التحليل الدالي المحاضرة الرابعة قسم الرياضيات الصف الرابع

#### Convergence in Normed Spaces

Let X be a non-empty set. A sequence in X is any function from N (the set of all natural numbers) into X. If f is a sequence in X, the image f(n) of  $n \in N$  is usually, denoted by  $x_n$ . It is customary to denote the sequence of the classical symbol  $\{x_n\}$ . We say that  $\{x_n\}$  the sequence of real numbers if X = R. Sometime, we write it as  $\{x_1, x_2, ..., x_n, ...\}$ . The image  $x_n$  of n is called the nth term of the sequence.

Note that, there is difference between the sequence and its range. For example, the rang of the sequence  $\{(-1)^n\}$  is  $\{x_n : n \in \mathbb{N}\} = \{-1,1\}$  but the sequence is  $\{x_n\} = \{(-1)^n\} = \{1,-1,1,-1,\ldots\}$ .

### Definition(1.32)

A sequence  $\{x_n\}$  in a normed space X is said to be

- 1. Converge to the point  $x \in X$ , if  $\lim_{n \to \infty} ||x_n x|| = 0$ . i.e. for each  $\varepsilon > 0$ , there exist  $k \in Z^+$  such that  $||x_n x|| < \varepsilon$  for all  $n \ge k$ . and we write  $\lim_{n \to \infty} x_n = x$  or  $x_n \to x$  as  $n \to \infty$ It follows that  $x_n \to x$  iff  $||x_n x|| \to 0$
- 2. Cauchy sequence in X, if for every  $\varepsilon > 0$ , there exists  $k \in \mathbb{Z}^+$  such that  $||x_n x_m|| < \varepsilon$  for all  $n, m \ge k$
- 3. Bounded, if there is M > 0 such that  $||x_n|| \le M$  for all n.

## **Theorem** (1.33)

In a normed space X and  $A \subseteq X$ 

- 1. limit point of sequence is unique.
- 2. Every convergence sequence is Cauchy sequence, but the converse not true.
- 3. Every Cauchy sequence is bounded, but the converse not true.
- 4. Every convergent sequence in the normed space X is bounded.
- 5.  $x \in \bar{A}$  iff there exists a sequence  $\{x_n\}$  in A such that  $x_n \to x$ .
- 6. If a Cauchy sequence in X has a convergent subsequence, then the sequence is convergent.
- 7. If  $\{x_n\}$  and  $\{y_n\}$  are Cauchy sequences in R, then  $\{||x_n-y_n||\}$  is convergent in R.

## **Proof:**

1-Suppose that  $x_n \rightarrow x$  and  $x_n \rightarrow y$  s.t.  $x \neq y$ , and put  $||x-y|| = \varepsilon \rightarrow \varepsilon > 0$ 

since 
$$x_n \rightarrow x \implies \exists k_1 \in \mathbb{Z}^+ \text{ s.t. } ||x_n - x|| < \varepsilon/2 \text{ , } \forall n > k_1$$

and 
$$x_n \rightarrow y \implies \exists k_2 \in \mathbb{Z}^+ \text{ s.t. } ||x_n - y|| < \varepsilon/2 \text{ , } \forall n > k_2$$

put 
$$k=max\{k_1, k_2\}$$
. Then  $||x_n-x|| < \varepsilon/2$ ,  $||x_n-y|| < \varepsilon/2$   $\forall n > k$ .

$$\varepsilon = ||x-y|| = ||(x-x_n) + (x_n-y)|| \le ||(x_n-x)|| + ||(x_n-y)|| < \varepsilon/2 + \varepsilon/2 = \varepsilon!$$

and this contradiction then x=y.

2- Suppose that  $\{x_n\}$  is a convergent sequence in the normed space X, then  $\exists x \in X$  s.t.  $x_n \rightarrow x$ 

Let 
$$\varepsilon > 0$$
, since  $x_n \rightarrow x \Rightarrow \exists k \in \mathbb{Z}^+$  s.t.  $||x_n - x|| < \varepsilon/2 \quad \forall n > k$ 

If 
$$n,m \ge k$$
, then  $||x_n - x_m|| = ||(x_n - x) + (x - x_m)|| \le ||x_n - x|| + ||x - x_m|| < \varepsilon/2 + \varepsilon/2 = \varepsilon$ 

Then  $\{x_n\}$  is a Cauchy sequence.

