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Segmentation and Edge /Line Detection Lecture 3

1. Introduction

The image analysis process requires us to take vast amounts of low-level pixel
data and extract useful information. In this lecture, the methods to divide the
image into meaningful regions which represent higher level information, edge
detection, line detection, and finally image segmentation would be discussed.
Image segmentation methods will look for objects that either have some measure
of homogeneity within themselves or have some measure of contrast with the
objects on their border, such as shape or color features.

Image segmentation techniques can be divided into three main categories (see
figure 57):

a) Region growing and shrinking,

b) Clustering methods, and

c) Boundary detection.

The region growing and shrinking methods use the row and column, (r,c),-

based spatial domain, whereas the clustering techniques for data can be applied
to any domain, such as any N-dimensional color or feature space, whose
components may even include the spatial domain’s (r,c) coordinates. The region
growing and shrinking category can be considered a subset of the clustering
methods, they are performed by finding homogeneous regions.
The boundary detection methods are extensions of the edge detection techniques
and differ from the other segmentation methods by finding the segmented
regions indirectly by finding their borders. Boundary detection is often achieved
using a differentiation operator to find lines or edges, followed by post
processing to connect the pointsinto borders
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Figure 57. Image Segmentation Categories. (a) region growing/shrinking, (b)
clustering, and (c) boundary detection
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2. Edge/LineDetection

The edge and line detection operators presented represent the various types of
operators in use today. Many are implemented with convolution masks and
most are based on discrete approximations to differential operators. Differential
operations measure the rate of change in a function, in this case, the image
brightness function. A large change in image brightness over a short spatial
distance indicates the presence of an edge. Some edge detection operators return
orientation information (information about the direction of the edge), whereas
others only return information about the magnitude of an edge at each point.

Edge detection methods are used as a first step in the line detection process.
Edge detection is also used to find complex object boundaries by marking
potential edge points corresponding to places in an image where rapid changes
in brightness occur. After these edge points have been marked, they can be
merged to form lines and object outlines. Often people are confused about the
difference between an edge and a line. This is illustrated in figure 58 where we
see that an edge occurs at a point and is perpendicular to the line. The edge
direction is defined as the direction of change, so, on a curve, it will be
perpendicular to the tangent line at that point. Note that a line or curve that
forms a boundary can be defined as a set of connected edge points.

e S

e

Figure 58. Edges and lines are perpendicular. The line shown here is vertical and
the edge direction is horizontal. In this case, the transition from black to white
occurs along a row, this is the edge direction, but the line is vertical along a
column.

With many of the edge detection operators, noise in the image can create
problems. That is why it is best to preprocess the image to eliminate, or at least
minimize, noise effects. To deal with noise effects we must make tradeoffs
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between the sensitivity and the accuracy of an edge detector. For example, if the
parameters are adjusted so that the edge detector is very sensitive, it will tend to
find many potential edge points that are attributable to noise. If we make it less
sensitive, it may miss valid edges. The parameters that we can vary include the
size of the edge detection mask and the value of the gray-level threshold. A
larger mask or a higher gray-level threshold will tend to reduce noise effects, but
may result in a loss of valid edge points. The tradeoff between sensitivity and
accuracy is illustrated in figure 59.

{a) . ()

Figure 59. Noise in images requires tradeoffs between sensitivity and accuracy
for edge detectors. (a) Noisy image; (b) edge detector too sensitive, many edge
points found that are attributable to noise; (c) edge detector not sensitive enough,
loss of valid edge points; (d) reasonable result obtained by compromise between
sensitivity and accuracy.

Edge detection operators are based on the idea that edge information in an
image is found by considering the relationship a pixel has with its neighbors. If a
pixel’s gray-level value is similar to those around it, there is probably not an
edge at that point, if a pixel has neighbors with widely varying gray levels, it
may represent an edge point. An edge is defined by a discontinuity in gray-level
values. Ideally, an edge separates two distinct objects. In practice, apparent edges
are caused by changes in color, texture, or by the specific lighting conditions
present during the image acquisition process. This means that what we refer to
as image objects may actually be only parts of the objects in the real world, see
figure 60.
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Figure 60. Image objects may be parts of real objects. (a) Butterfly image (original
photo), (b) butterfly after edge detection, note that image objects are separated by
color and brightness changes, (c) image of objects in kitchen corner, and (d)
image after edge detection, note that some image objects are created by
reflections in the image due to lighting conditions and object properties.

