Regular Expression

(Lecture 2)

A Regular Expression can be recursively defined as follows:

- 1. ε is a Regular Expression indicates the language containing an empty string. ($L(\varepsilon) = \{\varepsilon\}$ one string, with no symbols).
- 2. φ is a Regular Expression denoting an empty language. (L (φ) = { } no strings).
- 3. x is a Regular Expression where $L=\{x\}$ one string, with one symbol x.
- 4. If X is a Regular Expression denoting the language L(X) and Y is a Regular Expression denoting the language L(Y), then:
 - a) X + Y is a Regular Expression corresponding to the language $L(X) \cup L(Y)$ where $L(X+Y) = L(X) \cup L(Y)$.
 - b) X . Y is a Regular Expression corresponding to the language L(X) . L(Y) where L(X.Y) = L(X) . L(Y)
 - c) R* is a Regular Expression corresponding to the language $L(R^*)$ where $L(R^*) = (L(R))^*$
- 5. If we apply any of the rules several times from 1 to 5, they are Regular Expressions.
 - $L(R_1 \cup R_2) = L(R_1) \cup L(R_2)$
 - $L(R_1 \circ R_2) = L(R_1) \circ L(R_2)$
 - $L(R_1^*) = (L(R_1))^*$

Example

Expression (($0 \cup 1$) ϵ)^{*} $\cup 0$ denotes language { 0, 1 }^{*} $\cup \{ 0 \} = \{ 0, 1 \}^*$, all strings.

Example

 $(0 \cup 1)^* 111 (0 \cup 1)^*$ denotes $\{0, 1\}^* \{111\} \{0, 1\}^*$, all strings with substring 111.

Example

L = strings over $\{0, 1\}$ with odd number of 1s. $0^* 1 0^* (0^* 1 0^* 1 0^*)^*$

L = strings with substring 01 or 10.

$$[(0 \cup 1)^* 01 (0 \cup 11)^*] \cup [(0 \cup 1)^* 10 (0 \cup 1)^*]$$

Abbreviate (writing Σ for (0 U1)): $\Sigma^* 01 \Sigma^* U\Sigma^* 10 \Sigma^*$

Example

L = strings with substring 01 or 10. $(0 \cup 1)^* 01 (0 \cup 1)^* \cup (0 \cup 1)^* 10 (0 \cup 1)^*$ Abbreviate: $\Sigma^* 01 \Sigma^* \cup \Sigma^* 10 \Sigma^*$

Example

L = strings with neither substring 01 or 10.

- Can't write complement.

- But can write: $0^* \cup 1^*$.

Example

L = strings with no more than two consecutive 0s or two consecutive 1s

– Would be easy if we could write complement.

(εU1 U11). ((0 U00). (1 U11))* (εU0 U00)

– Alternate one or two of each.

- Regular expressions commonly used to specify syntax.
- For (portions of) programming languages –Editors Command languages like UNIX shell

Example

Decimal numbers DD^* . $D^* \cup D^*$. DD^* ,

Where D is the alphabet $\{0, ..., 9\}$ Need a digit either before or after the decimal point.

Some RE Examples

Regular Expression	Regular Set
(0+10*)	$L=\{0, 1, 10, 100, 1000, 10000, \dots\}$
(0*10*)	$L=\{1, 01, 10, 010, 0010, \ldots\}$
$(0+\epsilon).(1+\epsilon)$	L= { ϵ , 0, 1, 01}
(a+b)*	Set of strings of a's and b's of any length including the
	null string.
	So L= { ε , a, b, aa , ab , bb , ba, aaa}
(a+b)*abb	Set of strings of a's and b's ending with the string abb.
	So $L = \{abb, aabb, babb, aaabb, ababb, \dots, \}$
(11)*	Set consisting of even number of 1's including empty
	string, So L= $\{\varepsilon, 11, 1111, 111111, \dots\}$
(aa)*(bb)*b	Set of strings consisting of even number of a's
	followed by odd number of b's,
	So L= $\{b, aab, aabbb, aabbbbb, aaaab,$
	aaaabbb,}
	String of a's and b's of even length can be obtained by
(aa + ab + ba +	concatenating any combination of the strings aa, ab, ba
bb)*	and bb including null,
	so L= {e,aa, ab, ba, bb, aaab, aaba,}

- The languages that are associated with these regular expressions are called regular languages.

