
1

Grammars (Lecture 3-1)

− A grammar G is defined as a 4-tuples: G = (V, T, S, P)

Where:

• V : is a finite set of objects called variables (non terminals)

• T : is a finite set of objects called terminal symbols

• S : S  V is a special symbol called the Start symbol

• P : is a finite set of productions or "production rules"

Sets V and T are nonempty and disjoint.

− Production rules have the form:

x → y

• where x is an element of (V  T)+ and y is in (V  T)*

• Given a string of the form

 w = uxv

And a production rule

 x → y

We can apply the rule, replacing x with y, giving

 z = uyv

We can then say that

 w → z

Read as "w derives z", or "z is derived from w"

If u → v, v → w, w → x, x → y, and y → z, then we say:

 u
∗
→ z

This says that u derives z in an unspecified number of

steps.

 Along the way, we may generate strings, which contain

variables as well as terminals. These are called sentential

forms.

2

− What is the relationship between a language and a grammar?

Let G = (V, T, S, P)

The set

 L(G) = {w  T* : S
∗
→w}

is the language generated by G.

− What are some of the strings in this language?

S  ℷ
S  aSb  ab

S  aSb  aaSbb  aabb

S  aSb  aaSbb  aaaSbbb  aaabbb

It is easy to see that the language generated by this grammar is:

L(G) = {anbn : n  0}

Let's go the other way, from a description of a language to a grammar that

generates it. Find a grammar that generates:

L = {anbn+1 : n  0}

So the strings of this language will be:

b (0 a's and 1 b)

abb (1 a and 2 b's)

aabbb (2 a's and 3 b's) . . .

In order to generate a string with no a's and 1 b, you might want to write rules

for the grammar that say:

S → ab

a → 

But you can't do this; a is a terminal, and you can't change a terminal, only

variables

So, instead of:

 S → ab

3

 a → 

We create another variable, A (we often use capital letters to stand for

variables), to use in place of the terminal, a:

 S → Ab

 A → 

Now you might think that we can use another S rule here to generate the other

part of the string, the anbn part

 S → aSb

But you can't, because that will generate ab, aabb, etc.

Note, however, that if we use A in place of S, that will solve our problem:

 A → aAb

So, here are our rules:

 S → Ab

 A → aAb

 A → 

The S → Ab rule creates a single b terminal on the right, preceded by other

strings (including possibly the empty string) on the left.

The A →  rule allows the single b string to be generated.

The A → aAb rule and the A →  rule allows ab, aabb, aaabbb, etc. to be

generated on the left side of the string.

4

Finite Automata (FA) (Lecture 3-2)

− One of the powerful models of computation that are restricted model of

actual computer is called finite automata.

− These machines are very similar to CPU of a computer .But they lack

memory.

− Finite Automata (FA) is the simplest machine to recognize patterns.

− Finite automation is called finite because number of possible states and

number of letter in alphabet are both finite and automation because the

change of state is totally governed by the input.

− A finite automata is a collection of three things:

− A Finite Automata is a 5-tuple (Q, Σ, δ, q0, F), where:

Q: Finite set of states.

• one of which is designed as the initial state, called the

start state,

• In addition, some (may be none) of which are designed as

final states.

∑: is a finite set (alphabet) of Input Symbols.

δ (delta): represents the set of transitions that FA can take

between its states. Q ×Σ→Q is the transition function.

q0: ∈ Q is the start state (Initial state).

F: ⊆ Q is the set of accepting, or final states.

− Formal specification of machine is:

• {Q, ∑, q0, F, δ}.

An FA diagram, machine M

5

Conventions:

How does FA work?

1. Starts from a start state.

2. Loop

Reads a sequence of letters

3. Until input string finishes

4. If the current state is a final state then

Input string is accepted.

5. Else

Input string is NOT accepted.

Acceptability of a string

− A string is accepted by a transition system if

• There exist a path from initial state to final state.

• Path traversed is equal to w.

6

But how can FA be designed and represented?

Let see the following examples

Example

Build an FA that accepts only aab

Example

Let Σ = {0, 1}. Give DFAs for {}, {ε}, Σ*, and Σ+.

For {}:

For Σ*:

For Σ+:

7

Example

Design a FA that accepts set of strings such that every string ends in 00, over

the alphabet {0,1} i,e Σ={0, 1}

• In order to design any FA, first try to fulfill the minimum condition.

• Being DFA, we must check every input symbol for output state from

every state. So we have to decide output state at symbol 1 from q0,q1

and q2. Then it will be complete FA

Example

• Construct a DFA that accepts a’s and b’s and ‘aa’ must be substring

Minimal condition: aa

There may be aabbaa.bbbbaa,aa,aab,aabb,….

8

Example

(0+1)*00(0+1)*

Example

All words that start with “a” over the alphabet {a,b}

a(a+b)*

9

Example

All words that start with triple letter

(aaa+bbb)(a+b)*

Example

Example computation:

− Input word w: 1 0 1 1 0 1 1 1 0

− States: a b a b c a b c d d

• We say that M accepts w, since w leads to d, an accepting state.

− A FA M accepts a word w if w causes M to follow a path from the start

state to an accept state.

− Some terminology and notation:

• Finite alphabet of symbols, usually called Σ.

• In Example 1 (and often), Σ= {0, 1}.

• String (word) over Σ: Finite sequence of symbols from Σ.

• Length of w, | w |

• ε, placeholder symbol for the empty string, | ε| = 0

• Σ*, the set of all finite strings of symbols in Σ

10

• Concatenation of strings w and x, written w ◦ x or w x.

• L(M),language recognized by M: { w | w is accepted by M }.

Example

What is L(M) for the above machine?

• { w ∈{ 0,1 }* | w contains 111 as a substring }

• Note: Substring refers to consecutive symbols.

 Example

What is the 5-tuple (Q, Σ, δ, q0, F)?

• Q = { a, b, c, d}

• Σ= { 0, 1 }

• δ is given by the state diagram, or alternatively, by a table:

• q0 = a

• F = { d}

Example

Design an FA M with

L(M) = { w∈{ 0,1 }* | w contains 101 as a substring }.

11

• Failure from state b causes the machine to remain in state b.

FA is characterized into two types:

1) Deterministic Finite Automata (DFA)

2) Nondeterministic Finite Automata (NFA)

