$$|R_N(z)| \le \frac{r^N}{2\pi} \frac{2\mu r_1 \pi}{(r_1 - r) r_1^N}$$

$$= \frac{\mu r_1}{r_1 - r} \left(\frac{r}{r_1}\right)^N, \ \frac{r}{r_1} < 1$$

So, when $N \to \infty$, we have $R_N(z) \to 0$. Therefore, for each point z inside C_0 , the limit of the sum for the first N terms on the right in Eq.(2) as $N \to \infty$, is f(z). That is, if f is analytic inside a circle centered at z_0 with radius r_0 , then f(z) is represented by a Taylor series

$$f(z) = f(z_0) + \sum_{n=1}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$
, where $|z - z_0| < r_0$.

Important Note:

The special case in which $z_0 = 0$; i.e.:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n$$

$$= f(0) + f'(0)z + \frac{f''(0)z^2}{2!} + \dots + \frac{f^{(n)}(0)z^n}{n!} + \dots$$

is called a Maclaurin series.

Example: Find the Maclaurin series expansion for the following:

$$\sin z$$
, $\cos z$, $\sinh z$, $\cosh z$ and e^z

Solution:

Let
$$f(z) = \sin z$$
, then

$$f(0) = \sin 0 = 0$$

$$f'(z) = \cos z \to f'(0) = 1$$

$$f''(z) = -\sin z \to f''(0) = 0$$

$$f^{(3)}(z) = -\cos z \to f^{(3)}(0) = -1$$

$$f^{(4)}(z) = \sin z \to f^{(4)}(0) = 0$$

:

$$f(z) = \sin z = f(0) + \frac{f'(0)}{1!}z + \frac{f''(0)}{2!}z^2 + \dots + \frac{f^{(n)}(0)}{n!}z^n + \dots$$
$$= 0 + z + 0 - \frac{z^3}{3!} + 0 + \frac{z^5}{5!} + \dots$$
$$= z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots$$

i.e.:

$$\sin z = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2^{k+1}}}{(2k+1)!}, \ |z| < \infty \qquad \dots (1)$$

 \diamond To find the series of $\cos z$:

Differentiating both sides of (1) with respect to z, we get:

$$\cos z = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!}, |z| < \infty$$
 ... (2)

 \diamond To find the series of sinh *z*:

Since $\sinh z = -i \sin iz$, it follows from (1), that

$$sinh z = -i \sum_{k=0}^{\infty} (-1)^k \frac{(iz)^{2k+1}}{(2k+1)!}$$

$$= -i \sum_{k=0}^{\infty} (-1)^k (i)^{2k+1} \frac{z^{2k+1}}{(2k+1)!}$$

$$= \sum_{k=0}^{\infty} (-1)^k (-i) (i) (i^2)^k \frac{z^{2k+1}}{(2k+1)!}$$

$$= \sum_{k=0}^{\infty} (-1)^k (-1)^k \frac{z^{2k+1}}{(2k+1)!} \qquad [((-1)^2)^k = 1]$$

$$sinh z = \sum_{k=0}^{\infty} \frac{z^{2k+1}}{(2k+1)!}, |z| < \infty \qquad \dots (3)$$

 \clubsuit To find the series of $\cosh z$:

Differentiating both sides of (3) with respect to z, we get:

$$\cosh z = \sum_{k=0}^{\infty} \frac{z^{2k}}{(2k)!}, |z| < \infty \qquad ... (4)$$

• To find the series of e^z :

When
$$f(z) = e^z$$
, then $f^{(n)}(z) = e^z$

 $f^{(n)}(0) = 1$, since e^z is analytic for all z, so:

$$e^{z} = e^{0} + e^{0}z + \frac{e^{0}}{2!}z^{2} + \dots + \frac{e^{0}}{n!}z^{n} + \dots$$

$$= 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \dots + \frac{z^{n}}{n!} + \dots$$

$$= \sum_{k=0}^{\infty} \frac{z^{k}}{k!} \qquad \dots (5)$$

Example: Expand $\cos z$ into a Taylor series about the point $z = \frac{\pi}{2}$.

Solution: let $f(z) = \cos z$, then

$$f(z) = \cos z = f\left(\frac{\pi}{2}\right) + \frac{f'\left(\frac{\pi}{2}\right)\left(z - \frac{\pi}{2}\right)}{1!} + \frac{f''\left(\frac{\pi}{2}\right)\left(z - \frac{\pi}{2}\right)^{2}}{2!} + \dots + \frac{f^{(n)}\left(\frac{\pi}{2}\right)\left(z - \frac{\pi}{2}\right)^{n}}{n!} + \dots$$

Now,

$$f\left(\frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2}\right) = 0$$

$$f'(z) = -\sin z \to f'\left(\frac{\pi}{2}\right) = -1$$

$$f''(z) = -\cos z \to f''\left(\frac{\pi}{2}\right) = 0$$

$$f^{(3)}(z) = \sin z \to f^{(3)}\left(\frac{\pi}{2}\right) = 1$$

$$f^{(4)}(z) = \cos z \to f^{(4)}\left(\frac{\pi}{2}\right) = 0$$

:

Example: Show that

$$\frac{1}{z^2} = \sum_{n=0}^{\infty} (n+1)(z+1)^n$$

where |z + 1| < 1.