### Remark:

The converse to above theorem may not be true. For example:

Let 
$$X = IR - \{0\}, \{x_n\} = \{1/n\}$$

 $\{x_n\}$  Cauchy convergent sequence in IR

Since IR complete  $\Rightarrow \{x_n\} = \{1/n\} \rightarrow 0$  convergent in IR

But  $\{x_n\}$  not convergent in  $IR-\{0\}$ , since  $0 \notin IR-\{0\}$ .

3- Let  $\{x_n\}$  be a Cauchy sequence in X

Given 
$$\varepsilon=1$$
,  $\exists k \in \mathbb{Z}^+$  s.t.  $||x_n-x_m|| \leq 1$ ,  $\forall n, m \geq k$ .

Let 
$$m = k+1 \Rightarrow ||x_n - x_{k+1}|| \le 1$$

Since 
$$| || x_n || - || x_{k+1} || | \le || x_n - x_{k+1} || \le 1$$

$$\Rightarrow | ||x_n|| - ||x_{k+1}|| | < 1 \Rightarrow ||x_n|| < 1 + ||x_{k+1}||, \forall n > k$$

Put 
$$M = max \{ ||x_1||, ||x_2||, ..., ||x_k||, ||x_{k+1}|| \} \implies ||x_n|| \le M, \forall n \in \mathbb{Z}^+.$$

4-Let  $\{x_n\}$  be a convergent sequence in  $X \Rightarrow \{x_n\}$  a Cauchy convergent sequence in  $X \Rightarrow \{x_n\}$  bounded.

# H.W. prove 5,6 and 7

**Theorem 1.34.**: Let X be a normed space,  $\{x_n\}$ ,  $\{y_n\}$  be a sequence in X such that  $x_n \rightarrow x_0$ ,  $y_n \rightarrow y_0$ , then:

$$1- x_n \pm y_n \longrightarrow x_0 \pm y_0$$

2- 
$$||x_n|| \to ||x_0||$$

$$3-||x_n-y_n|| \to ||x_0-y_0||$$

4- 
$$\alpha x_n \rightarrow \alpha x_0 \quad \forall \alpha \in F$$

#### **Proof:**

*1-* Since 
$$x_n \rightarrow x_0$$
,  $y_n \rightarrow y_0$ , then:

if 
$$\varepsilon > 0$$

$$\exists k_1(\varepsilon) \in Z^+ \text{ s.t. } ||x_n - x_0|| < \varepsilon/2, \forall n > k_1(\varepsilon)$$

$$\exists k_2(\varepsilon) \in Z^+ \text{ s.t. } ||y_n - y_0|| < \varepsilon/2, \forall n > k_2(\varepsilon)$$

Define  $k_3(\varepsilon) = max \{ k_1(\varepsilon), k_2(\varepsilon) \}$ 

$$|| (x_n + y_n) - (x_0 + y_0) || = || x_n + y_n - x_0 - y_0 ||$$
  
 $\leq || x_n - x_0 || + || y_n - y_0 ||$   
 $\leq \varepsilon / 2 + \varepsilon / 2 = \varepsilon, \ \forall n > k_3(\varepsilon)$ 

$$\rightarrow x_n + y_n \rightarrow x_0 + y_0$$

2- Since 
$$x_n \to x_0$$
 T.P.  $||x_n|| \to ||x_0||$  i.e. T.P.  $||x_n|| - ||x_0|| \to 0$ 

By Theorem (1.13.)-4: 
$$| ||x_n|| - ||x_0|| | \le ||x_n - x_0|| \dots (1)$$

Since 
$$x_n \rightarrow x_0 \rightarrow ||x_n - x_0|| \rightarrow 0$$
 .....(2)