Figure 61 illustrates the differences between anideal edge and a real edge, and
it shows a representation of one row in an image of an ideal edge. The vertical
axis represents brightness, and the horizontal axis shows the spatial coordinate.
The abrupt change in brightness characterizes an ideal edge. In the
corresponding image, the edge appears very distinct. In the corresponding
image, the edge appears very distinct. In figure 61 b, we see the representation of
a real edge, which changes gradually. The image contains the same information
as does the ideal image: black on one side and white on the other, with a line
down the center.
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Figure 61. Ideal Edge Compared to a Real Edge. The ideal edge is an
instantaneous change, whereas a real edge is typically a gradual change. (a) Ideal
edge, (b) Real edge.

3. Gradient Operators
Gradient operators are based on the idea of using the first or second derivative
of the gray-level function as an edge detector. Remember from calculus that the
derivative measures the rate of change of a line or the slope of the line. If we
model the gray-level transition of an edge by a ramp function, which is a
reasonable approximation to a real edge, we can see what the first and second
derivatives look like in figure 62. When the gray level is constant, the first
derivative is zero, and when it is linear, it is equal to the slope of the line. With
the following operators we will see that this is approximated with a difference
operator, similar to the methods used to derive the definition of the derivative.
The second derivative is positive at the change on the dark side of the edge,
negative at the change on the lightside, and zero elsewhere.
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Figur62. Edge Model. (a) A portion of an image with an edge, which has been
enlarged to show detail; (b) ramp edge model; (c) first derivative; (d) second
derivative with a line drawn between the two pulses which crosses the zero axis
at the edge center.

In figure 62 ¢, we can see that the magnitude of the first derivative will mark
edge points, with steeper gray-level changes corresponding to stronger edges
and larger magnitudes from the derivative operators. In figure 62 d, we can see
that applying a second derivative operator to an edge returns two impulses, one
on either side of the edge. An advantage of this is that if a line is drawn between
the two impulses, the position where this line crosses the zero axis is the center of
the edge, which theoretically allows us to measure edge location to subpixel
accuracy. Subpixel accuracy refers to the fact that the zero-crossing may be at a
fractional pixel distance, for example, halfway between two pixels, so we could
say the edgeis at, for instance, c=75.5.
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1. Roberts operator

It is a simple approximation to the first derivative. It marks edge points only; it
does not return any information about the edge orientation. It is the simplest of
the edge detection operators and will work best with binary images (gray-level
images can be made binary by a threshold operation). There are two forms of the
Roberts operator. The first form (a) consists of the square root of the sum of the

differences of the diagonal neighbors squared, as follows:

JI(r,)—I(r—1,c—)F+[I(r,c—1)— I(r—1,c)F

The second form (b) of the Roberts operator is the sum of the magnitude of the
differences of the diagonal neighbors, as follows:

|I(r,c)— I(r—1,c— 1)|+|I(r,f —1)—I(r— 1,L‘J|

The second form of the equation is often used in practice due to its
computational efficiency —it is typically faster for a computer to find an absolute
value than to find square roots.

2. Prewitt operator
It is similar to the Sobel, but with different mask coefficients. The masks are
defined as:

Vertical edge Horizontal edge
-1 -1 -3 -1 0 1
0o o0 o -1 0 1

1 1 1 |-1 0 1

These masks are each convolved with the image. At each pixel location, we find
two numbers: pl, corresponding to the result from the vertical edge mask, and
p2, from the horizontal edge mask. We use these results to determine two
metrics, the edge magnitude and the edge direction, which are defined as
follows:

—

Edge magnitude /pi +p3

| Pq]
n 1P

Edge direction ta
P;|

3. Sobel operator
This operator approximates the gradient by using a row and a column mask,
which will approximate the first derivative in each direction. The Sobel edge
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detection masks find edges in both the horizontal and vertical directions and
then combine this information into two metrics —magnitude and direction. The
masks are as follows:

Vertical edge Horizontal edge
-1 -2 -1 -1 0 1
0 0 0 -2 0 2
1 2 1 -1 0 1

These masks are each convolved with the image. At each pixel location, we now
have two numbers: si, corresponding to the result from the vertical edge mask,
and s, from the horizontal edge mask. We use these numbers to compute two
metrics, the edge magnitude and the edge direction, defined as follows:

Edge magnitude +/si +s3

Edge direction tan '|=

| 5

As seen in figure 2, the edge direction is perpendicular to the line (or curve),
because the direction specified is the direction of the gradient, along which the
gray levels are changing.

