
Thread Management

1. Defining and Starting a Thread

An application that creates an instance of Thread must provide the code that will run in

that thread. There are two ways to do this:

- Provide a Runnable object. The Runnable interface defines a single method, run, meant

to contain the code executed in the thread. The Runnable object is passed to

the Threadconstructor, as in the HelloRunnable example:

package hellorunnable;

public class HelloRunnable implements Runnable {

public void run() {

System.out.println("Hello from a thread!");

}

public static void main(String args[]) {

HelloRunnable r1=new HelloRunnable();

Thread t1=new Thread(r1);

t1.start();

}

}

// or in the main section: (new Thread(new HelloRunnable())).start(); in

this way, we can not control thread sleeping and stoping … etc

- Subclass Thread. The Thread class itself implements Runnable, though its run method

does nothing. An application can subclass Thread, providing its own implementation of run,

as in the HelloThread example:

public class HelloThread extends Thread {

public void run() {

System.out.println("Hello from a thread!");

}

public static void main(String args[]) {

HelloThread t1=new HelloThread();

t1.start();

}

}

https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/examples/HelloRunnable.java
https://docs.oracle.com/javase/tutorial/essential/concurrency/examples/HelloThread.java

2- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

The code of the main method can be as following as well:

(new HelloThread()).start();

// in this way, we do not have a thread full control to sleep or stop

Or :

Thread t1=new Thread(new HelloRunnable());

t1.start();

another example:

package threadexample;

public class ThreadExample extends Thread {

public void run() {

for (int i = 0; i < 5; i++) {

printMyName();

}

}

public void printMyName() {

System.out.println("The Thread name is " + Thread.currentThread().getName());

}

public static void main(String[] args) {

ThreadExample ttsn = new ThreadExample();

ttsn.setName("Created One");

ttsn.start();

Thread t2 = currentThread();

t2.setName("Main One");

for (int i = 0; i < 5; i++) {

ttsn.printMyName();

}

}

}

Notice that both examples invoke Thread.start in order to start the new thread.

Which of these idioms should you use? The first idiom, which employs a Runnable object, is more

general, because the Runnable object can subclass a class other than Thread. The second idiom is

easier to use in simple applications, but is limited by the fact that your task class must be a descendant

of Thread.

3- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

Why Thread Class ?

The Thread class defines a number of methods useful for thread management. These include

static methods, which provide information about, or affect the status of, the thread invoking the

method.

Thread Management

1- Sleep

Thread.sleep causes the current thread to suspend execution for a specified period. This is an

efficient means of making processor time available to the other threads of an application or other

applications that might be running on a computer system.

Notice that Thread declares that it throws InterruptedException (in case of main

thread) or try-catch (anywhere else). This is an exception that sleep throws when another

thread interrupts the current thread while sleep is active.

package hellorunnable;

import java.util.logging.Level;

import java.util.logging.Logger;

public class HelloRunnable implements Runnable {

public void run() {

String importantInfo[] = {

"Mares eat oats",

"Does eat oats",

"Little lambs eat ivy",

"A kid will eat ivy too"

};

for (int i = 0;i < importantInfo.length;i++) {

try {

//Pause for 4 seconds

Thread.sleep(4000);

} catch (InterruptedException e) {}

//Print a message

System.out.println(importantInfo[i]);

}

}

public static void main(String args[])

throws InterruptedException {

4- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

Thread t1=new Thread(new HelloRunnable());

t1.start();

}

}

Another example showing that even if the main thread finished execution, the child threads still running

until they finished their task:

package hellorunnable;

class HelloRunnable implements Runnable {

public static void main(String args[]) {

Thread t = Thread.currentThread();

Thread t1=new Thread(new HelloRunnable());

t1.start();

Thread t2=new Thread(new HelloRunnable());

t2.start();

Thread t3=new Thread(new HelloRunnable());

t3.start();

System.out.println("Current thread: " + t);

t.s etName("My Thread: Main");

t1.setName("My Thread: Created t1");

t2.setName("My Thread: Created t2");

t3.setName("My Thread: Created t3");

System.out.println("After name change of current thread: " + t);

for (int n = 5; n > 0; n--)

System.out.println(n);

System.out.println("main thread finished execution");

}

5- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

public void run() {

for (int i=0;i<15;i++)

System.out.println("name of the created thread: " + Thread.currentThread());

