Discrete Transforms Lecture 4

Discrete Transforms

A transform is simply another term for a mathematical mapping process. Most of the
transforms in this lecture map the image data from the spatial domain to the spectral
(frequency or sequency) domain, where al/l the pixels in the input spatial domain

contribute to eachvalue in the output spectral domain, as illustrated in Figure 71.
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Figure 71. Discrete transforms. Spectral (frequency or sequence) transforms require all
the values in the image fo obtain each individual valuein the spectrum. All pixels in

the input image contribute to each value in the oufput image for spectral transforms.

These transforms are used as tools in many areas of engineering and science, including
digital image processing.Originally defined in their continuous forms, they are
commonly used today in their discrete (sampled) forms.The large number of arithmetic
operations required for the discrefe transforms, combined with the massive amounts of
data in animage, requires a great deal of computer power.The ever increasing compute
power, memory capacity, and fast disk storage available today make the use of these
transforms much more feasible than in the past.

The discrete form of these transforms is created by sampling the continuous form of
the functions on which these transforms are based, that is, the basis functions. The
functions used for these transforms are typically sinusoidal or rectangular and the
sampling process, for the one-dimensional (1D) case, provides us with basis vectors.
When we extend these into fwo dimensions, as we do for images, they are basis matrices
or basis images (see Figure 72). The process of transforming the image data into another
domain, or mathematical space, amounts to projecting the image onto the basis ima ges.
The frequency transforms use the enfire image, fo discover spatial frequency

information.

Prof.Dr. Taghreed Abdulhameed Naji Page 87



Discrete Transforms Lecture 4

(@) (b)

2N F R

Brightness
Brightness

Space ——* Space —=

(0)

Figure 72. Basis vectors and images. (a) A basis function. a 1D sinusoid. (b) A basis
vector: a sampled 1D sinusoid. (c) A basis image: A sampled sinusoid shown in 2D as an
image. The pixel brightness in each row corresponds to the sampled values of the 1D
sinusoid, which are repeated along each column. This is a horizontal sine wave of
frequency 1.

The general form of the transformation equation, assuming an MxN image, is given by .

M-1 N-1
T(u,v)= kZZI(r, c)B(r,c;u,v)

r=0 c=0
Here, u and v are the frequency domain variables, k is a constant that is fransform
dependent, T(u,v) are the transform coefficients, and B(r.c;u,v) correspond to the basis
images. The notation B(rc;u,v) defines a set of basis images, corresponding to each
different value for u and v, and the size of each is rxc (Figure 73). The transform
coefficients, T(u,v), are the projections of I(rc) onto each B(u.v), then scaled by the
constant k. This is illustrated in Figure 74. These coefficients tell us how similar the
image is fo the basis image; the more alike they are, the bigger the coefficient. This
transformation process amounts to decomposing the image into a weighted sum of the

basis images, where the coefficients T(u.v) are the weights.
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Figure 73. A set of basis images B(r.c;u,v). Size and coordinates of generic basis images

for a 2x2 transform
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Figure 74. Transform coefficients. To find the transform coefficients, T(u,v), we project

the image, I(r.c), onto the basis images, B(u.v), and multiply by k. For example, T(0,0) is
the projection of I(r,c) onto B(0,0), which equals (ea + fb + gc + hd).

Prof. Dr. Taghreed Abdulhameed Naji Page 89



Discrete Transforms Lecture 4

Examplel.
Let
[5 3]
Ilf’,f]zq 2'
And, let
.. T 1 T 1’ } ] 1‘1
(+1  +1f+1 1
B(u,v,r,c)=1. : )
+1 +14+1 1
-1 -1 a1
Then,

T(0,0)0=51)+3(1)+11)+2(1)=11
T(0,1)=5(1) +3(-1)+ (1) + 2(-1) 1_k"11 1
T(,0)=51)+31)+1-)+2(-1)=5| {5 3
TALD)=5D+3-=)+1-1)+2(1)=3

T(u,v)=k

To obtain the image from the transform coefficients, we apply the inverse transform equation:

M-I NI
I(r,c)=T '[T(u,v)]=K ZZT(U,I-‘)B (r,c;u,v)

u=0 v=>0

Here, the T-1 [T(u,v)] represents the inverse transform, and the B—1 (v. c; u, v) represents

the inverse basis images, and k' is a constant that is transform dependent.
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Example 2
From the previous example, we have.
T k“ 1
(u,v) 5 3'
And, let
+1  +1f+1 -1
, H1 1+ -1
B (u,v,r,c)= = .
+1  +1j|+1 -1
1 -1 +1
Then,

1(0,0)=11(1) + (1) +5(1) + 3(1) =20
10,)=11(1)+ (-1 +51) +3(-1)=12 zk,"zo 12‘:.
I(,0)=11{1)+ 1) +5(-1)+3(—-1)=4 4 8|
I(1L,1)=11(1)+1(=1)+5-1)+3(1)=8

I(r,c)=

Is this correct? It depends on k and k', since.

15 3|
I(r,c)= o2
Comparing our results we see that we must multiply our answer by 1/4. What does this tell us?—It tells us
that to complete the transform pair, B(u,v;r,c) and B-'(u,v;r,c), we need to define k and k. We need to be able
to recover our origina] image to have a proper transform pair. We can solve this b_v ]etting k'=1/4, or by
letting k = k” = 1/2. Note that 1/2 will normalize the magnitude of the basis images to 1. Remember that the
magnitude of a vector can be found by the square root of the sum of the squares of the vector components; in
this case, magnitude of the basis images = Jf +(£1)? +(£1)? +(£1)* = V4 = 2. Therefore, to normalize the
magnitude to 1, we need to divide by 2, or multiply by 1/2.

Fourier Transform

The Fourier transform is the best known, and the most widely used, of the fransforms.
It was developed by Jean Baptiste Joseph Fourier (1768-1830) to explain the
distribution of temperature and heat conduction. The Fourier transform has found
numerous uses, including vibration analysis in mechanical engineering, circuit analysis
in elecfrical engineering, and in digital image processing. The Fourier transform
decomposes a complex signal into a weighted sum of a zero frequency term (the DC
term that is related fo the average value), and sinusoidal ferms, the basis functions,
where each sinusoid is a harmonic of the fundamental. Fourier transform theory begins

with the 1D continuous transform, defined as follows.
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F(v)= f I(c)e "> ™dc

The basis functions, 3?7, are complex exponentials, and sinusoidal in nature. Also,
the continuous Fourier transform theory assumes that the functions start at —e0 and go
to +o0, so they are continuous and everywhere. This aspect of the underlying theory is

important for the periodic property of the Fourier transform

Example 3

Given the simple rectangle function shown in Figure 75a, we can find the Fourier

transform by applying the equation defined above.

F(v)= f I(c)e 7™ dc

C
- "!I o
- [aem
0

—A ol —A j270C
- jZm*{e k= ol

—1]

[Pj.‘rr'C - .r'.'n“C](} jroC

~ 2o

then we use the trigonometric identity, sin 6= (e —e79)/2f
e jroC

. isirl(fer )
U

This result is a complex function, and here we are interested in the magnitude (defined in the next section),
which is

P—j; v

|sin(vC)

|F(v)|= ‘i
Ly

Now, we multiply through by C/C, and the magnitude of e 7*“ =1, we can get it in the form of a sinc
function:

sin(mvC)

(7vC)

‘= ACsinc(vC)|

Figure 75b shows this result.
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Figure 75. Fourier fransform example. (a) The one-dimensional rectangle function, (b)
the magnitude of Fourier transform of the 1D rectangle function. |F(v)| -
AC|[sin(mvC)]/(mvC) |-AC |sinc(vC) |, (c) Two-dimensional rectangle function as an
image, (d) the magnitude of the Fourier fransform, called the Fourier spectrum, of the
2D rectangle.