As with the Sobel edge detector, the direction lies 90° from the apparent
direction of the line or curve. The Prewitt is easier to calculate than the Sobel, as
the only coefficients are 1’s, which makes it easier to implement in hardware.
However, the Sobel is defined to place emphasis on the pixels closer to the mask
center, which may desirable for some applications.

4. Laplacian operators

It is similar to the spatial filters used for preprocessing. The three Laplacian
masks presented below represent various practical approximations of the
Laplacian, which is the two-dimensional (2D) version of the second derivative
(note that these are masks used in practice and true Laplacians will have all the
coefficients negated). Unlike the Sobel and Prewitt edge detection masks, the
Laplacian masks are approximately rotationally symmetric, which means edges
at all orientations contribute to the result. As that is the case they are applied by
selecting one mask and convolving it with the image. The sign of the result
(positive or negative) tells us which side of the edge is brighter.
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Laplacian masks:
Type 1 Type 2 Type 3
0 -1 o [-1 -1 -2 1 =2
-1 4 -1 -1 8 -1 1 4 1
0 -1 0 -1 -1 -1 -2 1 - 2_|

These masks differ from the Laplacian type previously described in that the
center coefficients have been decreased by 1. With these masks, we are trying to
find edges, and are not interested in the image itself —if we increase the center
coefficient by 1 it is equivalent to adding the original image to the edge detected
image.

An easy way to picture the difference is to consider the effect each mask has
when applied to an area of constant value. The above convolution masks return a
value of 0. If we increase the center coefficients by 1, each mask returns the
original gray level. Therefore, if we are only interested in edge information, the
sum of the coefficients should be 0. If we want to retain most of the information
that is in the original image, the coefficients should sum to a number > 0. The
larger this sum, the less the processed image is changed from the original image.
Consider an extreme example in which the center coefficient is very large
compared with the other coefficients in the mask. The resulting pixel value will

depend most heavily upon the current value, with only minimal contribution
from the surrounding pixel values.

5. Compass Masks

It is called Kirsch masks as they are defined by taking a single mask and
rotating it to the eight major compass orientations: North, Northwest, West,
Southwest, South, Southeast, East, and Northeast. The Kirsch compass masks are
defined as follows:

3 3 5[3 5 5[5 5 5[5 5 -3
ko|-3 0 S5kj-3 0 Skl-3 0 -3k/5 o -3
3 3 5|8 -3 -8} 8 -3l }ls -3 -8
R SRR G T R (& TR SENT (B SR SR
kf5 0 -3ks| 5 0 -3k|]-3 0 -3k/-3 0 5
5 3 -3 |5 5 -3 |5 5 5|3 5 -5

The edge magnitude is defined as the maximum value found by the
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convolution of each of the masks with the image. The edge direction is defined
by the mask that produces the maximum magnitude; for instance, ko corresponds
to a horizontal edge, whereas ks corresponds to a diagonal edge in the
Northeast/Southwest direction (remember edges are perpendicular to the lines).
We also see that the last four masks are actually the same as the first four, but
flipped about a central axis.

6. Robinson compass masks
They are used in a manner similar to the Kirsch masks, but are easier to

implement, as they rely only on coefficients of 0, 1, and 2, and are symmetrical
about their directional axis—the axis with the zeros which corresponds to the
line direction. We only need to compute the results on four of the masks; the

results from the other four can be obtained by negating the results from the first
four. The masks are as follows:

]2 1 o0
onl1 0 -1
_11[0 —F =3

-1 0 11]0o 1 21[1
nl=2 0 2lnl-1 0 1s] 0
-1 0 1] [-2 -1 of |-1 -

o = T S

1 0 -1fo -1 2] -1 -2 -1 -2 -1 0
n2 0 =21 1l 0 0 Olxl-1 0 1
1 0 -1 |2 0 1 2 1|0 1 2

The edge magnitude is defined as the maximum value found by the
convolution of each of the masks with the image. The edge direction is defined
by the mask that produces the maximum magnitude. It is interesting to note that
masks 1o and 16 are the same as the Sobel masks. We can see that any of the edge
detection masks can be extended by rotating them in a manner like these
compass masks, which will allow us to extract explicit information about edges
in any direction.