}

}

2- Stop

This instruction focuses the running thread to stop what is doing, there is no need for

try-catch block.

package stopex;

class MyThread implements Runnable{

private Boolean stop = false;

public void run(){

while(!stop){

System.out.println("continue processing");

}

}

public Boolean getStop() {

return stop;

}

public void setStop(Boolean stop) {

this.stop = stop;

}

}

public class StopEx {

public static void main(String[] args){

6- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

//new StopEx();

MyThread myThread=new MyThread();

Thread th = new Thread(myThread);

th.start();

for(int i=0;i<10;i++)

try {

Thread.sleep(1000);

} catch (InterruptedException e) {}

//This will compell the thread to stop

myThread.setStop(true);

}

}

3- Join and Alive instructions

Sometimes one thread needs to know when another thread is ending. In java,

isAlive() and join() are two different methods to check whether a thread has finished its

execution.

The isAlive() methods return true if the thread upon which it is called is still running

otherwise it return false.

But, join() method is used more commonly than isAlive(). This method waits until the

thread on which it is called terminates.

Using join() method, we tell our thread to wait until the specifid thread completes its

execution. There are overloaded versions of join() method, which allows us to specify time

for which you want to wait for the specified thread to terminate.

 final void join(long milliseconds) throws InterruptedException

final void join() throws InterruptedException

final boolean isAlive()

7- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

Output

example without join:

public class MyThread extends Thread

{

public void run()

{

System.out.println("r1 ");

try{

Thread.sleep(500);

}catch(InterruptedException ie){}

System.out.println("r2 ");

}

public static void main(String[] args)

{

MyThread t1=new MyThread();

MyThread t2=new MyThread();

t1.start();

t2.start();

System.out.println(t1.isAlive());

System.out.println(t2.isAlive());

}

}

r1

true

true

r1

r2

r2

public class MyThread extends Thread

{

public void run()

{

System.out.println("r1 ");

try{

Thread.sleep(500);

}catch(InterruptedException ie){}

8- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

Output

In this above program two thread t1 and t2 are created. t1 starts first and after printing "r1" on

console thread t1 goes to sleep for 500 mls.At the same time Thread t2 will start its process

and print "r1" on console and then goes into sleep for 500 mls. Thread t1 will wake up from

sleep and print "r2" on console similarly thread t2 will wake up from sleep and print

"r2" on console. So you will get output like

example with join:

System.out.println("r2 ");

}

public static void main(String[] args)

{

MyThread t1=new MyThread();

MyThread t2=new MyThread();

t1.start();

t2.start();

}

}

r1

r1

r2

r2

//Waiting for t1 to finish

try{

t1.join();

public class MyThread extends Thread

{

public void run()

{

System.out.println("r1 ");

try{

Thread.sleep(500);

}catch(InterruptedException ie){}

System.out.println("r2 ");

}

public static void main(String[] args)

{

MyThread t1=new MyThread();

MyThread t2=new MyThread();

t1.start();

r1 r1 r2 r2

9- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

Output

full example:

/*

* To change this license header, choose License Headers in Project Properties.

* To change this template file, choose Tools | Templates

* and open the template in the editor.

*/

package joinex;

class NewThread implements Runnable {

String name; // name of thread

Thread t;

NewThread(String threadname) {

name = threadname;

t = new Thread(this, name);

System.out.println("New thread: " + t);

t.start(); // Start the thread

}

// This is the entry point for thread.

public void run() {

try {

for (int i = 5; i > 0; i--) {

System.out.println(name + ": " + i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

}catch(InterruptedException ie){}

t2.start();

}

}

r1

r2

r1

r2

10- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

System.out.println(name + " interrupted.");

}

System.out.println(name + " exiting.");

}

}

public class JoinEx {

public static void main(String args[]) {

NewThread ob1 = new NewThread("One");

NewThread ob2 = new NewThread("Two");

NewThread ob3 = new NewThread("Three");

System.out.println("Thread One is alive: "

+ ob1.t.isAlive());

System.out.println("Thread Two is alive: "

+ ob2.t.isAlive());

System.out.println("Thread Three is alive: "

+ ob3.t.isAlive());

// wait for threads to finish

try {

System.out.println("Waiting for threads to finish.");

ob1.t.join();

ob2.t.join();

ob3.t.join();

} catch (InterruptedException e) {

System.out.println("Main thread Interrupted");

}

System.out.println("Thread One is alive: "

+ ob1.t.isAlive());

System.out.println("Thread Two is alive: "

+ ob2.t.isAlive());

System.out.println("Thread Three is alive: "

+ ob3.t.isAlive());

System.out.println("Main thread exiting.");

}

}

11- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

Output

run:

New thread: Thread[One,5,main]

New thread: Thread[Two,5,main]

New thread: Thread[Three,5,main]

One: 5

Thread One is alive: true

Thread Two is alive: true

Two: 5

Thread Three is alive: true

Waiting for threads to finish.