Example

Consider the language L Where L= { $\Lambda x xx xxx ...$ } by using star notation, we may write L=language(x^*).

Since x^* is any string of x's (including Λ).

Example

If we have the alphabet $\Sigma = \{a,b\}$ And $L = \{a ab abb abbb abbbb ...\}$ Then $L=language(ab^*)$

Example

 $(ab)^* = \Lambda$ or ab or abab or ababab or abababab or

 L_1 =language (xx^{*})

The language L_1 can be defined by any of the expressions:

xx^{*} or x⁺ or xx^{*}x^{*} or x^{*}xx^{*} or x⁺x^{*} or x^{*}x⁺ or x^{*}x^{*}xx^{*} ... Remember x^{*} can always be Λ .

Example

Language $(ab^*a) = \{aa aba abba abbba abbba ...\}$

Example

Language $(a^*b^*) = \{\Lambda a b aa ab bb aaa aab abb bbb ...\}$ ba and aba are not in this language so $a^*b^* \neq (ab)^*$

Example

The following expressions both define the language $L_2 = \{x^{odd}\}$: x (xx)^{*} or (xx)^{*}x But the expression x^{*}xx^{*} does not since it includes the word (xx) x(x).

Example

Consider the language T defined over the alphabet $\Sigma = \{a,b,c\}$ T= $\{a \ c \ ab \ cbb$ abbb cbbbb cbbbb ... $\}$

Then T=language ((a+c) b*) T=language (either a or c then some b's)

Example

Consider a finite language L that contains all the strings of a's and b's of length exactly three.

L= {aaa aab aba abb baa bab bba bbb} L=language ((a+b) (a+b)) L=language ((a+b) 3)

Note: from the alphabet $\Sigma = \{a,b\}$, if we want to refer to the set of all possible strings of a's or b's of any length (including Λ) we could write $(a+b)^*$

Example

We can describe all words that begins with a and end with b with the expression $a (a+b)^* b$ which mean a (arbitrary string) b

If we have the expression $(a+b)^*a (a+b)^*$ then the word abbaab can be considerd to be of this form in three ways: (A) a (bbaab) or (abb) a (ab) or (abba) a (b)

Example

 $(a+b)^*a (a+b)^*a (a+b)^* =$ (some beginning) (the first important a) (some middle) (the second important a) (some end)

Another expressions that denote all the words with at least two a's are: b^*ab^*a $(a+b)^*$, $(a+b)^*ab^*ab^*$, b^*a $(a+b)^*ab^*$

Then we could write:

=language ((a+b)*a(a+b)*a(a+b)*) =language(b*ab*a(a+b)*) =language((a+b)*ab*ab*) =language(b*a(a+b)*ab*)

=all words with at least two a's.

Note: two regular expressions are equivalent if they describe the same language.

Example

If we want all the words with exactly two a's, we could use the expression: $b^*ab^*ab^*$ which describe such words as aab, baba, bbbabbabbbb,...

Example

The language of all words that have at least one a and at least one b is

$$(a+b)^*a (a+b)^*b (a+b)^* + (a+b)^*b (a+b)^*a (a+b)^*$$

Note: $(a+b)^*b (a+b)^*a (a+b)^* \neq bb^*aa^*$ since the left includes the word aba, which the expression on the right side does not.

Note:

$$(a+b)^{*} = (a+b)^{*} + (a+b)^{*} (a+b)^{*} = (a+b)^{*}(a+b)^{*}$$
$$(a+b)^{*} = a (a+b)^{*} + b (a+b)^{*} + \Lambda$$
$$(a+b)^{*} = (a+b)^{*}ab (a+b)^{*} + b^{*}a^{*}$$

Note: usually when we employ the star operation we are defining an infinite language. We can represent a finite language by using the plus alone.