Figure 75c shows the 2D rectangle function, with the brightness of the image

representing the magnifude of the function. In Figure 75d, the magnitude of the
Fourier spectrum in image form. It is customary to display the magnitude only of a
Fourier spectrum, as the Fourier transform contains complex terms, which have real
and imaginary parts. The magnitude is however a real quantity andis also referred to as
the Fourier spectrum or frequency spectrum.
The reasons for infroducing this example are as follows. (1) to illustrate the continuous
and infinife nature of the basis functions in the underlying theory, (2) fo illustrate that
when we have a function that ends abruptly in one domain, such as the function F(c), it
leads to a continuous series of decaying ripples in the other domain as shown in Figure
75b and d, and (3) to show that the width of the rectangle in one domain is inversely
proportional to the spacing of the ripples in the other domain. This will be useful in
understanding the nature of phenomena that occurs in images at object boundaries,
especially when we apply filters; but first, we will explain the details of the discrete
Fourier fransform (DFT).
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+ The One-Dimensional Discrete Fourier Transform
The equation for the 1D DFT is.

= 1 — - j2roc/N
F{u)-wzf'w -

c=0

The inverse DFT is given by.

N-1
F 1[F(t’)] = I(C) — ZF(Z,)L,.'Z,‘:;\'_;‘J\’

v=0
Where the F-![ ] notation represents the inverse transform. These equations correspond

to one row of an image; note that as we move across a row, the column coordinate is the
one that changes. The base of the natural logarithmic function, e, is about 2.71828; j,
the imaginary coordinate for a complex number, equals v/—1. The basis functions are

sinusoidal in nature, as can be seen by Euler’s identity.

¢/’ = cos(f) + jsin(0)
Putting this equation into the DFT equation by substifuting 0 - —2mvc/N, and
remembering that cos(8) - cos(—0) and sin(—0) - —sin(B), the 1D DFT equation can be

written as:
F(v)= 4 il (¢)[cos(2mvc/N)— jsin(2moc/N)] = Re(v) + jIm(v)
N &

The F(v) is also complex, with the real part corresponding to the cosine ferms, and the
imaginary part corresponding fo the sine terms. If we represent a complex spectral
component by F(v) - Re(v)+Im(v), where Re(v) is the real part and Im(v) is the
imaginary part, then we can define the magnitude and phase of a complex spectral

component as:

Magnitude = F(2) | = y[Re(0)P-+Im ()]

and

Phase = &(v)=tan "

Re(v)

Irn(zr)l
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Figure 76. Magnitude and phase of sinusoidal waves.

The magnitude of a sinusoid is simply its peak value, and the phase determines

where the origin is, or where the sinusoid starts (see Figure 76). The basis functions are

simply sinusoids at varying frequencies, the complex exponential notation, e’*, is simply

a mathematical notationaltool to make it easier to write and manipulate the equations.

In Figure 77, we see that a complex number can be expressed in rectangular form,

described by the real and imaginary parts; or in exponential form, by the magnitude

and phase. A memory aid for evaluating e’® is given in Figure 78.
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FIGURE 77. Complex numbers
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Figure 78. A memory aid for evaluating &. The angle is measured from the real axis

counterclockwise.

Example 4
Given I(c) = [3.2,2,1], corresponding to the brightness values of one row of a digital

image. Find F(v) in both rectangular and exponential forms.
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N-1
) _i —j2xoc/N
Fo)=— ;f(f}e j

3 3
_l —j?_rmcr‘-izl Ozl =l e
F(0) =~ zﬂ: I(c)e = Zﬂ: (e’ = 110) + I+ 1) + AN = [3+2+2+1] =2

3
- 1 —j2w(1)c/4 _
= E 'Ic)e

=0

‘143:3 +2e72 4 e +1e'f*3“| —[B+2—j)+2(- 1)+1(,r)]——[1 il

F(2)=—~ Zl(c} - 2w/ _ 4[3e +2e7F 4261 +1e"3"] S[B+(=2)+2+(- 1)]_—

3
- No—i2x@crs _ a0 o _jx32 o —jix o] _ 1 ey a1 .
F(s)_4§ Ic)e _4[3e +26772 4 2677 4 1e ]_4[3+2;+z( D+1(-)]={1+]]

=0

Therefore, we have.
1 PR Ol | p
F — 2’— 1— r 1
(v) [ 4[ )]2 4[ +}]‘

Next, put these into the exponential form.