Three: 5

One: 4

Two: 4

Three: 4

Three: 3

One: 3

Two: 3

Three: 2

Two: 2

One: 2

Two: 1

One: 1

Three: 1

Three exiting.

One exiting.

Two exiting.

Thread One is alive: false

Thread Two is alive: false

Thread Three is alive: false

Main thread exiting.

12- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

Example:

Write a java project that has four threads, at the beginning of the execution all of them

are alive, thread3 should not start its operation until both of thread 1 and 2 finish their

execution, similarly, thread 4 cannot start until thread 3 finishes execution, assume the

code of the thread is printing any message of your choice.

package threadexample;

class NewThread extends Thread {

String name; // name of thread

Thread t;

boolean stop;

NewThread(String threadname, boolean status) {

name = threadname;

t=new Thread(this, name);

System.out.println("New thread: " + t);

t.start(); // Start the thread

stop = status;

}

// This is the entry point for thread.

public void setStop(boolean status){

stop=status;

}

public void run() {

while(stop) ;

System.out.println(name + " is start working...");

try {

Thread.sleep(1000);

} catch (InterruptedException e) {}

13- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

System.out.println(name + " is finished working.");

}

}

class NewThread3 extends Thread {

String name; // name of thread

Thread t;

boolean stop;

NewThread3(String threadname, boolean status) {

name = threadname;

t=new Thread(this, name);

System.out.println("New thread: " + t);

t.start(); // Start the thread

stop=status;

}

// This is the entry point for thread.

public void setStop(boolean status){

stop=status;

}

public void run() {

while(stop)

try {

Thread.sleep(1000);

} catch (InterruptedException e) {};

System.out.println(name + " is start working...");

try {

Thread.sleep(1000);

} catch (InterruptedException e) {}

14- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

System.out.println(name + " is finished working.");

}

}

class NewThread4 extends Thread {

String name; // name of thread

boolean stop;

Thread t;

public void setStop(boolean status){

stop=status;

}

NewThread4(String threadname, boolean status) {

name = threadname;

t=new Thread(this, name);

System.out.println("New thread: " + t);

t.start(); // Start the thread

stop=status;

}

// This is the entry point for thread.

public void run() {

while(stop)

try {

Thread.sleep(1000);

} catch (InterruptedException e) {};

System.out.println(name + " is start working...");

try {

Thread.sleep(1000);

} catch (InterruptedException e) {}

System.out.println(name + " is finished working.");

15- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

}

}

public class ThreadExample {

@SuppressWarnings("empty-statement")

public static void main(String args[]) {

NewThread th1 = new NewThread("One",false);

NewThread th2 = new NewThread("Two",false);

NewThread3 th3 = new NewThread3("Three",true);

NewThread4 th4 = new NewThread4("Four",true);

System.out.println("Thread One is alive: "+ th1.t.isAlive());

System.out.println("Thread Two is alive: "+ th2.t.isAlive());

System.out.println("Thread Three is alive: "+ th3.t.isAlive());

System.out.println("Thread Four is alive: "+ th4.t.isAlive());

//controlling the thread exeution

while (th1.t.isAlive() || th2.t.isAlive());

th3.setStop(false);

while (th3.t.isAlive());

//System.out.println("status of thread 3 is : "+ th3.t.isAlive());

th4.setStop(false);

// wait for threads to finish; below is the output in case of not existence and existence

of this code.

try {

System.out.println("Waiting for threads to finish.");

th1.t.join();

th2.t.join();

th3.t.join();

th4.t.join();

System.out.println("all threads are finished execution...");

} catch (InterruptedException e) {

System.out.println("Main thread Interrupted");

}

System.out.println("Thread One is alive: "

+ th1.t.isAlive());

16- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

System.out.println("Thread Two is alive: "

+ th2.t.isAlive());

System.out.println("Thread Three is alive: "

+ th3.t.isAlive());

System.out.println("Thread Four is alive: "

+ th4.t.isAlive());

System.out.println("Main thread exiting.");

}

}

We can notice that, in (case 1), thread four is still running although main is existing, and

the output just came behind the main output, whereas, in (case 2), all threads are finished

exeution and after that the main just prints out its message and exits.

Output in case of no join of threads at end:

New thread: Thread[One,5,main]

New thread: Thread[Two,5,main]

One is start working...

Two is start working...

New thread: Thread[Three,5,main]

New thread: Thread[Four,5,main]

Thread One is alive: true

Thread Two is alive: true

Thread Three is alive: true

Thread Four is alive: true

One is finished working.

Two is finished working.

Three is start working...

Three is finished working.

Thread One is alive: false

Thread Two is alive: false

Thread Three is alive: false

Thread Four is alive: true

Main thread exiting.

Four is start working...

Four is finished working.

(case 1)

Output in case of join of threads at end:

New thread: Thread[One,5,main]

New thread: Thread[Two,5,main]

One is start working...

Two is start working...

New thread: Thread[Three,5,main]

New thread: Thread[Four,5,main]

Thread One is alive: true

Thread Two is alive: true

Thread Three is alive: true

Thread Four is alive: true

Two is finished working.

One is finished working.

Three is start working...

Three is finished working.

Waiting for threads to finish.

Four is start working...

Four is finished working.

all threads are finished execution...

Thread One is alive: false

Thread Two is alive: false

Thread Three is alive: false

Thread Four is alive: false

Main thread exiting.

(case 2)

17- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

Example:

Write a program that has four threads with tasks distributed as following table:

Thread Name Function

Reader Creates a vector with 50 random integer numbers
(0..100)

Average Finds the average of all numbers

Pass Finds the count of numbers above 49

Fail Finds the count of numbers below 50

Sol:

package threadexample;

class ReaderTh extends Thread {

String name; // name of thread

Thread t;

boolean stop;

int[] A;

ReaderTh(String threadname, boolean status) {

name = threadname;

t=new Thread(this, name);

System.out.println("New thread: " + t);

t.start(); // Start the thread

stop = status;

A=new int[100];

}

// This is the entry point for thread.

public void setStop(boolean status){

stop=status;

}

public int[] getArray() {

return A;

}

18- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

public void run() {

while(stop)

try {

Thread.sleep(1000);

} catch (InterruptedException e) {};

System.out.println(name + " is start working...");

for(int i=0;i<100;i++)

A[i]=(int) (Math.random()*100);

for(int i=0;i<100;i++)

System.out.println("next number is: "+A[i]);

System.out.println(name + " is finished working.");

}

}

//

class AverageTh extends Thread {

String name; // name of thread

Thread t;

boolean stop;

int[] A;

AverageTh(String threadname, boolean status) {

name = threadname;

t=new Thread(this, name);

System.out.println("New thread: " + t);

t.start(); // Start the thread

stop=status;

}

19- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

public void setArray(int[] A) {

this.A=A;

}

public int[] getArray() {

return A;

}

// This is the entry point for thread.

public void setStop(boolean status){

stop=status;

}

public void run() {

while(stop)

try {

Thread.sleep(1000);

} catch (InterruptedException e) {};

System.out.println(name + " is start working...");

int av=0;

for(int i=0;i<100;i++)

av=av+A[i];

av=av/100;

System.out.println(" the average is :"+ av);

System.out.println(name + " is finished working.");

}

}

//

class PassTh extends Thread {

20- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

String name; // name of thread

Thread t;

boolean stop;

int[] A;

PassTh(String threadname, boolean status) {

name = threadname;

t=new Thread(this, name);

System.out.println("New thread: " + t);

t.start(); // Start the thread

stop=status;

}

public void setArray(int[] A) {

this.A=A;

}

public int[] getArray() {

return A;

}

// This is the entry point for thread.

public void setStop(boolean status){

stop=status;

}

public void run() {

while(stop)

try {

Thread.sleep(1000);

} catch (InterruptedException e) {};

System.out.println(name + " is start working...");

int count=0;

for(int i=0;i<100;i++)

21- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

if(A[i]>=50) count++;

System.out.println(" the count of passed is :"+ count);

System.out.println(name + " is finished working.");

}

}

//

class FailTh extends Thread {

String name; // name of thread

Thread t;

boolean stop;

int[] A;

FailTh(String threadname, boolean status) {

name = threadname;

t=new Thread(this, name);

System.out.println("New thread: " + t);

t.start(); // Start the thread

stop=status;

}

public void setArray(int[] A) {

this.A=A;

}

public int[] getArray() {

return A;

}

// This is the entry point for thread.

public void setStop(boolean status){

22- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

stop=status;

}

public void run() {

while(stop)

try {

Thread.sleep(1000);

} catch (InterruptedException e) {};

System.out.println(name + " is start working...");

int count=0;

for(int i=0;i<100;i++)

if(A[i]<50) count++;

System.out.println(" the count of fails is :"+ count);

System.out.println(name + " is finished working.");

}

}

//

public class ThreadExample {

public static void main(String args[]) {

ReaderTh th1 = new ReaderTh("Reader",true);

AverageTh th2 = new AverageTh("Average",true);

PassTh th3 = new PassTh("Pass",true);

FailTh th4 = new FailTh("Fail",true);

th1.setStop(false);

while (th1.t.isAlive());

int[] A=th1.getArray();

th2.setArray(A); th3.setArray(A); th4.setArray(A);

th2.setStop(false);

23- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

th3.setStop(false);

th4.setStop(false);

try {

System.out.println("Waiting for threads to finish.");

th2.t.join();

th3.t.join();

th4.t.join();

System.out.println("all threads are fuinished execution...");

} catch (InterruptedException e) {}

System.out.println("Main thread exiting.");

}

}

run:

New thread: Thread[Reader,5,main]

New thread: Thread[Average,5,main]

New thread: Thread[Pass,5,main]

New thread: Thread[Fail,5,main]

Reader is start working...

next number is: 79

next number is: 96

next number is: 20

next number is: 48

next number is: 18 …. (printing all generated numbers)

Reader is finished working.

Waiting for threads to finish.

Average is start working...

the average is :46

Average is finished working.

Pass is start working...

the count of passed is :45

Pass is finished working.

Fail is start working...

the count of fails is :55

24- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

Fail is finished working.

all threads are finished execution...

Main thread exiting.

4- Synchronization in Java

The synchronized keyword is all about different threads reading and writing to the same

variables, objects and resources. This is not a trivial topic in Java, but here is a quote from

Sun:

synchronized methods enable a simple strategy for preventing thread interference and

memory consistency errors: if an object is visible to more than one thread, all reads or

writes to that object's variables are done through synchronized methods.

The synchronization is mainly used for the following two reasons:

A- To prevent thread interference.

B- To prevent consistency problem (memory consistency error).

As follows:

A- Thread Interderence

class Counter {

private int c = 0;

public void increment() {

c++;

}

public void decrement() {

c--;

}

public int value() {

return c;

}

}

Counter is designed so that each invocation of increment will add 1 to c, and each invocation of

decrement will subtract 1 from c. However, if a Counter object is referenced from multiple threads,

interference between threads may prevent this from happening as expected.

Interference happens when two operations, running in different threads, but acting on the same data,
interleave. This means that the two operations consist of multiple steps, and the sequences of steps
overlap.

25- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

B- To prevent consistency problem (memory consistency error)

Memory consistency errors occur when different threads have inconsistent views of what should be the

same data.

The key to avoiding memory consistency errors is understanding the happens-before relationship. This
relationship is simply a guarantee that memory writes by one specific statement are visible to another
specific statement. To see this, consider the following example. Suppose a simple int field is defined

and initialized:

int counter = 0;

The counter field is shared between two threads, A and B. Suppose thread A increments counter:

counter++;

Then, shortly afterwards, thread B prints out counter:

System.out.println(counter);

If the two statements had been executed in the same thread, it would be safe to assume that the value
printed out would be "1". But if the two statements are executed in separate threads, the value printed
out might well be "0", because there's no guarantee that thread A's change to counter will be visible

to thread B — unless the programmer has established a happens-before relationship between these
two statements.

Types of Synchronization

There are two types of synchronization

1. Process Synchronization
2. Thread Synchronization

Here, we will discuss only thread synchronization.

Thread Synchronization

There are two types of thread synchronization mutual exclusive and inter-thread

communication.

