$$k_2 = \frac{1}{a*t} * \frac{x}{(a-x)} \dots \dots \dots \dots \dots (1)$$

لحساب ثابت سرعة التفاعل على أساس ان التفاعل هو من المرتبة الثانية متساوية التراكيز بالنسبة لكل من ايون $\frac{1}{a*t}$ و $S_2 O_8^{-2}$ و الذي سيكون مساويا الى (0.01M) في بداية التفاعل وهي قيمة α في الحد $\frac{1}{a*t}$. وبما ان تركيز محلول الثايوسلفات $S_2 O_3^{-2}$ (المادة القياسية الموجودة في السحاحة) يساوي (0.01M) لذلك يمكن استعمال الحجم النازل من السحاحة كمكافئ لتركيز المادة المستهلكة α بشرط ان يكون التركيز الابتدائي α في الحد α في الحد α .

تحسب قيمة k_2 عند فترتين زمنيتين ثابتتين بعد 15 دقيقة وبعد 30 دقيقة وتعتمد قيمة k_2 التي تمثل المعدل الاحصائى لقيمته عند الفترتين الزمنيتين أى:

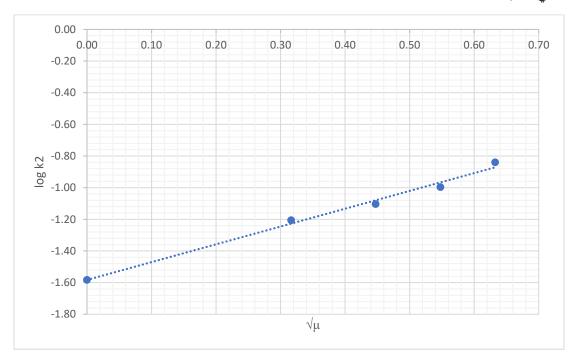
$$k_2 = \frac{[k_2]_{15} + [k_2]_{30}}{2} \dots \dots \dots \dots (2)$$

وعلى فرض ان النتائج العملية للتجربة كما مبين في الجدول:

No.	x[15]	x[30]		
1	0.10	0.19		
2	0.21	0.50		
3	0.28	0.60		
4	0.39	0.70		
5	0.50	1.10		

حيث ان [15] x هو حجم الثايوسلفات النازل من السحاحة بعد 15 دقيقة بوحدة ml وكذلك [30] هو الحجم النازل بعد 30 دقيقة، فيحسب ثابت سرعة التفاعل بعد 15 و 30 دقيقة للتجربة الأولى من خلال:

$$[k_2]_{15} = \frac{1}{0.01*15} * \frac{0.1}{(25-0.1)} \Longrightarrow [k_2]_{15} = 0.03 \, M^{-1} min^{-1}$$


$$[k_2]_{30} = \frac{1}{0.01*30} * \frac{0.19}{(25-0.19)} \Longrightarrow [k_2]_{15} = 0.03 \, M^{-1} min^{-1}$$

$$k_2 = \frac{0.03 + 0.03}{2} = 0.03 \, M^{-1} min^{-1}$$

وبتكرار الحسابات لباقى التجارب نحصل على الجدول:

No.	x[15]	x[30]	k2[15]	k2[30]	k2	μ	$\sqrt{\mu}$	logk2
1	0.10	0.19	0.03	0.03	0.03	0	0.00	-1.58
2	0.21	0.50	0.06	0.07	0.06	0.1	0.32	-1.21
3	0.28	0.60	0.08	0.08	0.08	0.2	0.45	-1.10
4	0.39	0.70	0.11	0.10	0.10	0.3	0.55	-1.00
5	0.50	1.10	0.14	0.15	0.14	0.4	0.63	-0.84

اما التمثيل البياني فيكون:

