Lecture: Two-Component System

Course: Physical Pharmacy

By: Dr. Ahmed Bassam Farhan

1. Introduction

A two-component system (or binary system) is a physical or chemical system composed of two components that may exist in one or more phases. It is studied using the phase rule to understand equilibrium relationships between temperature, composition, and the number of phases present.

2. The Phase Rule

Given by Gibbs Phase Rule:

F = C - P + 2

Where: F = degrees of freedom, C = number of components, P = number of phases. For a two-component system (C = 2), F = 4 - P. The system may therefore have up to four degrees of freedom.

3. Classification of Two-Component Systems

- 1 Completely miscible liquids (e.g., Ethanol–Water).
- 2 Partially miscible liquids (e.g., Phenol-Water).
- 3 Completely immiscible liquids (e.g., Water-Chloroform).
- 4 Solid-Liquid systems (e.g., Salt-Water).
- 5 Eutectic mixtures (e.g., Naphthalene–β-Naphthol).

4. Simple Eutectic System

A simple eutectic system occurs when two solids are completely miscible in the liquid state but immiscible in the solid state. When mixed and cooled, both solids crystallize separately. The lowest temperature at which liquid exists is the eutectic temperature (Te), and the composition is the eutectic composition (Ce).

Example: Naphthalene–β-Naphthol system.

5. Solid Solutions

In solid solutions, two solids are completely miscible in both liquid and solid states, forming a homogeneous single solid phase. Example: Copper–Nickel system.

6. Partially Miscible Liquid Systems

These liquids are miscible only within certain temperature limits. Above or below a specific temperature, they become completely miscible. The temperature at which they become completely miscible is called the Critical Solution Temperature (CST). Example: Phenol–Water system (LCST $\approx 66^{\circ}$ C).

7. Completely Miscible Liquids

Two liquids that mix in all proportions forming a single liquid phase. Example: Ethanol–Water system.

8. Phase Diagram of a Simple Eutectic System

The temperature-composition diagram shows the melting points of the components and the eutectic point. Above both liquidus curves lies the liquid phase; between them, solid and liquid coexist; below the eutectic point, two solid phases coexist.

9. Applications in Pharmacy

- 1 Understanding eutectic mixtures in drug formulations (e.g., menthol and camphor).
- 2 Studying solubility and compatibility between drugs and excipients.
- 3 Designing suppository and ointment bases with proper melting characteristics.
- 4 Determining molecular weights and purity using freezing point depression studies.

10. Summary

A two-component system involves two components forming one or more phases. It can exist as solid-solid, solid-liquid, or liquid-liquid systems. Phase diagrams help illustrate temperature-composition relationships, while eutectic behavior is essential in understanding pharmaceutical formulations.