1. Mutual Exclusive

Mutual Exclusive helps keep threads from interfering with one another while

sharing data.

a) Synchronized method.

b) Synchronized block.

c) Static synchronization.

2. Cooperation (Inter-thread communication in java)

26- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

Concept of Lock in Java

Synchronization is built around an internal entity known as the lock or monitor. Every

object has an lock associated with it. By convention, a thread that needs consistent

access to an object's fields has to acquire the object's lock before accessing them, and

then release the lock when it's done with them.

Understanding the problem without Synchronization

In this example, there is no synchronization, so output is inconsistent. Let's see the

example:

package threadexample;

class Table{

void printTable(int n){//method not synchronized

for(int i=1;i<=5;i++){

System.out.println(n*i);

try{

Thread.sleep(400);

}catch(Exception e){System.out.println(e);}

}

}

}

class MyThread1 extends Thread{

Table t;

MyThread1(Table t){

this.t=t;

}

public void run(){

t.printTable(5);

}

}

class MyThread2 extends Thread{

Table t;

MyThread2(Table t){

27- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

this.t=t;

}

public void run(){

t.printTable(100);

}

}

class TestSynchronization1{

public static void main(String args[]){

Table obj = new Table();//only one object

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start();

}

}

Output

5

100

10

200

15

300

20

400

25

500

As seen, the problem is that the two threads are running interference with each

another and we cannot split the output of each thread in this case.

28- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

a) Synchronized method.

If you declare any method as synchronized, it is known as synchronized method.

Synchronized method is used to lock an object for any shared resource. When a thread

invokes a synchronized method, it automatically acquires the lock for that object and

releases it when the thread completes its task.

//example of java synchronized method

class Table{

synchronized void printTable(int n){//synchronized method

for(int i=1;i<=5;i++){

System.out.println(n*i);

try{

Thread.sleep(400);

}catch(Exception e){System.out.println(e);}

}

}

}

class MyThread1 extends Thread{

Table t;

MyThread1(Table t){

this.t=t;

}

public void run(){

t.printTable(5);

}

}

class MyThread2 extends Thread{

Table t;

MyThread2(Table t){

this.t=t;

}

public void run(){

t.printTable(100);

29- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

}

}

public class TestSynchronization2{

public static void main(String args[]){

Table obj = new Table();//only one object

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start();

}

}
Output: 5

10

15

20

25

100

200

300

400

500

b) Synchronized block.

Synchronized block can be used to perform synchronization on any specific resource

of the method. Suppose you have 50 lines of code in your method, but you want to

synchronize only 5 lines, you can use synchronized block. If you put all the codes of

the method in the synchronized block, it will work same as the synchronized method.

Points to remember for Synchronized block

o Synchronized block is used to lock an object for any shared resource.

o Scope of synchronized block is smaller than the method.

Syntax to use synchronized block

synchronized (object reference expression) {

//code block

}

30- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

As follows:

class Table{

void printTable(int n){

synchronized(this){//synchronized block

for(int i=1;i<=5;i++){

System.out.println(n*i);

try{

Thread.sleep(400);

}catch(Exception e){System.out.println(e);}

}

}

}//end of the method

}

class MyThread1 extends Thread{

Table t;

MyThread1(Table t){

this.t=t;

}

public void run(){

t.printTable(5);

}

}

class MyThread2 extends Thread{

Table t;

MyThread2(Table t){

this.t=t;

}

public void run(){

t.printTable(100);

}

}

31- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

public class TestSynchronizedBlock1{

public static void main(String args[]){

Table obj = new Table();//only one object

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start();

}

}
Output:5

10

15

20

25

100

200

300

400

500

c) Static synchronization.

If you make any static method as synchronized, the lock will be on the class not on

object.

32- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

Problem without static synchronization

Suppose there are two objects of a shared class(e.g. Table) named object1 and

object2.In case of synchronized method and synchronized block there cannot be

interference between t1 and t2 or t3 and t4 because t1 and t2 both refers to a common

object that have a single lock.But there can be interference between t1 and t3 or t2

and t4 because t1 acquires another lock and t3 acquires another lock.I want no

interference between t1 and t3 or t2 and t4.Static synchronization solves this problem.

