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Kleen's Theorem   (Lecture 5) 

► If a language can be expressed by:  

1. Regular expression (RE) or  

2. Finite automata (FA) or  

3. Transition graph (TG) 

• Then it can also be expressed by other two as well. 

 

Theorem For every language L (over a finite alphabet Σ), the following 

statements are equivalent: 

1. L is defined by some regular expression E. 

2. L is accepted by some nondeterministic finite automaton N. 

3. L is accepted by some deterministic finite automaton D. 
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Let’s, r1 and r2 be two regular expressions. Then, 

1. r1+ r2 is a regular expression too, whose corresponding language is 

L(r1) U L(r2)  

2. r1. r2 is a regular expression too, whose corresponding language is 

L(r1).L(r2)  

3. r1* is a regular expression too, whose corresponding language is 

L(r1)*  

We can further use this definition in association with Null Transitions to give 

rise to a FA by the combination of two or more smaller Finite Automata (each 

corresponding to a Regular Expression). 

Let S accept L = {a} and T accept L = {b}, then R can be represented as a 

combination of S and T using the provided operations as: 

R = S + T 

 

We observe that, 

1. In case of union operation we can have a new start state, from which, 

null transition proceeds to the starting state of both the Finite State 

Machines. 

2. The final states of both the Finite Automata’s are converted to 

intermediate states. The final state is unified into one that can be 

traversed by null transitions.  

 

 

 

 

 



4 

 

R = S.T 

 
We observe that, 

1. In case of concatenation operation, we can have the same starting state 

as that of S, the only change occurs in the end state of S, which is 

converted to an intermediate state followed by a Null Transition.  

2. The Null transition is followed by the starting state of T; the final state 

of T is used as the end state of R.  

 

 

 

R = S* 

 

 
 

We observe that, 

1. A new starting state is added, and S has been put as an intermediate 

state so that self-looping condition could be incorporated. 

2. Starting and Ending states have been defined separately so that the self-

looping condition is not disturbed.  
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Example 

Make a Finite Automata for the expression (ab+a)*  

 
 

 

Proof 

The three sections of our proof will be:  

Kleene’s Theorem Part1:  

− Every language that can be defined (accepted) by a FA can also be 

defined (accepted) by a TG.  

Kleene’s Theorem Part2:  

− Every language that can be defined by a TG can also be defined by 

a RE.  

Kleene’s Theorem Part3:  

− Every language that can be defined (expressed) by a RE can also 

be defined by a FA. (We will break part 3 in to 4 rules). 

Part # 3 

1. Rule #1 

2. Rule #2  (Union of two FAs) 

3. Rule #3  (Concatenation of two FAs) 

4. Rule #4  (Kleen’s Closure (Star) of a FAs) 
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Kleene’s Theorem Part I 

Proof  

− Every FA can be considered to be a TG as well.  

− Any language that has been defined by a FA has already been defined 

by a TG.  
• So, there is nothing to prove. 

 

  

 

 

 

Example 
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Kleene’s Theorem Part II 

Proof  

The proof of this part will be by constructive algorithm. This means that we 

present a procedure that starts out with a TG and ends up with a RE that 

defines the same language.  

• Step 1: (Let the start states be only one) 

− If a TG has more than one start states, then introduce a new start 

state connecting the new state to the old start states by the 

transitions labeled by and Λ (ε) make the old start states the non-

start states. This step can be shown by the following example 

Example 
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• Step 2: ( Let the final states be only one) 

− If a TG has more than one final states, then introduce a new final state, 

connecting the old final states to the new final state by the transitions 

labeled by Λ. 

− This step can be shown by the previous example of TG, where the step 

1 has already been processed. 

Example 

 

 

• Step 3: (Reduce the number of edges) 

− If a state has two (more than one) incoming transition edges labeled by 

the corresponding REs, from the same state (including the possibility 

of loops at a state), then replace all these transition edges with a single 

transition edge labeled by the sum of corresponding REs. 

− This step can be shown by a part of TG in the following example. 

Example 
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The above TG can be reduced to 
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► Repeat the last step repeatedly until we eliminate all the states from TG 

except the unique start state and the unique final state.  

• Step 4: (Eliminate states in each time) 

− If three states in a TG, are connected in sequence then eliminate the 

middle state and connect the first state with the third by a single 

transition (include the possibility of circuit as well) labeled by the 

RE which is the concatenation of corresponding two REs in the 

existing sequence. 

− This step can be shown by a part of TG in the following example. 

 

To eliminate state 5 the above can be reduced to 

 

 

Example  

Find the RE that defines the same language accepted by the following TG 

using Kleenes theorem. 
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RE= (aa+bb) (a+b)*(aa+bb) 

H.W  

Find the RE that defines the same language accepted by the following TG 

using Kleenes theorem. 
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Kleene’s Theorem Part III 

The proof of part3  

Rule1: there is an FA that accepts any particular letter of the alphabet. There 

is an FA that accepts only the word Λ.  

 

If RE is x then the FA will be: 

 

If RE is Λ then the FA will be: 

 

Example 
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Rule2: (Union of two FA’s)  

If there is an FA called FA1, that accepts the language defined by the regular 

expression r1 and there is an FA called FA2, that accepts the language 

defined by the regular expression r2, then there is an FA called FA3 that 

accepts the language defined by the regular expression (r1+r2). 

We can describe the algorithm for forming FA3 as follows:  

► Starting with two machines FA1, with states x1, x2, x3,…. And 

FA2 with states y1,y2,y3,…,build a new machine FA3 with states 

z1,z2,z3,… where each z is of the form "xsomething or ysomething". If 

either the x part or the y part is a final state, then the corresponding 

z is a final state.  

► To go from one z to another by reading a letter from the input 

string, we see what happens to the x part and to the y part and go 

to the new z accordingly. We could write this as a formula: 

znew after letter p=[xnew after letter p]or[ynew after letter p] 

Example  

We have FA1 accepts all words with a double a in them, and FA2 accepts all 

words ending in b. we need to build FA3 that accepts all words that have 

double a or that end in b. 
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Example 

 
Example 
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H.W.  

Let FA1 accepts all words ending in a, and let FA2 accepts all words with an 

odd number of letters (odd length). Build FA3 that accepts all words with odd 

length or end in a, using Kleenes theorem. 
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Rule3: (Concatenation of two FA’s) 

If there is an FA1 that accepts the language defined by the regular expression 

r1 and an FA2 that accepts the language defined by the regular expression r2, 

then there is an FA3 that accepts the language defined by the concatenation 

r1 r2. 

 

We can describe the algorithm for forming FA3 as follows:  

We make a z state for each none final x state in FA1. And for each final 

state in FA1 we establish a z state that expresses the option that we are 

continuing on FA1 or are beginning on FA2. From there we establish z 

states for all situations of the form:  

Are in xsomething continuing on FA1  

Or 

Have just started y1 about to continue on FA2 

Or 

Are in ysomething continuing on FA2 

 

Example  
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Example  

We have FA1 accepts all words with a double a in them, and FA2 accepts all 

words ending in b. we need to build FA3 that accepts all words that have 

double a and end in b. 

 

 

z1=x1  

z2= x2  

z3=x3 or y1  

z4=x3 or y2 or y1 
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H.W.  

Let FA1 accepts all words with a double a in them, and let FA2 accepts all 

words with an odd number of letters (odd length). Build FA3 that accepts all 

words with odd length and have double a in them using Kleen’s theorem. 

 

 

Rule4: (Kleene’s closure of FA’s) 

If r is a regular expression and FA1 accepts exactly the language defined by 

r, then there is an FA2 that will accept exactly the language defined by r*. 

We can describe the algorithm for forming FA2 as follows:  

► Each z state corresponds to some collection of x states.  

► We must remember each time we reach a final state it is possible that 

we have to start over again at x1.  

► Remember that the start state must be the final state also. 
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Example  

If we have FA1 that accepts, the language defined by the regular expression: 

r=a*+aa*b 

We want to build FA2 that accept the language defined by r*. 

 

• With final state, always write final state. 

• Repeat initial state a second time with new “Z” state. 

• Initial state will always be final state. 

The transition table and diagram of FA2 will be: 

 

H.W.  

Let FA1 accept the language defined by r1, find FA2 that accept the language 

defined by r1* using Kleene's theorem. 

 


