Note: not every singular point is isolated, as in example 3, 5.

6. $f(z) = \frac{1}{z(z^2+1)}$, has singular and isolated points at z = 0, i, -i.

Let z_0 be any isolated singular point of f, then f is analytic at each point z, when $0 < |z - z_0| < R$, so f(z) can be represented by a Laurent series

$$f(z) = \sum_{n=1}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n} \qquad \dots (1)$$

where
$$a_n = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z-z_0)^{n+1}} dz$$

and
$$b_n = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z-z_0)^{-n+1}} dz$$

Hence:

$$b_1 = \frac{1}{2\pi i} \int_C f(z) \, dz \qquad ... (2)$$

Or

$$\int_C f(z) \, dz = 2\pi i b_1$$

where C is any simple closed contour around z_0 described in positive sense. The coefficient b_1 of $\frac{1}{z-z_0}$ in expansion (1) is called the residue of f at the isolated singular point z_0 . Formula (2) gives us a powerful method for evaluating certain integrals around simple closed contours and it is denoted by

$$b_1 = Res[f, z_0]$$

Example: Evaluate

$$\oint_C \frac{e^{-z}}{(z-1)^2} dz$$

such that C : |z| = 2.

Solution:

-2 -1 1 2

Note: we can solve this integral by two methods.

i. By Cauchy integral formula

$$\oint_C \frac{e^{-z}}{(z-1)^2} dz = 2\pi i f'(z_0)$$

$$f(z) = e^{-z} \to f'(z) = -e^{-z} \to f'(1) = -e^{-1}$$

$$\oint_C \frac{e^{-z}}{(z-1)^2} dz = 2\pi i f'(1)$$

$$=2\pi i(-e^{-1})$$

$$=-\frac{2\pi i}{e}$$

ii. Note that $f(z) = \frac{e^{-z}}{(z-1)^2}$ is analytic over C except $z_0 = 1$, so by Laurent theorem

$$\begin{split} \frac{e^{-z}}{(z-1)^2} &= \frac{e^{-1}e^{-(z-1)}}{(z-1)^2} \\ &= \frac{e^{-1}}{(z-1)^2} \sum_{n=0}^{\infty} (-1)^n \frac{(z-1)^n}{n!} , |z-1| < \infty \\ &= \frac{1}{e} \sum_{n=0}^{\infty} (-1)^n \frac{(z-1)^{n-2}}{n!} \\ &= \frac{1}{e} \left[\frac{1}{(z-1)^2} - \frac{1}{z-1} + \frac{1}{2!} - \frac{z-1}{3!} + \cdots \right] \end{split}$$

where the coefficient of $(z-z_0)^{-1}=(z-1)^{-1}$ is $\frac{-1}{e}=b_1$, so:

$$\oint_C \frac{e^{-z}}{(z-1)^2} dz = 2\pi i (b_1)$$
$$= \frac{-2\pi i}{e}$$

<u>Note</u>: if z_0 is an isolated point, the we can find the integral by Laurent and then we find the residue of the function at -z.

Example: Evaluate

$$\oint_C \frac{e^z}{z} dz$$

such that C : |z| = 1.

<u>Solution</u>: Note $z_0 = 0$ is a singular point of f.

$$\frac{1}{z}e^{z} = \frac{1}{z}\left[1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \cdots\right]$$
$$= \frac{1}{z} + 1 + \frac{z}{2!} + \frac{z^{2}}{3!} + \cdots$$

Note that b_1 is the coefficient of $\frac{1}{z}$, then $b_1 = 1$ and

$$\oint_C \frac{e^z}{z} dz = 2\pi i b_1$$

$$= 2\pi i$$

Example: Evaluate

$$\oint_C e^{1/z^2} dz$$

such that C: |z| = 2.

<u>Solution</u>: Note that there is no fraction so we cannot solve by the two previous methods that is Cauchy integral formula cannot be applied here, so we will solve by residue.

 $z_0 = 0$ is a singular and isolated point of f.

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}, |z| < \infty, \text{ so}$$

$$e^{1/z^{2}} = \sum_{n=0}^{\infty} \frac{(1/z^{2})^{n}}{n!}, \left| \frac{1}{z^{2}} \right| < \infty$$

$$= \sum_{n=0}^{\infty} \frac{1}{n! z^{2n}} \rightarrow \left| \frac{1}{z} \right| < \infty$$

$$= 1 + \frac{1}{z^{2}} + \frac{1}{2! z^{4}} + \cdots, 0 < |z| < \infty$$

The coefficient of $(z - z_0)^{-1} = (z - 0)^{-1}$ is 0, then $b_1 = 0$ so that:

$$\oint_C e^{1/z^2} dz = 2\pi i b_1 = 0$$

And this is clear, since f is analytic on C and so by Cauchy $\oint_C f(z) dz = 0$.