Solution:

Since $|z + 1| < 1 \rightarrow z_0 = -1$ and,

$$f(z) = \frac{1}{z^2} \to f(-1) = 1$$

$$f'(z) = \frac{-2}{z^3} \to f'(-1) = 2$$

$$f''(z) = \frac{2.3}{z^4} \to f''(-1) = 3!$$

$$f^{(3)}(z) = \frac{-2.3.4}{z^5} \to f^{(3)}(-1) = 4!$$

:

$$f^{(n)}(z) = \frac{(-1)^n \cdot 2 \cdot 3 \cdot ... (n+1)}{z^{n+2}} \to f^{(n)}(-1) = (n+1)!$$

$$\frac{1}{z^2} = \sum_{n=0}^{\infty} \frac{(n+1)!}{n!} (z+1)^n$$
$$= \sum_{n=0}^{\infty} (n+1)(z+1)^n$$

Example: Expand $f(z) = \frac{3}{z+i}$ into a Taylor series about |z-i| < 2.

Solution:

Note that -i is a singular point located on the perimeter. The largest size circle that can be found is the one that the function is not analytic

at it, which is -i. The distance between i and -i represents the radius of convergence which is 2, and that's why we have the circle |z-i| < 2. And if we have |z-i| < 3 then the Taylor series cannot be applied, since the function will not be analytic and one of its conitions is that the function must be analytic inside C.

$$\frac{3}{z+i} = \frac{3}{z+2i-i}$$
$$= \frac{3}{2i+(z-i)}$$

$$= \frac{3}{2i\left(1 + \frac{z - i}{2i}\right)}$$

$$= \frac{3}{2i} \left[\frac{1}{1 + \frac{z - i}{2i}}\right] \text{ (Geometric series } a = 1, r = \frac{z - i}{2i}\text{)}$$

$$= \frac{3}{2i} \left[\sum_{n=0}^{\infty} (-1)^n \left(\frac{z-i}{2i} \right)^n \right]$$

Note:
$$\left| \frac{z-i}{2i} \right| < 1 \rightarrow |z-i| < 2$$
.

Example:

1. Expand $f(z) = \frac{1}{1+z}$ about z = 0.

Solution:

$$f(z) = \frac{1}{1 - (-z)}$$

$$= 1 - z + z^2 - z^3 + \dots + (-1)^n z^n + \dots , |z| < 1$$

$$= \sum_{n=0}^{\infty} (-1)^n z^n$$

2. Expand $f(z) = \frac{1}{1-z^2}$ about z = 0.

<u>Solution</u>:

$$f(z) = \sum_{n=0}^{\infty} (z^2)^n = \sum_{n=0}^{\infty} z^{2n}$$
, $|z| < 1$

Note: to find the radius of convergence = $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|}$, such as in the previous example,

$$\begin{vmatrix} a_{n+1} = -1 \to |a_{n+1}| = 1 \\ a_n = 1 \to |a_n| = 1 \end{vmatrix} \to \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{1}{1} = 1$$

$$\therefore r_0 = 1$$

$$|z - 0| < r_0 \rightarrow |z| < 1.$$

Example: Write $f(z) = \frac{1}{z}$ into a Taylor series about z = i, $r_0 = 1$.

Solution: from Taylor's theorem $|z - z_0| < r_0 \rightarrow |z - i| < 1$

$$\frac{1}{z} = \sum_{n=0}^{\infty} a_n (z - i)^n , |z - i| < 1$$

$$f(i) = \frac{0!}{i}, f'(i) = \frac{-1!}{i^2}, f''(i) = \frac{2!}{i^3}, \dots, f^{(n)}(i) = \frac{(-1)^n n!}{i^{n+1}}$$

$$\therefore \frac{1}{z} = \sum_{n=0}^{\infty} (-1)^n \frac{(z - i)^n}{i^{n+1}}$$

Or:

$$\frac{1}{z} = \frac{1}{z - i + i} = \frac{1}{i + (z - i)}$$

$$= \frac{1}{i \left(1 + \frac{z - i}{i}\right)}$$

$$= \frac{1}{i} \left[\frac{1}{1 + \frac{z - i}{i}}\right], \text{ since } |z - i| < 1$$

$$= \frac{1}{i} \sum_{n=0}^{\infty} (-1)^n \frac{(z - i)^n}{i^n}$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{(z - i)^n}{i^{n+1}}$$

Example: Write $f(z) = \frac{1}{z}$ into a power series for (z-1).

Solution:

$$\frac{1}{z} = \frac{1}{z-1+1}$$

$$= \frac{1}{1+(z-1)} \text{ (Geometric series } a = 1, r = (z-1))$$

$$= \sum_{n=0}^{\infty} (-1)^n (z-1)^n, |z-1| < 1$$

Example: Represent the function

$$f(z) = \frac{z}{(z-3)(z-1)}$$

into a series of negative power of (z - 1), which converges to f(z) where 0 < |z - 1| < 2

Solution:

$$f(z) = \frac{z}{(z-3)(z-1)} = \frac{A}{z-1} + \frac{B}{z-3}$$