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DFA vs NDFA                                                  (Lecture 7) 

The following table lists the differences between DFA and NDFA. 

DFA NDFA 

The transition from a state is to a 

single particular next state for each 

input symbol. Hence, it is called 

deterministic. 

The transition from a state can be to 

multiple next states for each input 

symbol. 

Hence it is called non-deterministic. 

Empty string transitions are not seen 

in DFA. 

NDFA permits empty string 

transitions. 

Backtracking is allowed in DFA In NDFA, backtracking is not always 

possible. 

Requires more space. Requires less space. 

A string is accepted by a DFA, if it 

transits to a final state. 

A string is accepted by a NDFA, if at 

least one of all possible transitions 

ends in a final state. 

 

Comparison Table for Automata 

 FA TG NFA 

Start states one One or more one 

Final states Some or none Some or none Some or none 

Edge labels Letter from Σ words from Σ* Letter from Σ 

Number of 

edges from 

each state 

One for each 

letter in Σ 
Arbitrary Arbitrary 

Deterministic 

(every 

input string has 

one path) 

Yes Not necessarily Not necessarily 

Every path 

represents one 

word 

Yes Yes Yes 
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Note: Nondeterminism gives a machine multiple options for its moves. 

 

• In a nondeterministic finite automaton (NFA), for each state there can 

be zero, one, two, or more transitions corresponding to a particular 

symbol. 

• If NFA gets to state with more than one possible transition 

corresponding to the input symbol, we say it branches. 

• If NFA gets to a state where there is no valid transition, then that branch 

dies. 

• NFA is a state machine consisting of states and transitions that can 

either accept or reject a finite string. 

• Essentially, NFAs have less restriction than DFAs, and can therefore 

make complicated automata easier to understand and depict in a 

diagram. 

• a DFA can only have one transition for each symbol going outwards 

from the state. But, an NFA can have multiple transitions for a symbol 

from the same state.  

− If you see the figure below, the NFA diagram has both a and 

b looping back to itself, and also has a second a point towards 

another state. (Note: These diagrams are not functionally 

equivalent. They are simply created to show differences in 

transitions) 

 

• Another difference is that an NFA is not required to have a transition 

for each symbol. So if we are creating an NFA for a language with the 

alphabet {a, b}, it is valid to have a state like this: 
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In this case, if we do happen to get the symbol b, we would still remain in the 

state. This is because this state is only interested in getting the symbol a so 

that it can continue to the next state. 

• The last difference between an NFA and a DFA is that an NFA can 

have a transition for an empty string. A DFA cannot transition on an 

empty string, as this is an invalid transition, but an NFA is allowed to 

do this. See below: 

 

 

• An important component of an NFA to note is that an NFA can have 

multiple outcomes with the same language, but if at least one of 

those outcomes results in an accepting state, then the diagram and 

language accept the string.  

How can we build an NFA? 

Let’s use the same example that we used in the DFA article. That is, we will 

again be using the language: {ax | x ∈ {a, b}*}, which states that we want all 

strings that begin with the letter a. 

For this language, our DFA looks like this: 
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Here is the NFA equivalent for the language… 

 

 

Now, let’s break each component down and explain how this diagram works. 

− The first thing we do is begin with the start arrow pointing to the start 

state. This is where we begin our processing of the string. Because we 

need at least an a to be in the string, our language cannot accept an 

empty string. Therefore, the start state, S, cannot be an accepting state. 

See the figure below: 

 

− Now, we must handle the rule of our language that the string must 

begin with the symbol a. We only care if our machine gets the symbol 

a as it’s first symbol, and we want the machine to crash/fail if the first 

symbol is anything other than a. 

− So, with the power of an NFA, we can simply specify that if we get an 

a, jump to the next state to continue with the string processing. 

However, if we get anything other than an a, remain in the state and 

reject the string. See the figure below: 
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− Now that we have an a in the first position, we can now move into an 

accepting state for our string. See below: 

 

 

− Finally, our language {ax | x ∈ {a, b}*} states that our string can be 

followed by any symbol in any order in the set {a, b} by using the x in 

ax. In other words, after we get the initial a in our string, anything can 

happen after that. We don’t care. 

− That means we must have a and b looping back to itself in the accepting 

state. See below: 

 

 

− And that is how we create the NFA for our language! 

Example 
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The NFA accepts string x if there is some path that, starting 

from q0, ends at an accepting state as x is read from left to 

right. 

