
1

DFA vs NDFA (Lecture 7)

The following table lists the differences between DFA and NDFA.

DFA NDFA

The transition from a state is to a

single particular next state for each

input symbol. Hence, it is called

deterministic.

The transition from a state can be to

multiple next states for each input

symbol.

Hence it is called non-deterministic.

Empty string transitions are not seen

in DFA.

NDFA permits empty string

transitions.

Backtracking is allowed in DFA In NDFA, backtracking is not always

possible.

Requires more space. Requires less space.

A string is accepted by a DFA, if it

transits to a final state.

A string is accepted by a NDFA, if at

least one of all possible transitions

ends in a final state.

Comparison Table for Automata

 FA TG NFA

Start states one One or more one

Final states Some or none Some or none Some or none

Edge labels Letter from Σ words from Σ* Letter from Σ

Number of

edges from

each state

One for each

letter in Σ
Arbitrary Arbitrary

Deterministic

(every

input string has

one path)

Yes Not necessarily Not necessarily

Every path

represents one

word

Yes Yes Yes

2

Note: Nondeterminism gives a machine multiple options for its moves.

• In a nondeterministic finite automaton (NFA), for each state there can

be zero, one, two, or more transitions corresponding to a particular

symbol.

• If NFA gets to state with more than one possible transition

corresponding to the input symbol, we say it branches.

• If NFA gets to a state where there is no valid transition, then that branch

dies.

• NFA is a state machine consisting of states and transitions that can

either accept or reject a finite string.

• Essentially, NFAs have less restriction than DFAs, and can therefore

make complicated automata easier to understand and depict in a

diagram.

• a DFA can only have one transition for each symbol going outwards

from the state. But, an NFA can have multiple transitions for a symbol

from the same state.

− If you see the figure below, the NFA diagram has both a and

b looping back to itself, and also has a second a point towards

another state. (Note: These diagrams are not functionally

equivalent. They are simply created to show differences in

transitions)

• Another difference is that an NFA is not required to have a transition

for each symbol. So if we are creating an NFA for a language with the

alphabet {a, b}, it is valid to have a state like this:

3

In this case, if we do happen to get the symbol b, we would still remain in the

state. This is because this state is only interested in getting the symbol a so

that it can continue to the next state.

• The last difference between an NFA and a DFA is that an NFA can

have a transition for an empty string. A DFA cannot transition on an

empty string, as this is an invalid transition, but an NFA is allowed to

do this. See below:

• An important component of an NFA to note is that an NFA can have

multiple outcomes with the same language, but if at least one of

those outcomes results in an accepting state, then the diagram and

language accept the string.

How can we build an NFA?

Let’s use the same example that we used in the DFA article. That is, we will

again be using the language: {ax | x ∈ {a, b}*}, which states that we want all

strings that begin with the letter a.

For this language, our DFA looks like this:

4

Here is the NFA equivalent for the language…

Now, let’s break each component down and explain how this diagram works.

− The first thing we do is begin with the start arrow pointing to the start

state. This is where we begin our processing of the string. Because we

need at least an a to be in the string, our language cannot accept an

empty string. Therefore, the start state, S, cannot be an accepting state.

See the figure below:

− Now, we must handle the rule of our language that the string must

begin with the symbol a. We only care if our machine gets the symbol

a as it’s first symbol, and we want the machine to crash/fail if the first

symbol is anything other than a.

− So, with the power of an NFA, we can simply specify that if we get an

a, jump to the next state to continue with the string processing.

However, if we get anything other than an a, remain in the state and

reject the string. See the figure below:

5

− Now that we have an a in the first position, we can now move into an

accepting state for our string. See below:

− Finally, our language {ax | x ∈ {a, b}*} states that our string can be

followed by any symbol in any order in the set {a, b} by using the x in

ax. In other words, after we get the initial a in our string, anything can

happen after that. We don’t care.

− That means we must have a and b looping back to itself in the accepting

state. See below:

− And that is how we create the NFA for our language!