7. Laplacian of a Gaussian (LoG)

By preprocessing with a smoothing filter we can mitigate noise effects, and then
use the Laplacian to enhance the edges. By adjusting the spread, or variance, of
the Gaussian, we can adjust the filter for different amounts of noise and various
amounts of blurring. The combination of the Gaussian followed by a Laplacianis
called a Laplacian of a Gaussian (LoG), or the Mexican hat operator as the
function resembles a sombrero (see Figure 63). As the process requires the
successive convolution of two masks, they can be combined into one LoG mask.
Commonly used 5x5 and 17x17 masks that approximate the combination of the
Gaussianand Laplacianinto one convolution mask are as follows:
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5x5 LoG Mask:

0 0 -1 o0 0
0 -1 -2 -3 o
L1 2 1 -2 -1
3 3 % o

o 0 -1 o0 o

17x17 LoG Mask:

o o o o0 0 0 -1 -1 -1 -1 -1 0 0 0 0 o0 0
o o o 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 o
o 0 -1 -1 -1 -2 -3 -3 -3 -3 -3 -2 -1 -1 -1 0 o
o 0 -1 -1 -2 -3 -3 -3 -3 -3 -3 -3 -2 -1 -1 0 0
Ly 2 N el o o8 =P 8 2B a8 el o8 S L -1 o
1 -1 -2 -3 -3 -3 0 2 4 2 0 -3 -3 -3 -2 -1 0
.3 . -3--% -3 -5 @ 4 W .22 1 4 @ -3 -3 -3 -1 -2
1 -1 -3 -3 -3 2 10 18 21 18 10 2 -2 -3 -3 -1 -1
-1 -1 -3 -3 -3 4 12 21 24 21 12 4 -3 -3 -3 -1 -1
0 -1 -3 -3 -3 2 10 18 21 18 10 2 -2 -3 -3 -1 -1
g4 -8 829 8 4 W 'R 0 4 B -85 -8 -7 -5 -¥
0 -1 -2 -3 3 -3 0 2 4 2 0 -3 -3 -3 -3 -1 o0
o -3 -1 -2 -3 -% -» -2 -3 -2 -3 -8 -8 -2 -2 -3 ®©o
0 0 =1 <4 =2 =5 =5 -8 -8 -3 -3 -8 -2 4 -1 o &
o 9 -1 -1 -1 -2 -3 -3 -3 -3 -3 -2 -1 1 -1 0o o
o 0 o 0 -1 -1 -1 -1 -1 -9 -1 -1 -1 0 -1 o o
o 0o o 0 0 0 -1 -1 -1 -1 -1 0 0 0 0 0 0

The equation for the LoG filter is:

LoG=|TT€ le | 2

Where (1,c) are the row and column coordinates and o is the Gaussian variance.
From the equation, we can see that zero-crossings occur at (12 + ¢2) = 202 or \20
from the mean, as shown in Figure 63 a. Note that, in practice, if creating the LoG
filter mask by convolving a Gaussian and a Laplacian mask, we need to be sure
that the Gaussian is normalized to 1 and that the Laplacian coefficients sum to 0.
This is done to avoid biasing the mask with an offset term, which will shift the
zero-crossings and defeat the filter’s purpose.

To determine the size of the mask to use, we consider that 99.7% of the area
under a Gaussian curve is within +30 of the mean. Keeping in mind that the
sampling grid is fixed by the pixel spacing, the variance and the mask size must
be related (see Figure 4.2-6¢c). So we want to select a value of n for the nxn
convolution mask that is an odd integer =60, or we will get only a portion of the
curve with our sampled filter mask. In CVIPtools, we use the following equation
to determine n, based on the variance, o:

n=[2x TRUNCATE(3.35¢ +0.33) +1].
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Figur 63. The inverted Laplacian of a Gaussian (LoG). (a) One-dimensional plot
of the LoG function; (b) the LoG as an image with white representing positive
numbers, black negative numbers, and gray representing zero; (c) three LoG
plots with = 0.5, 1.0, and 1.5. Note for o = 0.5, the mask size, n, should be about
5x5; for o =1, 9x9, and so on. This is done so the mask covers the entire function
as it goes negative and then goes back up to zero. Note this is 40 to the left, 40 to
the right, and the center term corresponding to the term at the 0 point on the

graph.