Example of static synchronization

In this example we are applying synchronized keyword on the static method to

perform static synchronization.

class Table{

synchronized static void printTable(int n){

for(int i=1;i<=10;i++){

System.out.println(n*i);

try{

Thread.sleep(400);

}catch(Exception e){}

}

}

}

class MyThread1 extends Thread{

public void run(){

Table.printTable(1);

}

}

class MyThread2 extends Thread{

public void run(){

Table.printTable(10);

}

}

class MyThread3 extends Thread{

public void run(){

33- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

Table.printTable(100);

}

}

class MyThread4 extends Thread{

public void run(){

Table.printTable(1000);

}

}

public class TestSynchronization4{

public static void main(String t[]){

MyThread1 t1=new MyThread1();

MyThread2 t2=new MyThread2();

MyThread3 t3=new MyThread3();

MyThread4 t4=new MyThread4();

t1.start();

t2.start();

t3.start();

t4.start();

}

}

Output: 1

2

3

4

5

6

7

8

9

10

10

20

30

40

50

60

70

80

90

100

100

34- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

Another example using synchronized method:

200

300

400

500

600

700

800

900

1000

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

package threadexample;

class sharedData {
public static int counter;

sharedData() {

public void printOut(String name) {
counter++;
System.out.println("Current Counter is: " + counter + ", updated by: "

+ name);

//

class Thread1 extends Thread {

sharedData d;
Thread t;

Thread1 (sharedData data, String name) {

t=new Thread(this, name);
this.d=data;
t.start();

public void run() {
for(int i=0; i<5; i++){

35- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

Output
run:

Current Counter is: 1, updated by: t1

Current Counter is: 2, updated by: t2

d.printOut("t1");
try{

Thread.sleep(1000);
}
catch (InterruptedException e) {}

}

}

}
//

class Thread2 extends Thread {

sharedData d;
Thread t;

Thread2 (sharedData data, String name) {

t=new Thread(this, name);
this.d=data;
t.start();

}

public void run() {
for(int i=0; i<5; i++){

d.printOut("t2");
try{

Thread.sleep(1000);
}
catch (InterruptedException e) {}

}

}

}

// -

public class ThreadExample {

public static void main(String[] args) {
sharedData data=new sharedData();

Thread1 t1=new Thread1(data, "one");
Thread2 t2=new Thread2(data, "two");

}
}

36- Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar

Current Counter is: 3, updated by: t2
Current Counter is: 3, updated by: t1
Current Counter is: 5, updated by: t2
Current Counter is: 5, updated by: t1
Current Counter is: 7, updated by: t1
Current Counter is: 7, updated by: t2
Current Counter is: 9, updated by: t1
Current Counter is: 9, updated by: t2

But by changing the method countMe() to:

We can get this output:

run:

Current Counter is: 1, updated by: t1

Current Counter is: 2, updated by: t2

Current Counter is: 3, updated by: t2

Current Counter is: 4, updated by: t1

Current Counter is: 5, updated by: t2

Current Counter is: 6, updated by: t1

Current Counter is: 7, updated by: t1

Current Counter is: 8, updated by: t2

Current Counter is: 9, updated by: t2

Current Counter is: 10, updated by: t1

So, we can see that the data are updated successfully without any errors.

private synchronized static void printOut(){
counter++;
System.out.println("Current Counter is: " + counter + ", updated by: "

+ name);
}

1 - Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar
--

SpringLayout

The SpringLayout class was added in JDK version 1.4 to support layout in GUI

builders. SpringLayout is a very flexible layout manager that can emulate many of the features of

other layout managers. SpringLayout is, however, very low-level, and as such, you really should

only use it with a GUI builder rather than attempting to code a spring layout manager by hand.

This section begins with a simple example showing all the things you need to remember to create

your first spring layout — and what happens when you forget them! Later it presents utility

methods that let you lay out components in a couple of different types of grids.

Here are pictures of some of the layouts that can be applied using spring layout in this course we

use only the simple design of it:

How Spring Layouts Work

Spring layouts do their job by defining directional relationships, or constraints, between the edges

of components. For example, you might define that the left edge of one component is a fixed

distance (5 pixels, say) from the right edge of another component.

https://docs.oracle.com/javase/8/docs/api/javax/swing/SpringLayout.html

2 - Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar
--

In a SpringLayout, the position of each edge is dependent on the position of just one other edge.

If a constraint is subsequently added to create a new binding for an edge, the previous binding is

discarded and the edge remains dependent on a single edge.