By (1) & (2) we get: 
$$| || x_n || - || x_0 || | \rightarrow 0$$

Then  $||x_n|| \rightarrow ||x_0||$ 

3- 
$$T.P. \mid |x_n - y_n|| \rightarrow ||x_0 - y_0||$$
, i.e.  $T.P. \mid ||x_n - y_n|| - ||x_0 - y_0|| \rightarrow 0$ 

Since 
$$x_n \rightarrow x_0 \implies ||x_n - x_0|| \rightarrow 0$$

& 
$$y_n \rightarrow y_0 \Rightarrow ||y_n - y_0|| \rightarrow 0$$

$$| | | x_n - y_n | | - | | x_0 - y_0 | | | \le | | x_n - y_n - x_0 + y_0 | |$$

$$\leq ||x_n - x_0|| + ||y_n - y_0||$$

$$\Rightarrow |||x_n - y_n|| - ||x_0 - y_0||| \rightarrow 0 \Rightarrow ||x_n - y_n|| \rightarrow ||x_0 - y_0||$$

4- 
$$||\alpha x_n - \alpha x_0|| = ||\alpha(x_n - x_0)|| = |\alpha| ||x_n - x_0||$$

since 
$$||x_n-x_0|| \to 0$$
 where  $n \to \infty \implies ||\alpha x_n-\alpha x_0|| \to 0$  where  $n \to \infty \implies \alpha x_n \to \alpha x_0$ 

**<u>Definition 1.35.:</u>** Let X be a normed space,  $x_0 \in X$ , a function f is said to be **continuous** at  $x_0$  if:  $\forall \ \varepsilon > 0, \ \exists \ \delta(x_0, \ \varepsilon) > 0 \ s.t. \ || f(x) - f(x_0) \ || < \varepsilon \ whenever \ || x - x_0 \ || < \delta$ .

**Theorem 1.36.** : Let X, Y be two Normed space, a function  $f: X \to Y$  continuous at  $x_0 \in X$  iff for each sequence  $\{x_n\}$  in X such that  $x_n \to x_0$ , then  $f(x_n) \to f(x_0)$ .

<u>Theorem 1.37.:</u> Let X be a normed space, A subspace in X, then the two following statements are equivalent:

1- A is bounded.

2- If  $\{x_n\}$  seq. in X and  $\{\lambda_n\}$  seq. in F such that  $\lambda_n \to 0$  as  $n \to \infty$ , then  $x_n \lambda_n \to 0$  as  $n \to \infty$ . Proof:

$$T.P. 1 \rightarrow 2$$

$$||x_n\lambda_n-\theta||=||x_n\lambda_n||=|\lambda_n|||x_n||\to 0.$$
 as  $n\to\infty$ .

$$T.P. 2 \rightarrow 1$$

Suppose A unbounded

i.e. 
$$\exists x_n \in A \text{ s.t. } ||x_n|| > M$$
,  $\forall n \in Z^+$ 

put 
$$\lambda_n = 1/n \rightarrow 0$$
 as  $n \rightarrow \infty$ 

but 
$$\lambda_n x_n \to 0$$
 C!

then A is bounded.

<u>**Definition 1.38.**</u>: The linear vector space X/Y is called quotient or factor space formed as follows:

The elements of X/Y are cosets of Y {sets of the form x + Y for  $x \in X$ }. The set of cosets is a linear v. space under the operations:

$$(x_1 + Y) \oplus (x_2 + Y) = (x_1 + x_2) + Y;$$

$$\lambda(x+Y)=\lambda x+Y.$$

So for example Y + Y = Y and  $\lambda Y = Y$  for  $\lambda \neq 0$ . Two cosets  $x_1 + Y$  and  $x_2 + Y$  are equal if assets  $x_1 + Y = x_2 + Y$ , which is true if and only if  $x_1 + x_2 \in Y$ .

<u>**Definition 1.39.**</u>: A quotient vector space X/Y is called quotient normed space if there exists norm define on X/Y.

**Theorem 1.40.:** If X is a normed space, and Y is a normed linear subspace, then X/Y is a normed space under the norm:

$$||x + Y|| = inf \{||x+y|| : y \in Y\}.$$
 **H.W.**