This equation assures us that we have the complete spread of the LoG filter and
actually provides us with an n that corresponds to about +40. Note that for
positive numbers, the truncate operation is the same as the floor operation. The
third step for the Laplacian of a Gaussian (LoG) algorithm is to find the zero-
crossings after the LoG is performed. This can be accomplished by considering a
pixel and its surrounding pixels, thus a 3x3 subimage, and looking for sign
changes between two of the opposing neighbors. That is, we check the left/right,
up/down, and the two diagonal neighboring pairs. Figure 64 illustrates the
results from the standard Laplacian of a Gaussian (LoG) algorithm. The
disadvantage of the Laplacian of a Gaussian (LoG) algorithm, or any second
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derivative/zero-crossing method, is that it tends to smooth shapes too much,
which has the effect of eliminating comners and creating closed loops in the
resulting lines/curves. The Laplacian of a Gaussian (LoG) results are often
referred to as a “plate of spaghetti,” as shown in Figure 64 (c through e).

In practice, we may want to set a threshold to use before a pixel is classified as
an edge. The threshold is tested against the absolute value of the difference
between the two pixels that have the sign changes. If this value exceeds the
threshold it is classified as an edge pixel.

Example: Applying a threshold of the Laplacian of a Gaussian (LoG) algorithm.
Suppose, after the LoG, we have a 3x3 subimage as follows:

10 11 17|

18 2 15

|
21 33 28|

The only pair that has a sign change is the NW/SE diagonal. So, the center pixel
may be considered an edge pixel. If we apply a threshold, then we can calculate
the absolute value of the difference of this pair:

|-10—-28|=38

If this value exceeds the threshold we have set, then the center pixel is
determined to be an edge pixel.

The Laplacian of a Gaussian (LoG) Laplacian of a Gaussian (LoG) has a
parameter to allow the user to select single variance or dual variance. If dual
variance is selected, the user specifies a sigma (o, variance) value and a delta
value. then computes the Marr-Hildreth results using two variances—the
specified sigma plus the delta value and the specified sigma minus the delta
value, (see Figure 64 e and f).
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(a) . (b)

Original image -

Single variance, ¢ = 3.5

Figure 64. Results from Using Different Variance Values with the Marr—Hildreth
Algorithm. Increasing the variance with a single value, which is the equivalent of
using a larger mask size for the filters, the resulting edge lines are farther
apart.(a) Original image; (b) results with o =2.5; (c) results with o= 3.5; (d)
results with o= 5.Using a dual variance, the amount of noise retained depends
on the relationship between o and delta.(e) Dual variance with c=1.5 and delta=
1; (f) dual variance with o= 1.2 and delta=0.8.

8. Canny algorithm

The Canny algorithm, developed by John Canny in 1986, is an optimal edge
detection method based on a specific mathematical model for edges.The edge
model is a step edge corrupted by Gaussian noise.The algorithm consists of four
primary steps:

1. Apply a Gaussian filter mask to smooth the image to mitigate noise
effects.This can be performed at different scales, by varying the size of the
filter mask which corresponds to the variance of the Gaussian function.A
larger mask will blur the image more and will find fewer, but more
prominent, edges.
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2. Find the magnitude and direction of the gradient using equations similar to
the Sobel or Prewitt edge detectors.

3. Apply nonmaxima suppression which results in thinned edges.This is
done by considering small neighborhoods in the magnitude image, for
example, 3x3, and comparing the center value to its neighbors in the
direction of the gradientIf the center value is not larger than the
neighboring pixels along the gradient direction, then set it to 0.Otherwise, it
is a local maximum, so we keep it. In Figure 65, we see an example of a 3x3
neighborhood showing the magnitude at each location, and using an arrow
to show the gradient direction.The center pixel has a value of 100 and the
gradient direction is horizontal (corresponding to a vertical line), so it is
compared to the pixels to the right and left; which are 40 and 91.As it is
greater than both, it is retained as an edge pixel; if it was less than either
one, then it would be removed as an edge point.Note that this will have the
effect of making thick edges thinner, by selecting the “best” point along a
gradient direction.

