Non-deterministic Finite Automaton (Lecture 6)

Why NFA is called Non-deterministic?

P Deterministic machine

— When the machine is at a given state, for a specific input, its
gives one output at each time.

» Non-Deterministic machine

— When the machine is at a given state, for a specific input, it
may give more than one output at each time.
— Every DFA consider NFA

P "Deterministic" means "if you put the system in the same situation
twice, it is guaranteed to make the same choice both times".

P “Non-deterministic" means "not deterministic”, or in other words,
"If you put the system in the same situation twice, it might or might
not make the same choice both times".

» A non-deterministic finite automaton (NFA) can have multiple
transitions out of a state. This means there are multiple options for
what it could do in that situation. It is not forced to always choose
the same one; on one input, it might choose the first transition, and
on another input it might choose the same transition.

P Take this automaton for instance, it's an NFA and it accepts the
string 0110. it accepts strings that end in 10.

0
1

To see that we just need to check whether it reaches an accept state.

1

https://cs.stackexchange.com/questions/80923/why-nfa-is-called-non-deterministic
https://i.stack.imgur.com/Jrsxr.png

g0—1
g0—0
gl—-1
g2—0

Now in the red line there was another possibility, that is when reading the
second 1. We could stay in g0 and then stay in g0 when reading the last 0.
Automata have no memory, so there's no way to 'save' a state and check
later if my string ends with 10, it's like this NFA it's making a guess
whether the string ends with 10 before branching to an acceptable state.
The nondeterminism here is making many choices and always making the
right ones.

Example

0,1

O
On the image above, when we are dealing with string "00111", notice that
when encountering the first "1", there are two possible ways to follow. One
can stay at "p" or go to "g". If the automata was to move to the "q", it
wouldn't accept the string (since there are no edges coming out of the "g").
But the string can be accepted by this automata by going to the "g" with

only the last 1, while staying at "p" for everything else. =~ RE= (0+1)*1

» In a NFA, for each state there can be zero, one, two, or more
transitions corresponding to a particular symbol.

» Nondeterministic means it can transition to, and be in, multiple
states at once (i.e. for some given input). Deterministic means that
it can only be in, and transition to, one state at a time (i.e. for some
given input).

» If NFA gets to state with more than one possible transition
corresponding to the input symbol, we say it branches.

P If NFA gets to a state where there is no valid transition, then that
branch dies.

https://i.stack.imgur.com/NvCn8.png

» NFA has finite number of states; the machine is called Non-
deterministic Finite Machine or Nondeterministic Finite
Automaton.

Formal Definition of an NFA

The formal definition of an NFA consists of a 5-tuple, in which order
matters.

Similar to a DFA, the formal definition of NFA is: (Q, X, 9, 90, F), where

Q is a finite set of all states

X is a finite set of all symbols of the alphabet

6: Q X X — Q is the transition function from state to state

g0 € Q is the start state, in which the start state must be in the set Q
F € Q is the set of accept states, in which the accept states must be
in the set Q

SARE A

The only difference between an NFA and a DFA for their formal
definitions is that for an NFA, you must specify the empty string () within
your delta function, along with the other symbols.

» The NFA with epsilon-transition is a finite state machine in which
the transition from one state to another state is allowed without any
input symbol i.e. empty string «.

o é >
a O
For our NFA above, the formal definition would be:
® Q — {S, f}
. X— {a, b}
. Start state — s
. F>{f}
. o functions:
d(s,a) = {f}
o(s,b) = {}
8(s,e) = {}
o(f,a) = {f}
o(f,b) = {f}
o(f.e) = {}

The nondeterministic finite automaton is a variant of finite automaton with
two characteristics:

* e-fransition: state transition can be made without reading a symbol;

» Nondeterminism: zero or more than one possible value may exist for state
transition.

An Example Nondeterministic Finite Automaton

An NFA that accepts all strings over {0, 1} that contain a 1 either at the
third position from the end or at the second position from the end.

* There are two edges labeled 1 coming out of Q.
* There are no edges coming out of Qa.
* The edge from @3 is labeled with ¢, in addition to 0 and 1.

Graphical Representation of an NDFA: (same as DFA)
An NDFA is represented by digraphs called state diagram.
e The vertices represent the states.
e The arcs labeled with an input alphabet show the transitions.
e The initial state is denoted by an empty single incoming arc or -.
e The final state is indicated by double circles or +.

We can convert any NFA into a TG with no repeated labels from any single
state as in the following:

Is equivalent to

Example

Let a non-deterministic finite automaton be:
Q={a b, c}

=10, 1}

q0 = {a}

F={c}

The transition function & as shown below:

Present State Next State for Next State for
Input 0 Input i
a, b b
C a, c
b, ¢ C

Its graphical representation would be as follows:

NDFA — Graphical Representation

Any FA will satisfy the definition of an NFA. We have:
1. Every FA is an NFA.

2. Every NFA has an equivalent TG.
3. By Kleen's theorem, every TG has an equivalent FA.

Therefore:

Language of FA's C language of NFA's C language of TG's = language
of FA's

Example

* Nondeterministic Machine, NFA2
* Input string = abbbaba

one copy reached the final state, so
the machine accepts this input string

Theorem

FA = NFA

By which we mean that any language defined by a nondeterministic finite
automaton is also definable by a deterministic (ordinary) finite automaton
and vice versa.

Example
ILet FALl be a

And let FAZ2 be

Then NFA3=FAl + FA2 1s

It is sometimes easier to understand what a language is from the picture of
an NFA that accepts it than from the picture of an FA as in the following
example.

Example
The NFA and FA below accepts the language of all words that contains
either a triple a (the substring aaa) or a triple b (the substring bbb) or both.

Oy

NFA

a.b

a:

FA
NDFSA Example

Example
Alphabet = {a}

Alphabet = {a}

Two choic:,s @ a No transition
D)

a
@ No ftransition

First Choice

First Choice

First Choice

‘

_alal

All input is consumed

Second Choice

ala

, Ao {e)

)

Second Choice

a a

Input cannot be consumed

, Ao {e)

@ Automaton Halts
a

“reject”

aa is accepted by the NFA:

"accept”

because this
computation
accepts dd

, AD—(E)

a

" rej ect”

this computation
is ignored

Rejection example

First Choice

“reject”

10

Second Choice

'
a]
A
@l
@ "reject”
Another Rejection example
alala |

First Choice

lalala

Input cannot be consumed

. ._. a "reject”
@ a
@3

11

Automaton halts

Second Choice

i
la|a]a]
, A
_G
@)
Second Choice
¥
lalala]

Input cannot be consumed

@ @)

@ Automaton halts
a

"reject”

An NFA rejects a string:
if There is no computation of the NFA
that accepts the string.

For each computation:
- All the input is consumed and the
automaton is in a non accepting state

OR

- The input cannot be consumed

a is rejected by the NFA:

"reject”

@—=+(@)

a.
a
"reject”

All possible computations lead to rejection
12

aaa is rejected by the NFA:

“reject”

a“' acr

@ , D
(@) @ ‘“reject”

All possible computations lead o rejection

Language accepted: L ={aa}

Lambda Transitions

4@a=@ﬂ=qz a

input tape head does not move

ala

W o=@
Automaton changes state

all input is consumed

lala] |

"accept”

String aa is accepted

Rejection Example

'
aﬂ.a
v

a;La

(read head doesn't move)

14

Input cannot be consumed

'

lalalal

Automaton halts

4»@5?#@/1#(]2 a

String @aa is rejected

Language accepted: L ={aa;

G0-2—(a-A—a0-2-{(13)

Another NFA Example

N

'
la]b] |
T
'

alb] |

15

Another String

'
alblalb] |

16

90 a =@ b = A Jq3
A

Another NFA Example
0

e
A

Language accepted

L(M) =1, 10, 1010, 101010, ..}

0,1
@ @ (redundant

\/ state)
A

17

Remarks:

-The A symbol never appears on the
input tape

+Simple automata:

M; M,
L(My) = {} L(M5) = {A}

‘NFAs are interesting because we can
express languages easier than DFAs

L(My) = {a} L(M3) = {a}

Transition Function &

5(g. x)=191.95.-. 94 |
resulting states with

following one transition
with symbol x

5(90»1):{‘31}
0

@ 0,1 @

18

0(q1,0) =1{q9.9>}
0

@0

A

(g, 4) ={¢,}
0

@ 0@
N

s

Extended Transition Function 5

Same with & but applied on strings

5*(‘-7010): 9

19

Example:
L={ w € {0,1}" | w contains 001 or 0101 as a substring }

Loot = iWE. iol\-)* l W Cowtwuns 001 as o g.‘L;}riad_}
Mﬂ@’*@g
mdofﬂo”@&

]_ - iWﬁ i.oﬂb | W muh\jns olol ag @ subsjff"ua]]

olol

20

ide o Rov o NEA fov [
+~he o z.wi-am/hn

QO: s}-wt-e..s (Lax_/ﬂi»o-vd&ca—reem)
\ (=] CD‘—_"—--- Y
O\\/:?O—\—B @z"a
o > > D20 >
o

[=T

ﬁMMWd'JIB D‘Fﬂ\. N F/A &V' L-ool

—— —~—
e.a.fnrux,'- Jloloocolllool Il O
fso.c.cef-l-u)\

(oo ‘:ossi\oLL

e hn c.a'ww,(o\..«..’c'w\'\a\--a
e patt s)

ODiliowvuwwvo | o

Example:
{w € {0,1} | w contains 001 or 0101 as a substring }

Nondeterministic FA can also use e-transitions:

¢

N 067;0@%& 0010000101
\8/%@4\@%0'\((5

0,1

21

Example: Doubles

What does this NFA accept?
(B)

It accepts any binary string that contains 00 or
11 as a substring.

Example: Ending of Strings

An NFA that accepts all binary strings that end
with 101.

A
/(\
N 1 0
A @)

4

N1 7
C
_/ N

7N
N

Example: Simultaneous Patterns

An NFA for a*+(ab)*

-
pu
O
b
YN
\/L\J/Q

22