The language of an NFA is the set of all strings accepted by the 

NFA. 

Example 

Draw a deterministic and non-deterministic finite automate which accept 00 

and 11 at the end of a string containing 0, 1 in it, e.g., 01010100 but not 

000111010. 

Explanation – Design a DFA and NFA of a same string if input value reaches 

the final state then it is acceptable otherwise it is not acceptable. 

NFA of the given string is as follows: 

 

DFA of the given string is as follows: 
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Here, q0 shows the initial state, q1 and q2 are the transition states, and q3 and 

q4 are the final states. 

Note – NFA and DFA both have same power that means if NFA can 

recognized an language L then DFA can also be defined to do so and if DFA 

can recognized an language L then NFA can also be defined to do so. 

Example 

Draw a deterministic and non-deterministic finite automata which accept a 

string containing “the” anywhere in a string of {a-z}, e.g., “there” but not 

“those”. 

Explanation – Design a DFA and NFA of a same string if input value reaches 

the final state then it is acceptable otherwise, it is not acceptable. It is 

applicable for all the DFA and NFA. Since, NFA is quit easier than DFA, so 

first make its NFA and then go through the DFA. 

NFA of the given string is as follows: 

 

DFA of the given string is as follows: 
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Here, q0 shows the initial state, q1 and q2 are the transition states, and q3 is 

the final state. 

 

Example 

Draw a deterministic and non-deterministic finite automata which accept a 

string containing “ing” at the end of a string in a string of {a-z}, e.g., 

“anything” but not “anywhere”. 

Explanation – Design a DFA and NFA of a same string if input value reaches 

the final state then it is acceptable otherwise it is not acceptable. It is 

applicable for all the DFA and NFA. 

NFA of the given string is as follows: 

 

DFA of the given string is as follows: 
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Here, q0 shows the initial state, q1 and q2 are the transition states, and q3 is 

the final state. 

 

Example 

1. Q = {q0, q1, q2}   

2. ∑ = {0, 1}   

3. q0 = {q0}   

4. F = {q2}   

Solution: 

Transition diagram: 

 

Transition Table: 

Present State Next state for Input 0 Next State of Input 1 

→q0 q0, q1 q1 

q1 q2 q0 

*q2 q2 q1, q2 

In the above diagram, we can see that when the current state is q0, on input 

0, the next state will be q0 or q1, and on 1 input the next state will be q1. 

When the current state is q1, on input 0 the next state will be q2 and on 1 
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input, the next state will be q0. When the current state is q2, on 0 input the 

next state is q2, and on 1 input the next state will be q1 or q2. 

Example  

NFA with ∑ = {0, 1} accepts all strings with 01. 

Solution: 

 

Transition Table: 

Present State Next state for Input 0 Next State of Input 1 

→q0 q1 ε 

q1 ε q2 

*q2 q2 q2 

Example: 

NFA with ∑ = {0, 1} and accept all string of length at least 2. 

Solution: 

 

Transition Table: 

Present State Next state for Input 0 Next State of Input 1 

→q0 q1 q1 

q1 q2 q2 

*q2 ε ε 

Example  

Design a NFA for the transition table as given below: 

Present State 0 1 

→q0 q0, q1 q0, q2 

q1 q3 ε 

q2 q2, q3 q3 

→q3 q3 q3 
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Solution: 

The transition diagram can be drawn by using the mapping function as given 

in the table. 

 

Here, 

       δ(q0, 0) = {q0, q1}   

       δ(q0, 1) = {q0, q2}   

Then, δ(q1, 0) = {q3}   

Then, δ(q2, 0) = {q2, q3}   

       δ(q2, 1) = {q3}   

Then, δ(q3, 0) = {q3}   

       δ(q3, 1) = {q3}   

Example  

Design an NFA with ∑ = {0, 1} accepts all string ending with 01. 

Solution: 

 

Hence, NFA would be: 

 

Example  
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Design an NFA with ∑ = {0, 1} in which double '1' is followed by double 

'0'. 

Solution: 

The FA with double 1 is as follows: 

 

It should be immediately followed by double 0. 

Then, 

 

Now before double 1, there can be any string of 0 and 1. Similarly, after 

double 0, there can be any string of 0 and 1. 

