i

~ ¥
— Ay
F

e 8 L
= = plim¥I*T < &
-_Ejl-l "'-It "IT':1 'Tl'-}"

@
il n
Zx, +i <Ink
Im]
L]

Z.nslnh—;

=1

Ih.x _Ink

L .

n il

-

Pud] ==




= The best entical region s £ < ¢. Thatis P(X < ¢}jif,) = a.

¢=1
1

25
From the standard normal tables 5¢ = = 1645 and ¢ = -0,329
The power of the test 15

=Pl =

= o) = (L0S

Y-8 _c¢+1

Pl = = 1
il
1-p= .“I:jE_' < 5(c + 1}:} = P(Z = 5(—0.329 4+ 1)) = ${3.355) = 0,999

1-fg=PE<clh)=

H.W

. Let X;.Xa, ... X, be a random sample from N(g, 36). To test the hypothesis
H,: p = 50 versus H;:pu =55,

a. Show that £ = ¢ 15 the best enitical region of size w.

b. Il a mndom sample of size 15 n=16 1= observed. Determine ¢ for a sigmificance
fevel o103 and the power of the fest.

2. Let X~ Powson (1), Totest H,1d = A, versus Hyppd = 4,

a, Determme the best eritical region of size o according to the Nevman- Pearson
theorem.

b. Let the test be H: A = 0.3 vensus Hyzd = 0.6, if n=5 and ¢~ 13, determme the
sigmificance level o and the power of the test 1=

3. Let the random variable X have a pdf f{x;#) = %e';",x >0 To test H,:8 =

8° =12 versus Hi 8 =8 = 4, et X, X, be a random sample of size two from ths
distribution: Show that the best enitical region 15 known by the use of the statistice
X+ X;.



Lecture 15

Uniformly Most Powerful Tests

In a test where M, 8 =8, and H;: # = #1arc both simple hypotheses, a entcal
region of s1z¢ a 15 a best entieal reglon 1if the probability of rejectmg H, when H, s
true 15 & maxiiem when compared with all ertcal regions of size o,

The test usmg the best entical region 15 called a most powerful test because it has

the greatest value of the power function at # = # when compared with that of other
tests of sigmificance level w

If H; 15 a composite hypothesis, the power of a fest depends on ¢ach smple
altermative m H,,

Diefimnon {Uniformly Most Powerful Test)

A test defined by a entical region C of size a, 15 called a uniformly most powertul
test if 1f 15 a most powerful test against cach simple alternative m H,. The cnitical
region C s called a uniformly most powerful entical region of size o

Example

Let X, X5, ..., X, be a random sample from N{g, 36). Consider westing H,: 4 = 50
agamnst Hy: g = 50, Find the oniformly most pd.w:':r_ﬁ.:l eritical region of sife o,

For each simple altemative hypothesis. let Ny:p = gy, where pg > 50. The
quotient

| N e e

L{ﬁl“: -\"1. 1-‘.' reeg 'rll} ria {R{-Hﬂ] ,-"1 £ : 'FE <k
I"{,F : b i X ¥ s X } = 4 . EIF- l!.l'l—pl_:l:
i b5 B it {Eﬂlgﬁ'” Ja é__._.Ji.. e

H 4] n [
I - 3 e
= gxp _ﬁ(z xr— umz x, + ni50)- —z:r; + 2y z:r - n(p{,}l) <k
/ =1

=1 =1 =1

= gxp —%(Hﬁi = EI}}E x; +n|(50)° — nf])] sk



n

== |20, =50) ) x, +n((50)2 i)
=1

<Ink

]
= =20 = 50) ) %< 72Ink +n((50)% - )

i=1

Z —72Ink “{SI}+ )
20 —50) | 2 H

=T72Ink 50 + 4y

— >
o) 2

Thus the best entical region of size wis € = {(x;, x5, ... %, ¥ = ¢ )}, where ¢ 15
selected suchthat P(X =z ¢|pu=50 ) =a

Sinee the entical region © defines a test that 15 most powerful against cach simple
alternative gy > 50, this s a uniformly most powerful test of size o. If n=16 and
w={).05, then ¢=352.47.

Example

Let X, Xy .... Xy, be a random sample from N(0,#). where ® 15 an unknown
positive number. Fmd a vmiformly most powerful test of H,: 8 = 8" against
Hyig> 8.

The joint pdf of X,, Xy ..., X, is

no.2

4] _H_L_E = ¥
LB 2y, x5, 0 X Y= (2008) T2

Let Hy: 8 = 8" where 8" > €', and let k denote 4 positive number. Let C be a sel

of pomts where

GOy ®y ®yn kg gy "z t n o
(& %, x; -1':'_(_) 'F-'IPI (Er e 11:)

= - ]
L[ﬂ“: r]- I[, (LN | -T“} EJ '!ﬂr zﬂ'

=




H- l,I'I ﬂll Hi
{'.r'F ”pl i 1I'( 0 )Iﬁ'If

-3 () = k-3 )

=er2(mﬂ")[2!n —Ink]=r:

=1

The set C={(x;, Xz, v, Xo)i Xl xf 2 ) is then a best eritical region for
testing H,: @ = 8" against H: 8 = &7,

It reminns to determme ¢, so that this entical regon has the desired size a. If H, 15
T 3 R ]
true. the random vanahle L—;‘,‘t—' ~J [y recalling that [Ei':i ('T':} - xfmi]_

MNow

P (Ef-':-i‘,—x‘- = 55 |Hy ) = g, where cf#r may be obtaned from chi-square tables and ¢

determuned
Moreover, the foregoing argument holds for each number " > ', Accordingly,

the oritical région € = {(xy, X3, ..., X )i Eiey x, =c¢] 15 a umformly most
powerful értical region ol size w.

I n=15 expenmental values were observed and the hypothesis Hi8 = 3 versus
18 > 3 was tested, Then from chi-square tables with o=0.05, we have : = 25

and hence ¢= 75. That is H, is rejected if XL, x7 = 75 with s:gmﬂnam.r.- level
=605,

Remark

It 15 interesting to note that of the altermative hypothesis 1s 0yt 8 < @', then a
uniformly most powerful eritical region is of the form FiL, 47 = c.