F(0)=2=2+0j= M=+22+0% =2;0=tan"' %lzo
_Y
F(l)——ll flem-tjs M= JV 1/) =~ 0.35;0 = tan™! /4 — /4
4 4 /4 4 B }/‘i
F(2)=1/2=1/2+0j= M =[(1/27 + 0% —0.5;0 = tan"" 1/%]:
1}/
a1 1. N 1\ ~ _ .. 1|/a
F@)=l1+jl=4+,j=M= (,,41) (/) ~0.35;0 = tan /lfi — /4

Therefore, we have.

F(v)=[2,0.35¢"*,0.5,0.35¢/"%]
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+ The Two-Dimensional Discrete Fourier Transform

Extending the DFT to the 2D case for images, we can decompose an image into a
weighted sum of 2D sinusoidal ferms. The physical interpretation of a 2D sinusoid is
shown in Figure 79. The sinusoid that is not directly on the u- or v-axis can be broken
down into separate frequency terms by finding the period along each axis. Assuming a

square NxN image, the equation for the 2D DFT is.

1 N-1 N-1
F(u,v}:—g E I(r, c)e 12+ wr+o)N
N
r=0 c=0
The Fourier transform equation as.
N-1 N-1
2
F(;;,U)=%ZZI(LC) cos %(H?’—l—t*ﬁ‘) — jsin %(w—l—vc}]
r=0 c=0

The F(u,v) is also complex, with the real part corresponding to the cosine terms, and the
imaginary part corresponding to the sine terms. If we represent a complex spectral
component by F(uv) - Re(u,v) + jim(uv), where Re(u,v) is the real part and Im(u,v) is

the imaginary part, then the magnitude and phase of a complex spectral component can
be defined as.

Magnitude=|F(u,v)|= \/[Re{u, o)* + [Im(u, v)

and

Phase = &(,v) = tan "’

Im(u,v)
Re(u,v)

1/v = period

Figure 79. Physical inferpretation of a two-dimensional sinusoid. The wavelength of the
sinusoid is: A-+122uv, where (u,v) are the frequencies along (r.c). andthe periods are

1/uand 1)v.
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Figure 80. Fourier fransform phase and magnitude image information. (a) Original
image, (b) phase only image, (c) contrast enhanced version of image (b) to show detail,
(d) magnitude only image after histogram equalization. The phase only image is created
by taking a Fourier transform, setting all the magnitudes equal to 1, and performing an
inverse Fourier transform. The magnitude only image is created by taking a Fourier
transform, setting the phase fo a fixed value, such as O, then performing an inverse

Fourier transform

Figure 80 shows images recovered with the phase or magnitude only. With phase only,
we lose the relative magnitudes, which resulfs in a loss of contrast (see Figure 80b), but
we retain the relafive placement of objects—in other words, the phase data contains
information about where objects are in an image. With the magnitude only image, we
retain the contrast, but lose all the important detail which is essential fo image
understanding. After the fransform if performed, to get our original image back, we
need to apply the inverse transform. The inverse 2D DFT is given by

N-1 N-1

1 i2m(ur+oc)/]
F '[F(u,v)]= l(r,c):EZZp(u’v)e;Z ( WN

u=0 v=0

The F-![ | notation represents the inverse transform.
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One important property of the Fourier transform is called separability, which means
that the 2D basis image can be decomposed into two product terms, where each term
depends only on the rows or columns. Also, if the basis images are separable, then the
2D result can be found by successive application of the 1D transform. This is illustrated
by first separating the basis image term (also called the fransform kernel) info a
product, as follows.

e j2m(ur+oc)/N __ e j2mur/N e j2moc/N

Fourier transform equation in the following form.

1 N-1 . N-1
Fu,v)= _EZ( ¢~ 127ur/N ) Zﬂr' c)e 12x/N

r=0 =0

% Fourier Transform Properties

1. Linearity

The Fourier transform is a linear operator and is shown by the following equations.
Flaly(r,c)+bly(r,c)|= aF(u,v) + bF(u,v)
aly(r,c)+bly(r,c)=F! [aF(u,v) + bF(u,v)]

where a and b are constants.

2. Convolution

Convolution in one domain is the equivalent of multiplication in the other domain; this

is what allows us to perform filtering in the spatial domain with convolution masks.
Using * to denote the convolution operation, and F[ | for the forward Fourier transform,

and F![] for the inverse Fourier transform, these equations define this property.

