What is Theory of Computation? (Lecture 1)

— Theory of computation is the branch that deals with whether and how efficiently
problems can be solved on a model of computation, using an algorithm.

— The field is divided into three major branches: automata theory, computability
theory and computational complexity theory.

What is Automata Theory?

— Automata theory is the study of abstract machines and the computational
problems that can be solved using these machines.
— Automaton = an abstract computing devices imply means any machine.
e Note: A “device” need not even be a physical hardware!
¢ |t has a mechanism to read input (string over a given alphabet, e.g. strings
of 0’sand 1’s on S = {0,1}) written on an input file.
— An abstract machine, also called an abstract computer, is a theoretical model
of a computer hardware or software system used in Automata theory.
— This automaton consists of:
e States (represented in the figure by circles).
e Transitions (represented by arrows).

Figure 1.2: A finite automaton modeling recognition of then

— As the automaton sees a symbol of input, it makes a transition (or jump) to another
state,

— According to its transition function (which takes the current state and the recent
symbol as its inputs).

— Uses of Automata: compiler design and parsing.

Languages & Grammars

« Languages: “A language is a collection of sentences of finite length all
constructed from a finite alphabet of symbols”.

« Grammars: “A grammar can be regarded as a device that enumerates the
sentences of a language” - nothing more, nothing less.

Languages

— An alphabet } is a finite set of symbols.



— Example: Common alphabets include the binary alphabet {0, 1}, the English
alphabet {A,B... Z,a, b... z}.

— Alanguage is a set of strings
e String: A sequence of letters
= Examples: “cat”, “dog”, “house” ...

= Defined over an alphabet:
> ={a,b,c,...,z}

= The alphabet of a language is normally denoted by .

» The set of strings, including empty, over an alphabet X is denoted
by X7

« 2P =3"-{e}
Alphabets and Strings

— Example of alphabet:

e (110, 11, 001 are three strings over the binary alphabet {0, 1}.
e aab, abchb, b, cc are four strings over the alphabet { a, b, ¢ }.

— Strings

a
ab
abba u=ab
baba v =bbbaaa
aaabbbaabab w = abba

String Operations

W=aydp---dj abba

v="bby---by bbbaaa

— Concatenation
WV =848y - -anbyby -+ by abbabbbaaa



W=gaydy---dp ababaaabbb

— Reverse

wR =a,--aya bbbaaababa

— String Length
W=aay---a,
Length: W =n
Examples:
abba =4
aa =2
a=1
— Length of Concatenation
w =+
Example:

u=aab, u=3
v =abaab, |v|=5

uv| =|aababaab =8
uv/=Ju/+\Vv|=3+5=8
— Empty String

e A string with no letters: ﬂ/

e Observations:
/=0

AW=wA=wW

Aabba = abbaA = abba



— Substring

e Substring of string:

= asubsequence of consecutive characters

String
abbab
abbab
abbab
abbab
— Prefix and Suffix
abbab
Prefixes Suffixes
A abbab
a bbab
ab bab
abb ab
abba b
abbab A

— Another Operation

— The * Operation

Substring
ab
abba
b
bbab

Example: (abba)? = abbaabba

Definition: 9 = 4

(abba)’

=A

2*: the set of all possible strings from

alphabet X

Y ={a,b}

*={),a,b,aa,ab,ba,bb,aaa,aab,...}



— The + Operation

>*: the set of all possible strings from
alphabet 2 except A

> ={a.b}
>*={A,a,b,aa,ab,ba,bb,aaa,aab,...}

ST=x%_4

> ={a,b,aa,ab,ba,bb,aaa,aab,...}

Languages

Languages-A set of strings which are chosen from some X*, where X is a
particular alphabet, is called a language.
e [fXisan alphabet, and L subset of ¥*, then L is said to be language over
alphabet X.
e For example the language of all strings consisting of n 0’s followed by
n 1’s for some n>=0: {¢,01,0011,000111,------- }
Another definition of language: A set of letters that called Alphabet. This can be
seen in any natural language, for example the alphabet of English can be defined
as:

E=1{a,b...z}

By concatenate letters from alphabet, we get words.
All words from the alphabet make language.
Language can be classified into two types as follows:
e Natural Languages
e Formal Languages
As in the natural language not all concatenations make permissible words, the
same things happen with the formal languages.

