التحليل الدالي المحاضرة الخامسة قسم الرياضيات الصف الرابع

Chapter Two: Banach spaces

<u>Definition 2.1.</u> A normed linear space X is said to be **complete** if all Cauchy convergent sequences in X are convergent in X. The complete normed space is called **Banach space**.

Examples 2.2.

[1] The space F^n with the norm $||x|| = (\sum_{i=1}^n |x_i|^2)^{\frac{1}{2}}$, $\forall x = (x_1, x_2, ..., x_n) \in F^n$ is a Banach space.

 $Proof: F^n \text{ is a normed space },$

let $\{x_n\}$ is Cauchy sequence in $F^n \Rightarrow x_m \in F^n \Rightarrow x_m = (x_{1m}, x_{2m}, ..., x_{nm})$

let
$$\varepsilon > 0 \Rightarrow \exists k \in \mathbb{Z}^+$$
 s.t. $||x_m - x_l|| < \varepsilon \quad \forall m.l > k$

$$\Rightarrow ||x_m-x_l||^2 < \varepsilon^2 \qquad \forall m.l > k \qquad \dots (1)$$

$$x_m - x_l = (x_{1m}-x_{1l}, x_{2m}-x_{2l}, ..., x_{nm}-x_{nl})$$

$$||x_{m}-x_{l}||^{2} = \sum_{i=1}^{n} |x_{im}-x_{il}|^{2}$$
 (2)

from (1) & (2), we get:

$$\sum_{i=1}^{n} |x_{im} - x_{il}|^2 < \varepsilon^2 \qquad \forall m.l \ge k$$

then
$$|x_{im}-x_{il}|^2 < \varepsilon^2$$
 $\forall m.l \ge k \implies |x_{im}-x_{il}| < \varepsilon$ $\forall m.l \ge k$

 $\Rightarrow \forall i, \{x_{im}\}\ is\ a\ Cauchy\ sequence\ in\ F$

Since F is complete (because F is IR or C)

$$\Rightarrow \forall i, \exists x_i \in F \text{ s.t. } x_{im} \rightarrow x_i$$

Put
$$x=(x_1,x_2, ...,x_n) \Rightarrow x \in F$$
, $T.P. x_m \rightarrow x$.

Let $\varepsilon > 0$, $\forall m > k$, we get:

$$||x_m-x||^2 = \sum_{i=1}^n |x_{im}-x_i|^2 < \varepsilon^2 \implies ||x_m-x|| < \varepsilon \quad \forall m > k \implies \{x_m\} \text{ convergent } \implies F^n \text{ is complete}$$

Since F^n is normed space $\Rightarrow F^n$ is a Banach space

[2] The space
$$l^p(l \le p < \infty)$$
 with the norm $||x|| = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}, x = (x_1, x_2, ...) \in l^p$, is a

Banach space. H.W.

[3] The space l^{∞} with the norm $||x|| = \sup_{i} |x_{i}|$ is a Banach space.

Proof: Since l^{∞} is a normed space

Let $\{x_m\}$ is a Cauchy sequence in $l^{\infty} \Rightarrow x_m \in l^{\infty} \Rightarrow x_m = (x_{1m}, x_{2m}, ..., x_{nm}, ...)$

Let $\varepsilon > 0$, $\exists k \in Z^+$ s.t.

 $||x_{m}-x_{l}|| < \varepsilon, \quad \forall m, l > k \qquad \dots (1)$

 $x_{m}-x_{l}=(x_{1m}-x_{1l},...,x_{nm}-x_{nl},...)$

 $||x_{m}-x_{l}|| = \sup_{i} |x_{im}-x_{il}|$ (2)

From (1) *and* (2), *we have:*

 $sup_i | x_{im}-x_{il} | < \varepsilon$, $\forall m$, l > k

then for all i, $|x_{im}-x_{il}| < \varepsilon$, $\forall m$, l > k (3)

 $\Rightarrow \forall i$, then $\{x_{im}\}$ is Cauchy sequence in F

Since F is complete \Rightarrow { x_{im} } is convergent $\Rightarrow \exists x_i \in F \text{ s.t. } x_{im} \rightarrow x_i$

Put $x = (x_1, x_2, ...)$, we must prove that $x \in l^{\infty}$, $x_m \to x$

From (3), we get:

 $|x_{im}-x_i|<\varepsilon, \quad \forall m>k \quad$ (4)

Since $x_m \in l^{\infty} \Rightarrow \exists k_m \in IR \ s.t.$: $|x_{im}| \leq k_m$, $\forall i$

 $x_i = (x_i - x_{im}) + x_{im}$

 $|x_i| \leq |x_i - x_{im}| + |x_{im}|$

[4] Let X=C[a, b], $||x||_1=\sup\{|f(x)|: a \le x \le b\}$, $\forall x \in [a, b]$ is a Banach space.

Proof:

T.P. (C[a, b], $||.||_1$) is Banach space

1. C[a, b] is v.s. over IR

2. $(C[a, b], ||.||_1)$ is normed space

3. T.P. ($C[a, b], ||.||_1$) is complete

Let $\{f_m\}$ be a Cauchy seq. in C[a, b]

Given $\varepsilon > 0$, $\exists k \in \mathbb{Z}^+ s.t. \mid |f_{m} - f_n||_1 < \varepsilon$, $\forall m, n > k$

 $||f_m - f_n||_1 = \sup\{|(f_m - f_n)(x)| : a \le x \le b\} = \sup\{|f_m(x) - f_n(x)| : a \le x \le b\} \le \varepsilon, \ \forall m, n > k$

 $\Rightarrow |f_m(x) - f_n(x)| < \varepsilon, \ \forall x \in [a, b], \ \forall m, n > k$