Apply two thresholds to obtain the final result. This technique, known as
hysteresis thresholding helps to avoid false edges caused by too low a
threshold value or missing edges caused by too high a value.Itis a two-step
thresholding method, which first marks edge pixels above a high threshold,
and then applies a low threshold to pixels connected to the pixels found

with the high threshold.This can be performed multiple times, as either a
recursive or iterative process.

—e 50 112 — 20—)_

€&~ 40 100 — 91—

&— 88 95— 92—

Figure 65. Nonmaxima Suppression. A 3x3 subimage of the magnitude image,

which consists of the magnitude results in an image grid.

The high threshold is computed from the image by finding the value which is
greater than 90% of the pixels after applying nonmaxima suppression to the

magnitude images. Figures 66 shows results from varying these parameters.
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(a)

Original image [

High threshold = 1 [

(d)

High threshold = 3 8

High threshold = 2 &

Figure 66. Results from changing high threshold with Canny Algorithm. As the
high threshold in increased, small details are removed.In the results the Gaussian
= 0.5 and the low threshold = 1.(a) Original image; (b) results high threshold
factor = 1; (c), high threshold factor = 2; (d) high threshold factor = 3.

4. Edgesin ColorImages

The RGB data can be mapped into the HSV (hue/saturation/value) color space
and edges are sought in the hue or saturation bands. Figure 67 illustrates this by
showing that the areas of reflection are found in the saturation band, but not in
the value (brightness) band. We can use any of the previously defined edge
detectionmethods on each of the three bands individually, and can then combine
the results from all three bands into a three band image (see Figure 68), as
multispectral satellite images.It uses equations similar to the Roberts gradient,
but is applied to all the image bands with a simple set of equations.
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Figure 67. Color Edge Detectionin HSV Space. (a) Original image, (b) original image mapped into HSV
color space and displayed as an RGB image, (c) the saturation band, (d) Canny edge detection applied to the
saturationband, (e) the value band, (f) Canny edge detection applied to the value band. Note that the areas
of reflection, marked with the yellow arrows onimage (d), are found in the saturation band, but notin the

value band, image (f).

Canny image

Bote - Cox image

Figure 68. Color Edge Detectionin RGB Space. (a) Originalimage in RGB space, (b) Canny
edge detector, all three bands displayed, (c) Boie—Coxedge detector, all three bands displayed. The edges
that appear white are in all three RGB bands. Note that some edgesonly appear in one or two color bands.

Prof.Dr. Taghreed Abdulhameed Naji Page 82



Segmentation and Edge /Line Detection Lecture 3

The result of this edge detector at pixel (r,c) is the smaller of the two values from
these two equations:

4

ZII,.U,L‘)— 1(r,olls(r+1,c+1)—I(r+1,c+1)]

\,*z{ht_r,fi T{r,CJFZIMr +Lc+1)—I(r+1Lc+1)f
b-1 b=1

Z[:-ﬂu £1,0)—T(r+1Lo)ls(r,.c + 1)~ T(r,c +1)]
b1

V:Zm” +m—Tu+1,c;|onm,f+ 1)—T(r,c+ 1P
b=1

b-1

Where:

I(r,c) is the arithmetic average of all the pixels in all bands at pixel location (r,c) and

I,(r,c)is the value at location (r,c) in the bth band, with a total of n bands.

This edge detector has been used successfully onmultispectral satellite images.
5. Edge Detector Performance

In evaluating the performance of many processes, both objective and subjective
evaluation methods can be used. The objective metric allows us to compare
different techniques with fixed analytical methods, whereas the subjective
methods will include human evaluation as part of the process, which may lead to
inconsistent results. However, for many image processing applications, the
subjective measures tend to be quite useful. Therefore, in the development of an
objective metric, it is advantageous to take human visual attributes into
consideration.

To develop a performance metric for edge detection operators, we need to
define what constitutes success.

