$$f(z) = \frac{\sin 1/2}{z-1} + \frac{(\sin z/(z+1))'\big|_{z=1}/1! (z-1)}{z-1} + \frac{(\sin z/(z+1))''\big|_{z=1}/2! (z-1)^2}{z-1} + \cdots$$

Example: Let $f(z) = \frac{z+1}{z-1}$, find:

- 1. Maclaurin series (Taylor about $z_0 = 0$).
- 2. Laurent series about $z_0 = 0$.

Solution:

1.
$$f(z) = \frac{z+1}{z-1} = \frac{z-1+2}{z-1}$$

$$= 1 - \frac{1}{1-z}$$

$$= 1 - 2\left(\frac{1}{1-z}\right)$$

$$= 1 - 2(1+z+z^2+\cdots), |z| < 1$$

$$= -1 - 2z - 2z^2 - \cdots$$

2.
$$f(z) = \frac{z+1}{z-1} = 1 + \frac{2}{z-1}$$
$$= 1 + \frac{2}{z\left(1 - \frac{1}{z}\right)}$$
$$= 1 + \frac{2}{z}\left[1 + \frac{1}{z} + \frac{1}{z^2} + \cdots\right]$$
$$= 1 + \frac{1}{z} + \frac{2}{z^2} + \frac{2}{z^3} + \cdots$$

Example: Let $f(z) = \frac{z-1}{z^2}$, calculate:

- 1. Taylor series expansion about z = 1.
- 2. Laurent series expansion about z = 1.

Solution:

Since z = 1 then the series is of power (z - 1):

"Inside the circle Taylor means positive powers for (z - 1)"

"Outside the circle Laurent means negative powers for (z-1)"

1.
$$f(z) = \frac{z-1}{z^2} = (z-1)\frac{1}{z^2}$$

$$= (z-1)\left(\frac{1}{(z-1)+1}\right)^2$$

$$= (z-1)\left(\frac{1}{1+(z-1)}\right)^2$$

$$= (z-1)(\sum_{n=0}^{\infty} (-1)^n (z-1)^n)^2$$

$$= (z-1)(1-(z-1)+(z-1)^2-\cdots)^2$$

$$= (z-1)[1-2(z-1)+3(z-1)^2-\cdots], |z-1| < 1$$

$$= (z-1)-2(z-1)^2+3(z-1)^3-\cdots$$

2. To find Laurent series of f(z):

$$f(z) = \frac{z-1}{z^2} = (z-1) \left[\frac{1}{(z-1)\left(1 + \frac{1}{z-1}\right)} \right]^2$$

$$= (z-1) \frac{1}{(z-1)^2} \left[\frac{1}{1 + \frac{1}{z-1}} \right]^2$$

$$= \frac{1}{z-1} \left[1 - \frac{1}{z-1} + \frac{1}{(z-1)^2} - \cdots \right]^2$$

$$= \frac{1}{z-1} \left[1 - \frac{2}{z-1} + \frac{3}{(z-1)^2} - \cdots \right]$$

$$= \frac{1}{z-1} - \frac{2}{(z-1)^2} + \frac{3}{(z-1)^3} - \cdots , \left(\left| \frac{1}{z-1} \right| < 1 \to |z-1| > 1 \right)$$

[3] Integration and Differentiation of Power Series

Theorem:

Let C be any contour interior to the circle of convergence of $S(z) = \sum_{n=0}^{\infty} a_n z^n$ and let g(z) be any continuous function on C, then

$$\int g(z)S(z)\,dz = \sum_{n=0}^{\infty} a_n \int_C g(z)z^n\,dz$$

Example: Expand the function $f(z) = \frac{1}{z}$ into a power series of z-1; then obtain by differentiation the expansion of $\frac{1}{z^2}$ in powers of z-1.

Solution:

$$\frac{1}{z} = \frac{1}{1 - (1 - z)} = \sum_{n=0}^{\infty} (1 - z)^n$$

$$= \sum_{n=0}^{\infty} (-1)^n (z - 1)^n$$

$$\to \frac{d}{dz} \left(\frac{1}{z}\right) = \sum_{n=0}^{\infty} (-1)^n \frac{d}{dz} (z - 1)^n$$

$$= \sum_{n=0}^{\infty} (-1)^n n (z - 1)^{n-1}$$

$$\to \frac{1}{z^2} = \sum_{n=0}^{\infty} (-1)^n n (z - 1)^{n-1}$$

$$\to \frac{1}{z^2} = \sum_{n=0}^{\infty} n (-1)^{n+1} (z - 1)^{n-1}$$

$$= \sum_{n=1}^{\infty} n (-1)^{n+1} (z - 1)^{n-1}$$

Example: Expand the function $f(z) = \frac{1}{z}$ in a Laurent series in powers of z - 1; then obtain by differentiation the Laurent series of $\frac{z-1}{z^2}$ in powers of z - 1.