F[Ii(r,c)*I(r,c)]= F(u,v)K(u,v)
Ii(r,c)* I(r,c)= F'[F(u,v)E(u,v)]
F[I,(r,c)ly(r,c)]= F(u,v)* K(u,v)
Li(r,c)lx(r,¢) = F'[F(u,v)* F(u,v)]

3. Translation
The translation property of the Fourier transform is given by the following

equations.
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FlI(r—r,,c—c,)] = F(u,v)e 2o +0)/N

,‘\..

I(r—r,,c—c,)=F ]iF(_zz,v)t’ j2m(urg +vcg )/ |

These equations fell us that if the image is moved, the resulting Fourier spectrum

undergoes a phase shift, but the magnitude of the spectrum remains the same.

4. Modulation

The modulation property, also called the frequency translation property, is given by.
F|\I(r,c)e* " rw':""\.] =F(u—u,,v—1)
i2m (upr+moc)/N ]
I(r,c)e! ™0+l — F 1[F(n— u,,0—10p)

If the image is multiplied by a complex exponential (remember this is really a form of a
sinusoid), ifs corresponding spectrum is shifted. This property is illustrated in Figure 81.

(b)

Fourier spectrum (magnitude|

nultiplied by cosine Fourier spectrum (magnitude)

Shiftad spectrum

Figure 81. Modulation property results in frequency shift. (a) Original image, (b)
magnitude of Fourier spectrum of (a) represented as an image, (c) original image
multiplied by a vertical cosine wave at a relative frequency of 16 (16 cycles perimage),
(d) magnitude of Fourier spectrum of (c) represented as an image. Note that the
spectrum has been shifted by 16 above and below the origin (in these spectralimages

the origin is in the center of the image).
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5. Rotation
The rotation property is best illustrated by using polar coordinates:

r=xcos(f), c = x sin(f)
u=wcos(¢), v=wsin(¢)

The Fourier transform pair I(rc) and F(u,v) become I(x. 0) and F(w, ). respectively,

and we can write a Fourier transform pair to illustrate the rotation property as follows.

I(x,0 +0,)=F ’[F(w, d)+90)]
F[I(x,0+8,) | = F(w, ¢+60)

If the image is rotated by an angle 0°, then F(uv)is rotated by the same angle, and vice

versa.

6. Periodicity
The DFT is periodic with period N, for an NxN image. This means.

F(u,v)=F(u+N,v)=F(u,v+N)=F(u+N,v+N)...

This is shown in Figure 82a. This figure shows nine periods, but the theoretical
implication is that it continues in all directions to infinity. This property defines the
implied symmetry in the discrefe Fourier spectrum, and allows us to easily shift the
spectrum so that the DC term, F(0,0), originally in the upper left corner, is in the center

of the image.
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Figure 82. Periodicity and discrete Fourier transform symmetry. The periodicity
property of the discrete Fourier spectrum allows us to easily shift the spectrum so that
the DC term, F(0.,0), appears in the center.The shaded area represents the origin af (0,0)
(note. at (1,1) in Matlab).(a) Implied symmetry with origin in upper-left corner.Each
NxN block represents all the transform coefficients, and is repeated infinitfely in all
directions.(b) Increasing frequency in direction of arrows.(c) Periodic spectrum, with
quadrants labeled A, B, C, D.(d) Spectrum shifted to center Frequency increases in all

directions as we move away from the origin.

7. Sampling and Aliasing

Sampling theory in digifal signal processing that states that we must sample a
continuous signal with a sampling rate that is least twice the highest frequency
contained in the signal. This sampling rate is called the Nyquist rate. If the Nyquist rate
is violated, aliasing occurs. Aliasing occurs when the continuous signal is sampled at a
rate less than twice the highest frequency in the signaland appears as false information
in the high frequencies.

Figure 83 illustrates the concept of aliasing. For simplicity, we will look at two periods
and only consider the frequencies in the horizontal direction. By applying the
periodicity of the Fourier transform, which says it is periodic with a period of NxN for
an NxN image, if there is information in the signal at frequencies greater than N/2,
overlap will occur. This overlap causes the aliasing, which manifests ifself as false
information in the high frequencies. In Figure 83a, we show the spectrum of two
periods where the Nyquist criteria have been met. Figure 83b shows what happens if
the original signal actually contains frequencies greater than N/2 in the horizontal
direction adjacent periods overlap and aliasing occurs. Note that one method to avoid
aliasing is to band limit the original signal with a low-pass filter so that it does not

contain any frequencies above the Nyquist frequency.

