Chapter Five Sequences and Series
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Example: Let f(2) = g, find:

1. Maclaurin series (Taylor about z, = 0).
2. Laurent series about z, = 0.

Solution: Analytic at
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Example: Let f(2) = ZZ_—:, calculate:

1. Taylor series expansion about z = 1.
2. Laurent series expansion about z = 1.

Solution:
Since z = 1 then the series is of power (z — 1):
“Inside the circle Taylor means positive powers for (z — 1)”

“Outside the circle Laurent means negative powers for (z — 1)”
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2. To find Laurent series of f(z):
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[3] Integration and Differentiation of Power Series

Theorem:

Let C be any contour interior to the circle of convergence of
S(z) =Yn-panz™and let g(z) be any continuous function on C,

then
[ 9(2)S(2) dz = 5500 [ g(2)2" dz
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Example: Expand the function f(z) =§ into a power series of
z — 1; then obtain by differentiation the expansion of Ziz in powers

of z—1.

Solution:
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Example: Expand the function f(z) = % in a Laurent series in
powers of z — 1; then obtain by differentiation the Laurent series of

z-1.
—-in powers of z — 1.
Z

Solution:

1_ 1 1
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Now, differentiating both sides with respect to z, we get:
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Which is a Laurent series for f(z) = 22;21 in powers of z — 1.

Example: Suppose that f and g are analytic functions at z,
and f(z,) = g(z,), while g(z,) # 0, prove that

f@ _ f(z)
9@ g'(20)

lim,_, —
Solution:

. f(2)
lim, 5, == z = f'(2,), and

g
hmz—>20 P = g'(2o)
Then,

RONE F(2)/(z~20)
M2z Sy = Mz-20 0 7 =a0)
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Chapter Six

Residues and Poles

Definition 1:

A point z, is called a singular of f if the function f fails to
be analytic at z, but it is analytic at some point in every
neighborhood of z,.

Definition 2:

A singular point z, is said to be isolated, if in addition,
there is some neighborhood of z, for which f is analytic
except at z,.

Example:

1.

f(2) =§, this function has a singular point atz =0,

which is an isolated singular point of f.
1

f(2) = prretve this function has four isolated

singular points z = 0, 1, +i.

. f(z) =Logz, this function has a singular point

at z=0, but this point is not isolated, because each
neighborhood of z =0 contains points on the negative
real axis and Logz fails to be analytic at each of these
points.

. f(z) = e”, has no singular points.

f(z) = Si%, has the singular points z =0 and z = % , =

+1,+2, ..., each singular point z :% is isolated but z =0 is

not isolated singular of f, since when z=0 every
neighborhood of z = 0 contains other singular points of f.

For example, take z = % , N large enough, then

1 . T .om :
N—>O=>sm;=smT=smNn=O
1/N
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