Example

 $L= \{abba baaa bbbb\}$

L=language (abba + baaa + bbbb)

Example

 $L= \{\Lambda a aa bbb\}$

 $L=language(\Lambda + a + aa + bbb)$

Example

 $L= \{\Lambda a b ab bb abb bbb abbb bbbb ... \}$

We can define L by using the expression $b^* + ab^*$

Definition

The set of regular expressions is defined by the following rules:

- **Rule1:** every letter of Σ can be made into a regular expression, Λ is a regular expression.
- **Rule2:** if R_1 and R_2 are regular expressions, then so are: $(R_1) R_1 R_2 R_1 + R_2 R_1^*$.

Rule3: nothing else is a regular expression. Remember that $R_1^+=R_1R_1^*$

Definition

If **S** and **T** are sets of strings of letters (whether they are finite or infinite sets), we define the product set of strings of letters to be: ST= {all combination of a string from **S** concatenated with a string from **T**}

Example

If $S = \{a aa aaa\} T = \{bb bbb\}$

Then ST= {abb abbb aabb aabbb aaabb aaabbb (a+aa+aaa) (bb+bbb) =abb+abbb+ aabb+aaabb+aaabb+aaabbb)

Example

If P= {a bb bab} Q= { Λ bbbb} Then PQ= {a bb bab abbbb bbbbbb babbbbb} (a+bb+bab)(Λ +bbbb)=a+bb+bab+ab⁴+b⁶+bab⁵

Example

If $M = \{\Lambda x xx\} N = \{\Lambda y yy yyy yyyy ...\}$

Then MN= { Λ y yy yyy yyyy ...

```
х ху хуу хууу хуууу ...
```

xx xxy xxyy xxyyy xxyyyy ...}

Using regular expression we could write: $(\Lambda + x + xx)(y^*) = y^* + xy^* + xxy^*$

Definition

The following rules define the language associated with any regular expression.

Rule1: the language associated with the regular expression that is just a single letter is that one-letter word alone and the language associated with Λ is just { Λ }, a one-word language.

Rule2: if R_1 is regular expression associated with the language L_1 and R_2 is regular expression associated with the language L_2 then:

i. The regular expression (R_1) (R_2) is associated with the language L_1 times L_2 .

Language $(R_1R_2) = L_1L_2$

ii. The regular expression R_1+R_2 is associated with the language formed by the union of the sets L_1 and L_2 .

Language $(R_1+R_2) = L_1+L_2$

iii. The language associated with the regular expression $(R_1)^*$ is L_1^* , the kleene closure of the set L_1 as a set of words.

```
Language (R_1)^* = L_1^*
```

L= {baa abba bababa}

The regular expression for this language is (baa+abba+bababa)

Example

$$L= \{\Lambda x xx xxx xxxx xxxx \}$$

The regular expression for this language is
 $(\Lambda+x+xx+xxx+xxxx+xxxx)$
 $= (\Lambda+x)^5$

Example

L= language ((a+b)*(aa+bb) (a+b)*) = (arbitrary) (double letter) (arbitrary)

{ Λ a b ab ba aba bab abab baba ...} these words are not included in L but they included by the regular expression: $(\Lambda+b)(ab)^*(\Lambda+a)$

Example

$$E = (a+b)^* a(a+b)^* (a+\Lambda)(a+b)^* a(a+b)^*$$

$$E = (a+b)^* a(a+b)^* a(a+b)^* a(a+b)^* + (a+b)^* a(a+b)^* \Lambda(a+b)^* a(a+b)^*$$

We have $(a+b)^* \Lambda (a+b)^* = (a+b)^*$

Then: $E = (a+b)^* a (a+b)^* a (a+b)^* a (a+b)^* + (a+b)^* a (a+b)^* a (a+b)^*$

The language associated with E is not different from the language associated with: $(a+b)^*a (a+b)^*a (a+b)^*$

Note: $(a+b^*)^* = (a+b)^* (a^*)^* = a^* (aa+ab^*)^* \neq (aa+ab)^* (a^*b^*)^* = (a+b)^*$

Example

 $E=\left[aa+bb+(ab+ba)(aa+bb)^{*}(ab+ba)\right]^{*}$