Syllabus Thermodynamics

Second course

Biomedical Engineering

LECTURE 1

INTRODUCTION & BASIC CONCEPTS – (THERMODYNAMICS AND ENERGY, IMPORTANCE OF DIMENSIONS AND UNITS, SYSTEMS AND CONTROL VOLUMES, PROPERTIES OF A SYSTEM & DENSITY AND SPECIFIC GRAVITY)

LECTURE 2

BASIC CONCEPTS – (STATE AND EQUILIBRIUM, PROCESSES AND CYCLES, TEMPERATURE AND THE ZEROTH LAW OF THERMODYNAMICS & PRESSURE)

LECTURE 3

ENERGY - ENERGY TRANSFER, & GENERAL ENERGY ANALYSIS (FORMS OF ENERGY, ENERGY TRANSFER BY HEAT, ENERGY TRANSFER BY WORK & MECHANICAL FORMS OF WORK)

LECTURE 4

- > THE FIRST LAW OF THERMODYNAMICS
- > ENERGY CONVERSION EFFICIENCIES

LECTURE 5

> TOPIC OF SPECIAL INTEREST – MECHANISMS OF HEAT TRANSFER

LECTURE 6

PURE SUBSTANCE - PHASES OF A PURE SUBSTANCE (PHASE-CHANGE PROCESSES OF PURE SUBSTANCES & PROPERTY DIAGRAMS FOR PHASE-CHANGE PROCESSES)

LECTURE 7

- > PROPERTY OF STEAM TABLES
- ➢ THE IDEAL-GAS EQUATION OF STATE

LECTURE 8

ENERGY ANALYSIS OF CLOSED SYSTEMS (MOVING BOUNDARY WORK, ENERGY BALANCE FOR CLOSED SYSTEMS & SPECIFIC HEATS)

LECTURE 9

- > INTERNAL ENERGY, ENTHALPY, AND SPECIFIC
- INTERNAL ENERGY, ENTHALPY, AND SPECIFIC HEATS OF SOLIDS AND LIQUID

LECTURE 10

TOPIC OF SPECIAL INTEREST – THERMODYNAMIC ASPECTS OF BIOLOGICAL SYSTEMS (FOOD AND EXERCISE & DIETING)

LECTURE 11

MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES – (CONSERVATION OF MASS & FLOW WORK AND THE ENERGY OF A FLOWING FLUID)

LECTURE 12

- ENERGY ANALYSIS OF STEADY-FLOW SYSTEMS
- > SOME STEADY-FLOW ENGINEERING DEVICES
- ENERGY ANALYSIS OF UNSTEADY-FLOW PROCESSES