Lecture 5
Modeling & Simulation
Dr. Auras Khalid

Auto-correlation test

The tests for autocorrelation are concerned with the dependence between
numbers in a sequence. The list of the 30 numbers below (as an example)
appears to have the effect that every 5th number has a very large value. If this is
a regular pattern, we can't really say the sequence is random. The test to be
described below requires the computation of the autocorrelation between every
[ numbers (I is also known as the lag), starting with the ith number. Thus, the
autocorrelation p;; between the following numbers would be of interest:
Ri, Riyy, Rixors - Rivemsn)r-
Then compute the value M (the largest integer to be found) such that:
i+ (M+ 1)l < N ,where N is the total number of values in the sequence, i is

the beginning value. Since a nonzero autocorrelation implies a lack of
independence, the following two tailed test is appropriate:

Hy: py=0

Hi: py#0
For large values of M, the distribution of the estimator of p;;, denoted p,;, is
approximately normal if the wvalues R;, Riy;, Riyo1, -, Ripqu+1y are

uncorrelated. Then the test statistic can be formed as follows:
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which is distributed normally with a mean of zero and a variance of 1, under the
assumption of independence, for large M.
The formula for p;; in a slightly different form, and the standard deviation of

the estimator, o5~ are given as follows:
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After computing Z,, do not reject the null hypothesis of independence if
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<Z, < ZZ—“ where «a is the level of significance and % Is obtained from a
given table.

Example

0.12 |001 |0.23 |0.28 (089 |031 |0.64 [0.28 |0.83 |0.93

099 015 |033 |035 (091 (041 |0.60 |0.27 |0.75 [0.88

068 [049 |0.05 |043 |09 (058 |[0.19 |[0.36 |0.69 |0.87

Test whether the 3rd, 8", 13™ and so on, numbers in the sequence at the table
above are auto correlated using @ = 0.05. Here, i = 3 (beginning with the
third number), [ =5 (every five numbers), N = 30 (30 numbers in the
sequence), thus compute M = 4 (largest integer suchthat 3 + (M +1)5 <
30). Then,

M
pu = Z Ritki Ri+(k+1)l] —0.25
k=0
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M+1
Iy 4+L1 [(0.23)(0.28) + (0.28)(0.33) + (0.33)(0.27) + (0.27)(0.05)

+(0.05)(0.36)] — 0.25 = —0.1945

And
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Then, the test statistic assumes the value

_ Py —0.1945
o5, 0.1280

Z, =—-1516

Now, the critical value from given table is
ZO.OZS == 1.96
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Therefore, the hypothesis of independence cannot be rejected on the basis of
this test.

Queuing Theory
Queuing theory is the mathematical study of waiting lines, or queues.

Simulation of a Single-Server Queuing System

Here we introduce a single-server queuing model, and how to simulate it. A
good example to think about for intuition is an ATM machine. We view the
machine as a “server” that serves customers one at a time. The customers arrive
randomly over time and wait in a queue (line), and upon beginning service,

each customer spends a random amount of time in service before departing.

1.1  FIFO single-server model

There is one server (clerk, machine), behind which forms a queue (line) for arriving customers
to wait in. The n" customer is denoted by C,, and arrives at time t,,, where

D=th<ti<to< - <ty < -

with lim,,_. t,, = oo.
T, def toi1 — t, denotes the n'* interarrival time, the length of time between arrival of the

successive customers €, and C,, 1.

C', requires a service time off length S,,, which is the length of time C), spends in service
with the server. We assume that the server processes service times at rate 1, meaning that, for
example, if C), enters service now with S,, = 6, then 4 units of time later there are 2 units of
service time remaining to process. Dy, called the delay of C,,, denotes the length of time that
C,, waits in the queue (line) before entering service; it €, arrives finding the system empty, then
C', enters service immediately and so D, = 0. Summarizing: C,, arrives at time £,, waits in
the queue for D), units of time, then spends S, units of time with the server before departing
at time tﬁ = t, + D, + S,, the n'* departure time. We are inherently assuming here that
customers join the end of the queue upon arrival an enter service one at a time, and this is
known as first-in-first-out (FIFO). But other service disciplines are useful in other applications,
such as in computer processing, where processor sharing (PS) might be employed: If there are
k> 1 “jobs” in the system, they all are in service together, but each is served at rate 1/k. We
will discuss disciplines later on, so for now we assume FIFO.

FIFO delay has a nice recursive property:

Dn-l—l = {Dn + S‘H - Tn)+-. n =0,

Consider a single-server queuing system
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A departing customer

Server

Customer in service

Customers in queue

A single-server queuing system

An arriving customer

In which,

1. The inter arrival times A,, A,, A5, ..., are independent identically distributed
(iid) random variables.
2. The service times S;, S,, S5, ..., of the successive customers are (iid) random

variables that are independent of the interarrival times.
Note
A customer who arrives and finds the server:

1. Idle enters service immediately.

2. Busy joins the end of a single-queue.

e The server chooses a customer from the queue in a first-in, first-out (FIFO)
manner.

e The simulation will begin in the empty and idle state.

e The arrival of the first customer occurs after the first inter arrival time A;,

rather than at time 0.

Suppose that we wish to simulate this system until a fixed number n of
customers have completed their delays in queue (i.e. the nth customer enters

service).
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To measure the performance of this system, we will estimates (evaluate) three

quantities:

1. The expected average delay in queue of the n customers completing their
delays during the simulation.
n
n 1 D;
average delay = d(n) = (21_71—11)
Where D; is the delay in service for the ith customers, n is the number of

customers enters service. Obviously, D; = 0 according to above note. Also,

system providing very good service if many delays were zero.

2. The expected average number of customers in queue (not being served). Let
Q(t) represents the number of customers in queue at time t. T(n) be the time

required to observe n delays in queue. Therefore,

[ o) dt

average number of customers in queue = G(n) = Tt

area under Q(t) curve

Time
Note

Average number of customers in queue also known as average length of queue.
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The expected proportion of time during the simulation (from 0 to T(n)) that the

server is busy or the expected utilization of the server.

First we define the busy function by

B(t) = {1 if server busy at time t
0 if server idle at time t

Thus

T
Jo ) B(t)dt _ area under B(t)

The busy time for server = ii(n) = = p—

. . t; +s; server idle
Departure time of it" customer = d; = { b
d;_1 +s; sever busy

where ¢; is the arrival time of i** customer

s; is the service time of i*" customer

_ {di -t if serveridle
Si d; —d;_, if sever busy
Also, The delay of it"*customer= D; = {d"‘l — Ul Server. busy
0 sever idle

(Z?:l Dl)

Thus the average delay d(n) =