Example

6

7

8

9

10

The NFA accepts string x if there is some path that, starting

from q0, ends at an accepting state as x is read from left to

right.

The language of an NFA is the set of all strings accepted by the

NFA.

Example

Draw a deterministic and non-deterministic finite automate which accept 00

and 11 at the end of a string containing 0, 1 in it, e.g., 01010100 but not

000111010.

Explanation – Design a DFA and NFA of a same string if input value reaches

the final state then it is acceptable otherwise it is not acceptable.

NFA of the given string is as follows:

DFA of the given string is as follows:

11

Here, q0 shows the initial state, q1 and q2 are the transition states, and q3 and

q4 are the final states.

Note – NFA and DFA both have same power that means if NFA can

recognized an language L then DFA can also be defined to do so and if DFA

can recognized an language L then NFA can also be defined to do so.

Example

Draw a deterministic and non-deterministic finite automata which accept a

string containing “the” anywhere in a string of {a-z}, e.g., “there” but not

“those”.

Explanation – Design a DFA and NFA of a same string if input value reaches

the final state then it is acceptable otherwise, it is not acceptable. It is

applicable for all the DFA and NFA. Since, NFA is quit easier than DFA, so

first make its NFA and then go through the DFA.

NFA of the given string is as follows:

DFA of the given string is as follows:

12

Here, q0 shows the initial state, q1 and q2 are the transition states, and q3 is

the final state.

Example

Draw a deterministic and non-deterministic finite automata which accept a

string containing “ing” at the end of a string in a string of {a-z}, e.g.,

“anything” but not “anywhere”.

Explanation – Design a DFA and NFA of a same string if input value reaches

the final state then it is acceptable otherwise it is not acceptable. It is

applicable for all the DFA and NFA.

NFA of the given string is as follows:

DFA of the given string is as follows:

13

Here, q0 shows the initial state, q1 and q2 are the transition states, and q3 is

the final state.

Example

1. Q = {q0, q1, q2}

2. ∑ = {0, 1}

3. q0 = {q0}

4. F = {q2}

Solution:

Transition diagram:

Transition Table:

Present State Next state for Input 0 Next State of Input 1

→q0 q0, q1 q1

q1 q2 q0

*q2 q2 q1, q2

In the above diagram, we can see that when the current state is q0, on input

0, the next state will be q0 or q1, and on 1 input the next state will be q1.

When the current state is q1, on input 0 the next state will be q2 and on 1

14

input, the next state will be q0. When the current state is q2, on 0 input the

next state is q2, and on 1 input the next state will be q1 or q2.

Example

NFA with ∑ = {0, 1} accepts all strings with 01.

Solution:

Transition Table:

Present State Next state for Input 0 Next State of Input 1

→q0 q1 ε

q1 ε q2

*q2 q2 q2

Example:

NFA with ∑ = {0, 1} and accept all string of length at least 2.

Solution:

Transition Table:

Present State Next state for Input 0 Next State of Input 1

→q0 q1 q1

q1 q2 q2

*q2 ε ε

Example

Design a NFA for the transition table as given below:

Present State 0 1

→q0 q0, q1 q0, q2

q1 q3 ε

q2 q2, q3 q3

→q3 q3 q3

15

Solution:

The transition diagram can be drawn by using the mapping function as given

in the table.

Here,

 δ(q0, 0) = {q0, q1}

 δ(q0, 1) = {q0, q2}

Then, δ(q1, 0) = {q3}

Then, δ(q2, 0) = {q2, q3}

 δ(q2, 1) = {q3}

Then, δ(q3, 0) = {q3}

 δ(q3, 1) = {q3}

Example

Design an NFA with ∑ = {0, 1} accepts all string ending with 01.

Solution:

Hence, NFA would be:

Example

16

Design an NFA with ∑ = {0, 1} in which double '1' is followed by double

'0'.

Solution:

The FA with double 1 is as follows:

It should be immediately followed by double 0.

Then,

Now before double 1, there can be any string of 0 and 1. Similarly, after

double 0, there can be any string of 0 and 1.