Hence the NFA becomes: 

 

Now considering the string 01100011 

q0 → q1 → q2  → q3 → q4 → q4 → q4 → q4   

Example  

Design an NFA in which all the string contain a substring 1110. 

Solution: 

The language consists of all the string containing substring 1010. The partial 

transition diagram can be: 
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Now as 1010 could be the substring. Hence we will add the inputs 0's and 1's 

so that the substring 1010 of the language can be maintained. Hence the NFA 

becomes: 

 

Transition table for the above transition diagram can be given below: 

Present State 0 1 

→q1 q1 q1, q2 

q2 
 

q3 

q3 
 

q4 

q4 q5 
 

*q5 q5 q5 

Consider a string 111010, 

δ(q1, 111010) = δ(q1, 1100)   

                        = δ(q1, 100)   

                        = δ(q2, 00)   

Got stuck! As there is no path from q2 for input symbol 0. We can process 

string 111010 in another way. 

δ(q1, 111010) = δ(q2, 1100)   

                        = δ(q3, 100)   

                        = δ(q4, 00)   

                        = δ(q5, 0)   

                        = δ(q5, ε)   

As state q5 is the accept state. We get the complete scanned, and we reached 

to the final state. 

Example  

Design an NFA with ∑ = {0, 1} accepts all string in which the third symbol 

from the right end is always 0. 
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Solution: 

 

Thus we get the third symbol from the right end as '0' always. The NFA can 

be: 

 

The above image is an NFA because in state q0 with input 0, we can either go 

to state q0 or q1. 

 

Notes: 

From DFA to NFA  

•A DFA has exactly one transition from every state on every symbol in the 

alphabet.  

•By relaxing this requirement we get a related but more flexible kind of 

automaton: the nondeterministic finite automaton or NFA. 

Not A DFA  

 

•Does not have exactly one transition from every state on every symbol: –Two 

transitions from q0 on a –No transition from q1 (on either a or b).  

•Though not a DFA, this can be taken as defining a language, in a slightly 

different way. 
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Possible Sequences of Moves 

 

 

• We'll consider all possible sequences of moves the machine might make for 

a given string. 

• For example, on the string aa there are three: 

– From q0 to q0 to q0, rejecting. 

– From q0 to q0 to q1, accepting. 

– From q0 to q1, getting stuck on the last a. 

• Our convention for this new kind of machine: a string is in L(M) if there is 

at least one accepting sequence. 

 

Nondeterministic Finite Automaton (NFA) 

 

• L(M) = the set of strings that have at least one accepting sequence 

• In the example above, L(M) = {xa | x ∈ {a,b}*} 

• A DFA is a special case of an NFA: 

– An NFA that happens to be deterministic: there is exactly one transition 

from every state on every symbol. 

– So there is exactly one possible sequence for every string 

• NFA is not necessarily deterministic 

NFA Example 

• This NFA accepts only those strings that end in 01 
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• Running in “parallel threads” for string 1100101. 

 

 

NFA Advantage 

• An NFA for a language can be smaller and easier to construct than a DFA 

• Let L={x ∈ {0,1}*|where x is a string whose next-to-last symbol is 1} 

• Construct both a DFA and NFA for recognizing L. 

 

Spontaneous Transitions 
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• An NFA can make a state transition spontaneously, without consuming an 

input symbol 

• Shown as an arrow labeled with ε 

• For example, {a}* ∪ {b}*:  

 

 

ε-Transitions To Accepting States 

 

 

• An ε-transition can be made at any time 

• For example, there are three sequences on the empty string 

– No moves, ending in q0, rejecting 

– From q0 to q1, accepting 

– From q0 to q2, accepting 

• Any state with an ε-transition to an accepting state ends up working like an 

accepting state too 

 

ε-transitions For NFA Combining 
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• ε-transitions are useful for combining smaller automata into larger ones. 

• This machine is combines a machine for {a}* and a machine for {b}*. 

• It uses an ε-transition at the start to achieve the union of the two languages. 

 

 

 

Some computational paths of the NFA 
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➢ We also allow ε-transitions: arrows labeled with the empty string. 

These allow the NFA to change state without consuming an input 

symbol. 

 

 

Accepts all binary strings where the last symbol is 0 or that contain only 1’s. 

 

 

Example 

Give an NFA for the set of all binary strings that have either the number of 

0’s odd, or the number of 1’s not a multiple of 3, or both. 
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Example of ε-transitions 

 

 

Revisiting Union                                             
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