Since $\{f_m\}$ is Cauchy seq. in IR,

Since IR is complete Then $\{f_m\}$ is convergent

i.e. $\exists f \in IR \ (f \ cont's \ \& \ bounded) \ s.t. \ f_m \rightarrow f$

 \Rightarrow (C[a, b], ||.||1) is complete normed space

 \Rightarrow (C[a, b], $||.||_1$) is Banach space

[5] Let $X=C[0, 1], ||.||_2: C[0, 1] \to IR$ defined by

$$||f||_2 = \int_0^1 f(x) |dx, \forall f \in C[0,1]$$

Then $(C[0, 1], ||f||_2)$ is not Banach space because it is normed space but not complete *Proof*:

Let $\{f_n\}$ is Cauchy seq. in C[0, 1], where:

$$f_n = \begin{cases} 1 & 0 \le x \le \frac{1}{2} \\ -nx + \frac{1}{2}n + 1 & \frac{1}{2} < x \le \frac{1}{2} + \frac{1}{n} \\ 0 & \frac{1}{2} + \frac{1}{n} < x \le 1 \end{cases}$$

let m, n > 3, then:

$$||f_{m} - f_{n}|| = \int_{0}^{1} |(f_{m} - f_{n})(x)| dx = \int_{0}^{1} |f_{m}(x) - f_{n}(x)| dx$$

$$= \int_{0}^{1/2} |(f_{m}(x) - f_{n}(x))| dx + \int_{1/2}^{1} |f_{m}(x) - f_{n}(x)| dx$$

$$\leq \int_{1/2}^{1} |(f_{m}(x))| dx + \int_{1/2}^{1} |f_{n}(x)| dx$$

$$\leq \int_{1/2}^{1} |(f_{m}(x))| dx + \int_{1/2}^{1} |f_{n}(x)| dx$$

$$\leq \frac{1}{2m} + \frac{1}{2n} \to 0 \quad \text{as} \quad m, n \to \infty$$

$$\Rightarrow ||f_m - f_n|| \rightarrow 0$$
 as $m, n \rightarrow \infty$

 $\Rightarrow \{f_m\}$ is Cauchy convergent seq. but not convergent

Suppose $\exists f \in C[0, 1] \text{ s.t. } f_m \rightarrow f$

i.e.
$$\lim_{m\to\infty} f_m(x) = f(x), \forall x \in [0,1]$$

$$\Rightarrow f(x) = \begin{cases} 0 & , 0 \le x \le \frac{1}{2} \\ 1 & , \frac{1}{2} < x \le 1 \end{cases} C!$$

Since f is not continuous at x = 1/2

 \Rightarrow (C[0, 1], $||f||_2$) is not complete \Rightarrow not Banach space.

<u>Lemma (linear combination)</u> 2.3.: Let X be a normed space, $\{x_1,x_2, ..., x_n\}$ linearly independent set in X, then $\exists c > 0$ s.t.:

$$\|\sum_{i=1}^{n} \lambda_{i} x_{i}\| \geq c \sum_{i=1}^{n} |\lambda_{i}|, \quad \forall \lambda_{i} \in F, \quad 1 \leq i \leq n$$

Theorem 2.4.: If X is finite dimension normed space then X is complete.

Proof: Let dim X=n > 0 and $\{x_1, x_2, ..., x_n\}$ is a base to X.

T.P. X is complete space we must prove every Cauchy sequence in X is convergent. Suppose that $\{y_n\}$ is Cauchy sequence,

$$||y_m - y_l|| \to 0 \text{ when } m, l \to \infty$$
 (1)

since y_m , $y_l \in X$ then:

$$y_m = \sum_{i=1}^n \lambda_{im} x_i$$
 , $\lambda_{im} \in F$

$$y_l = \sum_{i=1}^n \lambda_{il} x_i$$
 , $\lambda_{il} \in F$

$$\Rightarrow$$
 y_m - $y_l = \sum_{i=1}^n (\lambda_{im} - \lambda_{il}) x_i$, $\lambda_{im} \in F$

Since the set $\{x_1, x_2, ..., x_n\}$ is linear independent, then $\exists c > 0$ such that

$$||y_m-y_l|| = ||\sum_{i=1}^n (\lambda_{im} - \lambda_{il})x_i|| \ge c \sum_{i=1}^n (\lambda_{im} - \lambda_{il})x_i$$
 (2)

From (1) & (2), we get $\sum_{i=1}^{n} |\lambda_{im} - \lambda_{il}| \rightarrow 0$ when $m, l \rightarrow \infty$, then:

$$|\lambda_{im} - \lambda_{il}| \rightarrow 0 \text{ when } m, l \rightarrow \infty, \ \forall i.$$

$$\therefore \forall i=1, ..., n$$
, $\{\lambda_{im}\}$ is Cauchy sequence in F .

Since F is IR or C and both of them is complete

Then
$$\forall i$$
, $\exists \lambda_i \in F \text{ s.t. } \lambda_{im} \rightarrow \lambda_i$

Put
$$y = \sum_{i=1}^{n} \lambda_i x_i \implies y \in X$$
, $y_m \rightarrow y \implies X$ is complete.

Corollary (2.5.)

Every finite dimensional subspace M of a normed space X is closed

Proof:

Since M is a finite dimensional subspace of a normed space $X \Rightarrow M$ is a complete space \Rightarrow M is closed

Note that, infinite dimensional subspace of Banach space need not be closed.

Example (5.8)

Let X = C[0,1] and let $M = [\{f_0, f_1, \dots\}]$ where $f_i(x) = x^i$ so that M is the set of all polynomials. M is an infinite dimensional subspace of X but not closed in X.