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Convyergence in Normed Spaces

Let X be a non-empty set. A sequence in X is any function from N (the set of all natural
numbers) into X .If fis a sequence in X, the image f (n) of n € N is usually, denoted by x, . It
is customary to denote the sequence of the classical symbol  {xu}.
We say that {x,} the sequence of real numbers if X =R. Sometime, we write it as {x;, X2 ,..., Xn
,--4 .The image x, of n is called the nth term of the sequence.

Note that, there is difference between the sequence and its range. For example, the rang of the
sequence{(—1)"} is {x, : neN }= {-1,1}but the sequence is {x,} ={(—-1)"}={1,—1,1,—1, ...}.
Definition(1.32)

A sequence {x,} in a normed space X is said to be

1. Converge to the point x ¢ X, iflim||xn - x|| = 0. i.e.for eache > 0,
n—0o

there exist k € Z* such that ||xn — x|| <é&foralln=>k.

and we write lim x, = xorx, > xasn — o

n—oo

It follows that x» > x iff || x» —x|| =0
2. Cauchy sequence in X , if for every € >0, there exists k €Z" such that ||x, — xm||<é& for all
n,m=k
3. Bounded, if there is M > 0 such that ||x. || <M for all n.
Theorem (1.33)

In a normed space X and A < X

1. limit point of sequence is unique.

2. Every convergence sequence is Cauchy sequence, but the converse not true.

3. Every Cauchy sequence is bounded, but the converse not true.

4.Every convergent sequence in the normed space X is bounded.

5. x €A iff there exists a sequence{x,}in A such that x, — x.

6. If a Cauchy sequence in X has a convergent subsequence, then the sequence is convergent.
7. If {xn} and {y. } are Cauchy sequences in R, then {|| x» —yn ||} is convergent in R.

Proof:

1-Suppose that x,—>x and x,—»y s.t. x 2y, and put || x-y || = ¢ = &>0



FUNCTIONAL ANALYSIS

G ) 5 punlnall
since xn—>x = FkieZ st ||xn—x||<&/2, Vn>k

and xn—>y = FkeZb st || xn—y|| < &2, Vn>k;
put k=maxi{ki, k2}. Then || x,—x|| < &2 ,

| xn—y|| < &2 Vn>k

=[xy [| =[G -xa) + Cn=p) | <[] Gen ) [|F]| Gcn=p) || < &2 +&/2 =¢ !
and this contradiction then x=y.

2- Suppose that {x.} is a convergent sequence in the normed space X, then IxeX s.t. xn—>x
Let >0, since x,—>x = FkeZ" s.t. || xn—x || < &2 Vn>k

Ifn,m >k then || xn - xm ||=]|| OGcn —)+00- X0 )||Z || X0 —x||F|| X- Xm0 || < &2+ 2=¢
Then {x.} is a Cauchy sequence.

Remark:

The converse to above theorem may not be true. For example:

Let X=IR-{0}, {xu} = {l/n}

{xa} Cauchy convergent sequence in IR

Since IR complete = {x,} = {1/n} — 0 convergent in IR

But {x.} not convergent in IR-{0} , since 0 ¢ IR-{0}.

3- Let {xn} be a Cauchy sequence in X

Given e=1, FkeZ" s.t. || xn—xm || <1, Y, m > k.

Letm =k+1 = || xun —xi+1 || <1

Since | || xn|| = || Xk1 || | || X0 — 2011 ] < 1

= 2l =[x [T < 1= ]2l | < T [ xasr ||, V>k

X2 Xk

b y *cc b

Put M = max { || x; x|} = || x| <M, YheZ'

4-Let {xn} be a convergent sequence in X = {x,} a Cauchy convergent sequence in X
= {xn} bounded.

H.W. prove 5,6 and 7

Theorem 1.34.: Let X be a normed space, { xn }, { yn } be a sequence in X such that x,— xo,

Yn—> Yo, then:
1- xntyn—>x0Zy0
2- [ xn [| =] xoll

3= A1 xn - yu || = x0-yo|
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4- oxn, — axo VaelF

Proof:

1- Since xn—x0, yn—y0, then:

ife>0
Fki(e) €Z" sit. ||xw-x0||<&/2, Vn>ki(e)
Fkaog) €Z" s.t. ||yw-yo|| < &/2, Vn>kag
Define k3(g)= max { ki(&),k2(e)}
|| Gent yn) = (xo+ yo) || = [[ Xt yn = X0- yo |
< {1 xa= xol[ + [] ya= yol|

<g/2+e/2=¢, Vn>ksg

= Xn+ Yn—>X0+)0
2- Since xp—»x0 T.P. || xu || = || x0|| i.e. T.P. ||| xn || - || X0]] | =0
By Theorem (1.13.)-4 : | || xn || - || x0|| | || Xn-x0|| ..... (1)

Since xp—>x0 = || Xn-x0|| =0 .....(2)
By (1) & (2) we get: | || xu || - || xo| [ > 0
Then || xa || - [ xo|

3- TP || xn-yu || = || x0- yo

yie. TP ||| xn-ynll -] x0-yol| | =0
Since xp—>x0 = || xn—x0|| -0
& yns>yo =1 yn—yo|| >0
| 1 xn = yu [| = | x0- yol | | <[] X0 = yn = X0+ yo]
< [[xn=xo [| + || yu-yol|
= [ 1 xn = yu [l - N[ x0- yol| | > 0 =[] X0 - yu [| =[] x0- yo ||
4- N axxn-axxol | =] (xn —x0)|| = [a] |[ xn —x0]
since || Xu-x0||—> 0 where n— o = ||aoxs-axo|| > 0 where n— 0 = axn = axo
Definition 1.35.: Let X be a normed space, xoeX, a function f is said to be continuous at xo if:

Ve>0,30(x0 ¢ >0s.t || f(x)—flxo) || < & whenever || x - xo|| <.

Theorem 1.36. : Let X, Y be two Normed space, a function [ : X — Y continuous at xo €X iff

for each sequence {x.} in X such that x, — xo, then f(x,) = f(x0).
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Theorem 1.37.: Let X be a normed space, A subspace in X, then the two following statements

are equivalent:
1- A is bounded.
2- If {xn} seq. in X and {A,} seq. in F such that 1,—0 as n —o0, then x,A,— 0 as n —oo.
Proof:
TP.1->2
|| X0dn = 0| = || X0l || = | Au| || Xu ]| 0. asn —>o0
TP.2—>1
Suppose A unbounded
ie.dxped st || xn||>M, VneZ'
put An=1/n - 0 as n —coo
but Awxn = 0 C!
then A is bounded.
Definition 1.38.: The linear vector space X /Y is called quotient or factor space formed as
follows:

The elements of X /'Y are cosets of Y {sets of the form x + Y for x € X}. The set of cosets is a

linear v. space under the operations:
x1+Y)®@ (2+Y)=(x1+x)) + 7Y,
Ax+Y)=Ax+Y.
So for example Y + Y =Y and AY =Y for A# 0. Two cosets x; + Y and x> + Y are
equal if assets x; + Y = x2 + Y, which is true if and only if x; + x> € Y .
Definition 1.39.: A quotient vector space X/Y is called quotient normed space if there exists

norm define on X/Y.

Theorem _1.40.: If X is a normed space, and Y is a normed linear subspace, then X/Y is a

normed space under the norm:

|| x+Y|| =inf{||xty |l : ye¥}. HW.