For example, the Canny algorithm was developed considering three important
edge detection success criteria:
4+ Detection: the edge detector should find all real edges and not find any
false edges.
4+ Localization: the edges should be found in the correct place.
+ Single response: there should not be multiple edges found for a single
edge.
These correlate nicely with Pratt’s Figure of Merit (FOM) defined in 1978. Pratt
first considered the types of
errors that can occur with edge detection methods.
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The types of errors are:

(1) Missing valid edge points,

(2) Classifying noise pulses as valid edge points, and
(3) Smearing of edges (see Figure 69).

If these errors do not occur, then a successful edge detection can be achieved.

Figure 69. Errors in Edge Detection. (a) Original image, (b) missed edge points,
examples marked with arrows, (c) noise misclassified as edge points, examples
marked with arrows, (d) smeared edge.

The Pratt FOM is defined as follows:

. 1~ 1
FOM = — .
I Zl—-—r_uff

Where In is the maximum of Il and IF; II is the number of ideal edge points in the
image; IF is the number of edge points found by the edge detector; a is a scaling
constant that can be adjusted to adjust the penalty for offset edges, and di is the
distance of a found edge point to an ideal edge point.

For this metric, FOM will be 1 for a perfect edge. Normalizing to the maximum
of the ideal and found edge points guarantees a penalty for smeared edges or
missing edge points. In general, this metric assigns a better rating to smeared
edges than to offset or missing edges. This is done because techniques exist to
thin smeared edges, but it is difficult to determine when an edge is found in the
wrong location or is completely missed. The distance, d, can be defined in more
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than one way and typically depends on the connectivity definition used.The
possible definitions for d are as follows:

Let the (r,c) values for two pixels be (11, c1) and (2, c2).
1. City block distance, based on four-connectivity:

dzlﬂ—f‘_zl-l-lﬁl—fgl

With this distance measure, we can only move horizontally and vertically.

2. Chessboard distance, based on pight-connectivity:

d=max(||n—r3|,|61—t‘:|)

With this distance measure, we can move diagonally, as well as horizontally or vertically.

3. Euclidean distance, based on actual physical distance:

d=[(n-nP+@-c)|”

EXAMPLE 4.2.3: PRATT'S HGURE OF MERIT (FOM)

Given the following image array, find the FOM for the following found edge points, designated by 1's, in (a), (b),
and (c). Let o = 0.5, and use the city block distance measure. We assume that actual edge in the locations where
the line appears, that is, at the 100’s.

Image Array |0 100 100 100 0Of

i0 0O OOO 00O0O0TDUD 00O0O0TUOD
ooooo jo1110 (00000
a0 1110 b0o1110clooo0o0o0
0boooo joooo0o0 01111
0oooo jooooo [0ooooo

1
a.mm_lz 11 1 PR I
I 1+ad® 3|1+050)  1+05(0)7 1+050)|

N g

1 v 1
b.FOM =—
In Z 1+ ﬂdsl

1 1 1 1 1 1 1

e i + i - : ~|~0.8333
615050 170507 170507 170517 140517  1+051)

N -
i

I
. FOM=-L Z ——
In ] 1+ ad;

1

_1 1 1 1 Sl
4 :

110517 170507 140507 ' 110502

With result (a), we find a perfect edge. In result (b), we see that a smeared edge provides us with about
83% and an offset edge in () gives us about 58%. Note that the o parameter can be adjusted to determine the
penalty for offset edges.
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6. Hough Transform

The Hough transform is designed specifically to find lines. A lineis a collection
of edge points that are adjacent and have the same direction. The Hough
transform is an algorithm that will take a collection of n edge points, as found by
an edge detector, and efficiently find all the lines on which these edge points lie.
The advantage of the Hough transform is that it provides parameters to reduce
the search time for finding lines based on a set of edge points, and that these
parameters can be adjusted based on application requirements. To understand
the Hough transform, we will first consider the normal (perpendicular)
representation of a line:

p=rcos(f)+csin(f)

Given a line in our row and column, (r,c) based image space, we can define that
line by p, the distance from the origin to the line along a perpendicular to the
line, and 6, the angle between the r-axis and the p —line figure 70. For each pair
of values of p and 6, we have defined a particular line. The range on 6 is 0° to
180° and p ranges from 0 to v2N, where NxN is the image size for a nonsquare
image, it is the diagonal lengthThe algorithm consists of three primary steps:

!
The line of interest

Figure 70. The Hough Transform can be defined by using the normal
(perpendicular) representation of a line and the parameters p and 6.
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