Prof.Dr. Taghreed Abdulhameed Naji Page 103



Discrete Transforms Lecture 4

R ———

(b)

'y
2
A 4

Overlap area,

' Y

>N

A\ J

Figure 83. Spectral aliasing. (a) In two periods of the Fourier spectrum of an NxN image,
sampled by the Nyquist rate, no frequencies in the signal are greater than N/2.(b) Two
periods of the Fourier spectrum of an NxN image, sampled by a rate less than the
Nyquist rate. The period implied is still NxN, from —N/2 to N/2, but there are actual
frequencies in the original image greater than N/2.In this case, the periods overlap
causing false frequency information in the high frequencies. Since one period overlaps

the next period, we get confributions from both, which creates false information.

Displaying the Discrete Fourier Spectrum

a spectral image is actually the magnifude data that has been remapped in a way that
makes visualization easier. For displaying the magnitude of the Fourier spectrum, we
usually shift the origin to the center. Applying the periodicity property and the
modulation property with up = vo = N/2, we obtain.

I(rfc)ejZ:fr(Nr/2+Nc;’2}/N

— I(r! C)t?j?r(?’-i'f)

= I(r,c)(-1)"*

We can shift the spectrum by N/2 by mulfiplying the original image by (—1)(r+c), which

will shift the origin fo the center of the image (shown in Figure 82), if is easier to
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understand the spectral information with the origin in the cenfer and frequency
increasing from the center out toward the edges.

The actual dynamic range of the Fourier spectrum is much greater than the 256
brightness levels (8-bits) available per color band with most image display devices.
When we remap it to 256 levels, we can only see the largest values. We can apply
contrast enhancement techniques to show more information, but we are still missing
much of the visual information due to the limited dynamic range . To take advantage of
the human visual system’s response fo brightness, we can greatly enhance the visual

information available by displaying the following log transform of the spectrum:

log(u,v) = klogo[1+ | F(u,v)| ]

The log function compresses the data, and the scaling factor k remaps the data to the
0—255 range. Figure 84 shows the comparison of displaying the magnifude of the
spectrum by direct remapping and contrast enhancement versus the log remap method.

The log remap method shows much more information visually.

We learned that a function that ends abruptly in one domain results in rippling in the
other domain that corresponds to the edges. Figure 85 displays images of simple
geometric shapes and their corresponding spectral images. In addition fo the magnitude
information, the phase information is available in the Fourier spectrum. This
information is not displayed as an image, but we have found if useful to illustrate phase
changes as illustrated in franslation property results in a phase shift of the spectrum.

The phase information has a range of 0—360°, or 0—21 radians.
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(a) DIRECT REMAP (b)  CONTRAST ENHANCED (o) LOG REMAP

(d)
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Figure 84. Displaying DFT spectrum with various remap methods. (a) Fourier

magnitude spectrum of cam pgm, direct remap to byte, (b) contrast-enhanced version
of (a), (c) log remapped version of cam. pgm DFT spectrum, (d) Fourier magnitude
spectrum of an ellipse, direct remap to byte, (e) contrast enhanced version of (d), (f) log

remapped version of an ellipse DFT spectrum,
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(a) IMAGE (b} SPECTRUM

Figure 85. Images of simple geometric shapes and their Fourier spectral images. (a) An
image of square, (b) the log remapped spectrum of the square, (c) a small rectangle, (d)
the log remapped spectrum of the small rectangle, (e) animage of a circle, (f) the log

remapped spectrum of the circle image

Discrete Cosine Transform

The cosine transform, like the Fourier transform, uses sinusoidal basis functions. The
difference is that the cosine transform basis functions are not complex; they use only
cosine and not sine functions. Since this transform uses only the cosine function, it can
be calculated using only real arithmetic, instead of complex arithmetic as the DFT
requires. The cosine transform is often used in image compression, as the Joint

Photographers Expert Group (JPEG) image compression method.
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