Hence the NFA becomes:

Now considering the string 01100011

q0 → q1 → q2 → q3 → q4 → q4 → q4 → q4

Example

Design an NFA in which all the string contain a substring 1110.

Solution:

The language consists of all the string containing substring 1010. The partial

transition diagram can be:

17

Now as 1010 could be the substring. Hence we will add the inputs 0's and 1's

so that the substring 1010 of the language can be maintained. Hence the NFA

becomes:

Transition table for the above transition diagram can be given below:

Present State 0 1

→q1 q1 q1, q2

q2

q3

q3

q4

q4 q5

*q5 q5 q5

Consider a string 111010,

δ(q1, 111010) = δ(q1, 1100)

 = δ(q1, 100)

 = δ(q2, 00)

Got stuck! As there is no path from q2 for input symbol 0. We can process

string 111010 in another way.

δ(q1, 111010) = δ(q2, 1100)

 = δ(q3, 100)

 = δ(q4, 00)

 = δ(q5, 0)

 = δ(q5, ε)

As state q5 is the accept state. We get the complete scanned, and we reached

to the final state.

Example

Design an NFA with ∑ = {0, 1} accepts all string in which the third symbol

from the right end is always 0.

18

Solution:

Thus we get the third symbol from the right end as '0' always. The NFA can

be:

The above image is an NFA because in state q0 with input 0, we can either go

to state q0 or q1.

Notes:

From DFA to NFA

•A DFA has exactly one transition from every state on every symbol in the

alphabet.

•By relaxing this requirement we get a related but more flexible kind of

automaton: the nondeterministic finite automaton or NFA.

Not A DFA

•Does not have exactly one transition from every state on every symbol: –Two

transitions from q0 on a –No transition from q1 (on either a or b).

•Though not a DFA, this can be taken as defining a language, in a slightly

different way.

19

Possible Sequences of Moves

• We'll consider all possible sequences of moves the machine might make for

a given string.

• For example, on the string aa there are three:

– From q0 to q0 to q0, rejecting.

– From q0 to q0 to q1, accepting.

– From q0 to q1, getting stuck on the last a.

• Our convention for this new kind of machine: a string is in L(M) if there is

at least one accepting sequence.

Nondeterministic Finite Automaton (NFA)

• L(M) = the set of strings that have at least one accepting sequence

• In the example above, L(M) = {xa | x ∈ {a,b}*}

• A DFA is a special case of an NFA:

– An NFA that happens to be deterministic: there is exactly one transition

from every state on every symbol.

– So there is exactly one possible sequence for every string

• NFA is not necessarily deterministic

NFA Example

• This NFA accepts only those strings that end in 01

20

• Running in “parallel threads” for string 1100101.

NFA Advantage

• An NFA for a language can be smaller and easier to construct than a DFA

• Let L={x ∈ {0,1}*|where x is a string whose next-to-last symbol is 1}

• Construct both a DFA and NFA for recognizing L.

Spontaneous Transitions

21

• An NFA can make a state transition spontaneously, without consuming an

input symbol

• Shown as an arrow labeled with ε

• For example, {a}* ∪ {b}*:

ε-Transitions To Accepting States

• An ε-transition can be made at any time

• For example, there are three sequences on the empty string

– No moves, ending in q0, rejecting

– From q0 to q1, accepting

– From q0 to q2, accepting

• Any state with an ε-transition to an accepting state ends up working like an

accepting state too

ε-transitions For NFA Combining

22

• ε-transitions are useful for combining smaller automata into larger ones.

• This machine is combines a machine for {a}* and a machine for {b}*.

• It uses an ε-transition at the start to achieve the union of the two languages.

Some computational paths of the NFA

23

24

➢ We also allow ε-transitions: arrows labeled with the empty string.

These allow the NFA to change state without consuming an input

symbol.

Accepts all binary strings where the last symbol is 0 or that contain only 1’s.

Example

Give an NFA for the set of all binary strings that have either the number of

0’s odd, or the number of 1’s not a multiple of 3, or both.

25

Example of ε-transitions

Revisiting Union

26

27

28

29