Solution:

$$\frac{1}{z} = \frac{1}{1 - (1 - z)} = \frac{1}{(1 - z)\left(\frac{1}{1 - z} - 1\right)}$$

$$= \frac{1}{(z - 1)\left(1 - \frac{1}{1 - z}\right)}$$

$$= \frac{1}{z - 1} \sum_{n=0}^{\infty} \left(\frac{1}{1 - z}\right)^n, \left|\frac{1}{1 - z}\right| < 1 \to |1 - z| > 1$$

$$= \frac{1}{z - 1} \sum_{n=0}^{\infty} (-1)^n \frac{1}{(z - 1)^{n+1}}$$

$$\therefore \frac{1}{z} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(z - 1)^{n+1}}$$

Now, differentiating both sides with respect to z, we get:

$$\frac{-1}{z^2} = \sum_{n=0}^{\infty} (-1)^n - (n+1)(z-1)^{-(n+2)}$$

$$\frac{-1}{z^2} = \sum_{n=0}^{\infty} (-1)^n \frac{-(n+1)}{(z-1)^{n+2}}$$
Or
$$\frac{1}{z^2} = \sum_{n=0}^{\infty} (-1)^n \frac{(n+1)}{(z-1)^{n+2}}$$

$$\rightarrow \frac{z-1}{z^2} = \sum_{n=0}^{\infty} (-1)^n \frac{(n+1)}{(z-1)^{n+1}}$$

$$= \sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{(z-1)^n}$$

Which is a Laurent series for $f(z) = \frac{z-1}{z^2}$ in powers of z-1.

Example: Suppose that f and g are analytic functions at z_0 and $f(z_0) = g(z_0)$, while $g(z_0) \neq 0$, prove that

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g'(z_0)}$$

Solution:

$$\lim_{z \to z_0} \frac{f(z)}{z - z_0} = f'(z_0)$$
, and

$$\lim_{z \to z_0} \frac{g(z)}{z - z_0} = g'(z_0)$$

Then,

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \lim_{z \to z_0} \frac{f(z)/(z - z_0)}{g(z)/(z - z_0)}$$

$$= \frac{\lim_{z \to z_0} f(z)/(z - z_0)}{\lim_{z \to z_0} g(z)/(z - z_0)}$$

$$= \frac{f'(z_0)}{g'(z_0)}$$

Chapter Six

Residues and Poles

Definition 1:

A point z_0 is called a singular of f if the function f fails to be analytic at z_0 but it is analytic at some point in every neighborhood of z_0 .

Definition 2:

A singular point z_0 is said to be isolated, if in addition, there is some neighborhood of z_0 for which f is analytic except at z_0 .

Example:

- 1. $f(z) = \frac{1}{z}$, this function has a singular point at z = 0, which is an isolated singular point of f.
- 2. $f(z) = \frac{1}{z^2(z-1)(z^2+1)}$, this function has four isolated singular points $z = 0, 1, \pm i$.
- 3. f(z) = Log z, this function has a singular point at z = 0, but this point is not isolated, because each neighborhood of z = 0 contains points on the negative real axis and Log z fails to be analytic at each of these points.
- 4. $f(z) = e^z$, has no singular points.
- 5. $f(z) = \frac{1}{\sin \frac{\pi}{z}}$, has the singular points z = 0 and $z = \frac{1}{n}$, $n = \pm 1, \pm 2, ...$, each singular point $z = \frac{1}{n}$ is isolated but z = 0 is not isolated singular of f, since when z = 0 every neighborhood of z = 0 contains other singular points of f. For example, take $z = \frac{1}{N}$, N large enough, then

$$\frac{1}{N} \to 0 \Longrightarrow \sin \frac{\pi}{z} = \sin \frac{\pi}{\frac{1}{1/N}} = \sin N\pi = 0$$