
1

What is Theory of Computation? (Lecture 1)

− Theory of computation is the branch that deals with whether and how efficiently

problems can be solved on a model of computation, using an algorithm.

− The field is divided into three major branches: automata theory, computability

theory and computational complexity theory.

What is Automata Theory?

− Automata theory is the study of abstract machines and the computational

problems that can be solved using these machines.
− Automaton = an abstract computing devices imply means any machine.

• Note: A “device” need not even be a physical hardware!
• It has a mechanism to read input (string over a given alphabet, e.g. strings

of 0’s and 1’s on S = {0,1}) written on an input file.

− An abstract machine, also called an abstract computer, is a theoretical model

of a computer hardware or software system used in Automata theory.

− This automaton consists of:

• States (represented in the figure by circles).

• Transitions (represented by arrows).

− As the automaton sees a symbol of input, it makes a transition (or jump) to another

state,

− According to its transition function (which takes the current state and the recent

symbol as its inputs).

− Uses of Automata: compiler design and parsing.

Languages & Grammars

• Languages: “A language is a collection of sentences of finite length all
constructed from a finite alphabet of symbols”.

• Grammars: “A grammar can be regarded as a device that enumerates the
sentences of a language” - nothing more, nothing less.

Languages

− An alphabet ∑ is a finite set of symbols.

2

− Example: Common alphabets include the binary alphabet {0, 1}, the English

alphabet {A, B… Z, a, b… z}.

− A language is a set of strings

• String: A sequence of letters

▪ Examples: “cat”, “dog”, “house” …

▪ Defined over an alphabet:

▪ The alphabet of a language is normally denoted by ∑.

▪ The set of strings, including empty, over an alphabet Σ is denoted

by Σ*.

▪ Σ+ = Σ* -{є}
Alphabets and Strings

− Example of alphabet:

• 0110, 11, 001 are three strings over the binary alphabet {0, 1}.

• aab, abcb, b, cc are four strings over the alphabet { a, b, c }.

− Strings

String Operations

− Concatenation

 zcba ,,,, =

baaabbbaaba

baba

abba

ab

a

abbaw

bbbaaav

abu

=

=

=

m

n

bbbv

aaaw





21

21

=

=

bbbaaa

abba

mn bbbaaawv  2121= abbabbbaaa

3

− Reverse

12aaaw n
R =

 bbbaaababa

− String Length

naaaw 21=

Length: nw =

Examples:

1

2

4

=

=

=

a

aa

abba

− Length of Concatenation

vuuv +=

Example:

− Empty String

• A string with no letters:

• Observations:

naaaw 21= ababaaabbb

853

8

5,

3,

=+=+=

==

==

==

vuuv

aababaabuv

vabaabv

uaabu



abbaabbaabba

www

==

==

=





 0

4

− Substring

• Substring of string:

▪ a subsequence of consecutive characters

− Prefix and Suffix

− Another Operation

− The * Operation

5

− The + Operation

Languages

− Languages-A set of strings which are chosen from some Σ*, where Σ is a

particular alphabet, is called a language.

• If Σ is an alphabet, and L subset of Σ*, then L is said to be language over

alphabet Σ.

• For example the language of all strings consisting of n 0’s followed by

n 1’s for some n>=0: {є,01,0011,000111,-------}

− Another definition of language: A set of letters that called Alphabet. This can be

seen in any natural language, for example the alphabet of English can be defined

as:

E = {a, b… z}

− By concatenate letters from alphabet, we get words.

− All words from the alphabet make language.

− Language can be classified into two types as follows:

• Natural Languages

• Formal Languages

− As in the natural language not all concatenations make permissible words, the

same things happen with the formal languages.

Note: formal language deals with form not meaning.

Note: alphabet could be a set of an empty set (or null string) which is a string of no

letters.

 Alphabet: finite

 Words: finite

 Language: infinite

6

− Another Example

Definition (Regular Language): Let ∑ be an alphabet. The following are precisely the

regular languages over ∑:

− The empty language Ø; is regular.

− For each a ∈ ∑, {a} is regular.

− Let L1; L2 be regular languages over ∑. Then L1 U L2; L1 . L2, and L1
* are all

regular.

Remark: The operation . is string concatenation. Formally, L1. L2 = {xy: x ∈ L1; y ∈

L2}.

7

− Operations on Languages

− Reverse

− Concatenation

− Another Operation

− Palindrome : is a language that={ Λ, all strings x such that reverse(x)=x}

Example aba, aabaa, bab, bbb…

8

− More Examples

− Star-Closure (Kleene *)

Definition Kleene Closure: Let ∑ be an alphabet. The Kleene closure of ∑,

denoted ∑∗ , is the set of all finite strings whose characters all belong to∑. Formally,

Σ∗ =∪𝑛∈ℕ ∑𝑛. The set ∑0 = {ε}, where ε is the empty string.

Note: ε = Λ = is empty string.

Definition Kleene star * (Kleene Closure): Given an alphabet Σ we wish to define

a language in which any string of letters from Σ is a word, even the null string, this

language we shall call the closure of the alphabet.

Example if Σ= {a,b,c}

Then Σ*= {Λ a b c aa ab ac ba bb bc ca cb cc aaa aab aac bba bbb bbc cca ccb ccc

aaaa aaab …}

Let’s S= alphabet of language S*= closure of the alphabet

Example S= {x}

S*= {Λ, xn |n>=1}

To prove a certain word in the closure language S* we must show how it can be

written as a concatenation of words from the set S.

Example Let S= {a,ab}

To find if the word abaab is in S* or not, we can factor it as follows: (ab)(a)(ab)

Every factor in this word is a word in S* so as the whole word abaab. In the above

example, there is no other way to factor the word that we called unique.

While, sometimes the word can be factored in different ways.



9

− Positive Closure