Note: formal language deals with form not meaning.
Note: alphabet could be a set of an empty set (or null string) which is a string of no

letters.

X Alphabet: finite
[xI Words: finite
[x] Language: infinite



A language is any subset of X *
Example: ¥ ={a,b}

>*={A,a,b,aa,ab,ba,bb,aaa,...}

Languages: {/1}
{a,aa,aab}
{A,abba,baba,aa,ab,aaaaaa}

Note that:
Sets D = { } e {ﬂ,}
Set size { }‘ = ‘@‘ =0

Set size {/1}‘ =1

String length ﬂ,‘ =0
— Another Example

An infinite language [ = {a”"h" : n = 0}

A

ab

aabb
aaaaabbbbb

el abb g L

Definition (Regular Language): Let > be an alphabet. The following are precisely the
regular languages over Y :

— The empty language @; is regular.
— Foreacha€ ), {a} is regular.

— Let Ly; L, be regular languages over Y. Then L; U Ly; L; . Ly, and L;" are all
regular.

Remark: The operation . is string concatenation. Formally, L;. L, = {Xy: X € L;; y €
L.}.



— Operations on Languages

The usual set operations

{a,ab,aaaa\J bbb, ab}= {a,ab,bb, aaaa}
{a.ab,aaaal\{bb,ab}= {ab}
{a,ab,aaaal—{bb,ab}={a aaaa}

Complement: [ =3%_]
{a,bal=1{A,b,aa,ab,bb,aaa,...}
— Reverse

Definition: IR ={wR:wel}
Examples: {ab,aab,baba}R ={ba,baa,abab}

L={a"b" :n=0}

IR =p"ad" n=0y

— Concatenation

Definition:  [;], = {xy xely,ye LQ}
Example:
{a,ab.bai\b,aa}

= {ab, aaa,abb,abaa,bab, baaa}

— Another Operation

Definition: 7 _jy7...[
\ﬂ_J

n
{a,b}3 ={a.bla.b}la.b}=
{aaa, aab,aba,abb, baa,bab,bba,bbb}
Special case: ;0 _ A4

{a, bba,aaal® = {1}
— Palindrome : is a language that={ A, all strings x such that reverse(x)=x}

Example aba, aabaa, bab, bbb...



— More Examples

L={a"b" :n>0}
I ={d"b"d" b n,m =0}
aabbaaabbbe I*

— Star-Closure (Kleene *)

Definition: IL*=1°U It Ur?.-.
Example:
A,

a.bb,
aa,abb,bba,bbbb,
aaa,aabb,abba,abbbb,...

{a.bb}r =

Definition Kleene Closure: Let > be an alphabet. The Kleene closure of ),
denoted )", is the set of all finite strings whose characters all belong to) . Formally,
T =U, ey I The set Y0 = {}, where ¢ is the empty string.

Note: e= A=~ is empty string.

Definition Kleene star * (Kleene Closure): Given an alphabet ¥ we wish to define
a language in which any string of letters from X is a word, even the null string, this
language we shall call the closure of the alphabet.

Example if £= {a,b,c}

Then £*= {A a b c aa ab ac ba bb bc ca cb cc aaa aab aac bba bbb bbc cca ccb cce
aaaa aaab ...}

Let’s S= alphabet of language S*= closure of the alphabet
Example S= {x}
S*={A, x" |n>=1}

To prove a certain word in the closure language S* we must show how it can be
written as a concatenation of words from the set S.

Example Let S= {a,ab}
To find if the word abaab is in S* or not, we can factor it as follows: (ab)(a)(ab)

Every factor in this word is a word in S* so as the whole word abaab. In the above
example, there is no other way to factor the word that we called unique.

While, sometimes the word can be factored in different ways.



— Positive Closure

Definition: 7+ =71 72...
= L*~{4}
a,bb,
{a,bb}" =1 aa,abb,bba,bbbb,

aaa,aabb,abba,abbbb,...