Unlike many layout managers, SpringLayout does not automatically set the location of the

components it manages. If you hand-code a GUI that uses SpringLayout, remember to initialize

component locations by constraining the west/east and north/south locations. Depending on your

constraints, you may also need to set the size of the container explicitly.

Components define edge properties, which are connected by Spring instances. Each spring has

four properties — its minimum, preferred, and maximum values and its actual (current) value. The

springs associated with each component are collected into a SpringLayout.Constraints object.

An instance of the Spring class holds three properties that characterize its behaviour: the minimum,

preferred, and maximum values. Each of these properties may be involved in defining its fourth

value, property based on a series of rules.

An instance of the Spring class can be visualized as a mechanical spring that provides a corrective

force as the spring is compressed or stretched away from its preferred value. This force is modelled

as a linear function of the distance from the preferred value but with two constants -- one for the

compressional force and one for the tensional one. Those constants are specified by the minimum

and maximum values of the spring such that a spring at its minimum value produces an equal and

opposite force to that created at its maximum value. The difference between the preferred and

minimum values, therefore, represents the ease with which the spring can be compressed. The

difference between its maximum and preferred values indicates the ease with which the Spring can

be extended. Based on this, a SpringLayout can be visualized as a set of objects connected by a set

of springs on their edges.

Example: Spring layout

package javaapplication1;

/**

 *

 * @author safa

 */

import javax.swing.*;

import java.awt.*;

public class JavaApplication1 {

 /**

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 // TODO code application logic here is the main window Method for setting the default look and

feel decorated status of the JFrame.

JFrame.setDefaultLookAndFeelDecorated(true);

// Creating an object of the "JFrame" class

JFrame f = new JFrame("Spring Layout Example");

3 - Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar
--

// Function to set the default close operation status of JFrame

f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// method to determine the size status of the JFrame

f.setSize(310, 210);

// to get the content pane

Container cntt = f.getContentPane();

// Creating Object of "SpringLayout" class

SpringLayout sprLayout = new SpringLayout();

// for setting the layout class

f.setLayout(sprLayout);

// Initializing the object "btn1" of the JButton class.

Component btn1 = new JButton("C++");

// Initializing the object "btn2" of the JButton class.

Component btn2 = new JButton("Python");

// Initializing the object "btn3" the JButton class.

Component btn3 = new JButton("JAVA");

// Initializing the object "btn4" of the JButton class.

Component btn4 = new JButton("NETWORKING");

// Adding the JButton "btn1" on the frame f

f.add(btn1);

// Adding the JButton "btn2" on the frame f

f.add(btn2);

// Adding the JButton "btn3" on the frame f

f.add(btn3);

// Adding the JButton "btn4" on the frame f

f.add(btn4);

// It is used for inserting the layout constraint in the JFrame by using the springLayout class on

the btn1 JButton

sprLayout.putConstraint(SpringLayout.WEST, btn1, 24, SpringLayout.WEST, cntt);

 sprLayout.putConstraint(SpringLayout.NORTH, btn1, 9, SpringLayout.NORTH, cntt);

// It is used for inserting the layout constraint in the JFrame using the springLayout class on the

btn2 JButton

sprLayout.putConstraint(SpringLayout.WEST, btn2, 49, SpringLayout.WEST, cntt);

sprLayout.putConstraint(SpringLayout.NORTH, btn2,10, SpringLayout.SOUTH, btn1);

// It is used for inserting the layout constraint in the JFrame using springLayout class on the btn3

JButton

sprLayout.putConstraint(SpringLayout.WEST, btn3,74, SpringLayout.WEST, cntt);

sprLayout.putConstraint(SpringLayout.NORTH, btn3, 9, SpringLayout.SOUTH, btn2);

// It is used for inserting the layout constraint in the JFrame using sprLayout class on the btn4

JButton

sprLayout.putConstraint(SpringLayout.WEST, btn4, 20, SpringLayout.EAST, btn1);

sprLayout.putConstraint(SpringLayout.NORTH, btn4,9, SpringLayout.NORTH, cntt);

4 - Java Examples, By Dr. Mokhtar M. Hasan and MSC. Safa S. Abdul-Jabbar
--

// method for setting the visibility status of the JFrame

f.setVisible(true);

} }

	Course 2- 1 (Thread Management)
	Course 2- 2 (Deadlock)