Example: Evaluate the following integral by using residues:

$$\oint_C z^3 \cos\left(\frac{1}{z}\right) dz \; ; \; C : |z+1+i| = 4$$

Solution:

The point $z_0 = 0$ is an isolated singularity of $\cos\left(\frac{1}{z}\right)$ and lies in the given contour of integration; we want a Laurent series expansion of $z^3 \cos\left(\frac{1}{z}\right)$ about this point (i.e. $z_0 = 0$), since:

$$\cos z = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}$$
, we have

$$\cos\left(\frac{1}{z}\right) = 1 - \frac{\left(\frac{1}{z}\right)^2}{2!} + \frac{\left(\frac{1}{z}\right)^4}{4!} - \frac{\left(\frac{1}{z}\right)^6}{6!} + \cdots$$

$$\rightarrow b_1 = \frac{1}{4!}$$

$$\oint_C z^3 \cos\left(\frac{1}{z}\right) dz = 2\pi i b_1 = \frac{2\pi i}{4!}$$
$$= \frac{\pi i}{12}$$

Example: Let C be a positively oriented unit circle $z_0 = 0$. Evaluate

$$\oint_C \frac{dz}{z^3 + z^2}$$

<u>Solution</u>: The isolated singular points are z = 0 and z = -1, -1 ∉ 0 < |z| < 1

$$f(z) = \frac{1}{z^{3} + z^{2}} = \frac{1}{z^{2}(z+1)}$$

$$= \frac{1}{z^{2}} \left(\frac{1}{1+z} \right)$$

$$= \frac{1}{z^{2}} \left(1 - z + z^{2} - z^{3} + \cdots \right)$$

$$= \frac{1}{z^{2}} - \frac{1}{z} + 1 - z + z^{2} - \cdots$$

$$\Rightarrow b_{1} = -1, \text{ so}$$

$$\oint_{C} f(z) dz = \oint_{C} \frac{1}{z^{3} + z^{2}} dz$$

$$= 2\pi i b_{1}$$

0 < |z| < 1

Example: Evaluate

 $=-2\pi i$

$$\oint_C \frac{e^{-z}}{(z-1)^2} dz$$

where C is the circle |z| = 2, described in the positive sense.

Solution:

 $f(z) = \frac{e^{-z}}{(z-1)^2}$ is analytic on C and its interior except at the isolated singular point z = 1, now

$$e^{-z} = e^{-z+1-1}$$

$$= e^{-1}e^{1-z}$$

$$= e^{-1}\sum_{n=0}^{\infty} \frac{(1-z)^n}{n!}$$

$$= e^{-1}\sum_{n=0}^{\infty} (-1)^n \frac{(z-1)^n}{n!}$$

$$= e^{-1} \left[1 - (z-1) + \sum_{n=2}^{\infty} (-1)^n \frac{(z-1)^n}{n!} \right]$$

$$\therefore e^{-z} = e^{-1} - e^{-1}(z-1) + e^{-1}\sum_{n=2}^{\infty} (-1)^n \frac{(z-1)^n}{n!}$$

Since |z - 1| > 0, we can divide both sides by $(z - 1)^2$

$$\therefore \frac{e^{-z}}{(z-1)^2} = \frac{e^{-1}}{(z-1)^2} - \frac{e^{-1}}{(z-1)} + e^{-1} \sum_{n=2}^{\infty} (-1)^n \frac{(z-1)^{n-2}}{n!}$$

 b_1 at z = 1 is equal to $-e^{-1}$, so

$$\oint_C \frac{e^{-z}}{(z-1)^2} dz = 2\pi i b_1$$
$$= -\frac{2\pi i}{e}$$

Example: Evaluate

$$\oint_C \frac{dz}{z(z-1)}$$

where C is the circle |z-1|=1 (i.e.: or described in the positive sense as shown in the following figure).

Solution:

 $f(z) = \frac{1}{z(z-1)}$, which is analytic on C and at all points inside C except at z=1, which is an isolated singular point. The Laurent series expansion of f(z) that converges in the annular region centered at z=1, is

$$\frac{1}{z(z-1)} = -\frac{1}{z} + \frac{1}{z-1}$$

$$= \frac{1}{z-1} - \frac{1}{(z-1)+1}$$

$$= (z-1)^{-1} - \sum_{n=0}^{\infty} (-1)^n (z-1)^n$$

$$= (z-1)^{-1} - 1 + (z-1) - (z-1)^2 + \cdots$$

$$b_1 = 1$$
, so

$$\oint_C \frac{dz}{z(z-1)} = 2\pi i b_1 = 2\pi i$$

Example: Evaluate $\oint_C \frac{\sin z}{z \sinh z} dz$, around |z| = 1.

Solution:

z = 0 is the only isolated singular point inside |z| = 1, recall that: