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Lecture 4

THEOREM 7 L'Hopital’s Rule (Stronger Form)

Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open inter-
val / containing a, and that g'(x) # Oon /ifx # a. Then

&) = i)

}1'1}, 2(x) s g(x)’

assuming that the limit on the right side exists.

EXAMPLE 1 Using LUHopital’s Rule
(@) lim 3x —tsinx o lcosx -5
x—0 s x=0

1

() Lim V1 +x.\‘ - 1 = 2V1 + x
x—=0 1

1
— -
x=0 2

Sometimes after differentiation, the new numerator and denominator both equal zero at
x = a,as we see in Example 2. In these cases, we apply a stronger form of I’'Hopital’s Rule.

EXAMPLE 2 Applying the Stronger Form of UHGpital's Rule

V1i+x—1—x/2 0

a) lim =
l: } x—+i IZ 0
€V O etV T S
—;1_13;1} 5 Still 5 differentiate again.
(M x) R 1 0 . .
= lim = — = Mot = limit i= found.
x—0 2 = 0
. X — sInXx 0
(b) lim X —310% .
x—+0 b o
. l — cosx )
= lln}}T Stil]%
e ¥ 0
_ 1.- sinx g .I]'f_}
b 6x "o
. COSX 1 [
= 111_13':} % =% Nr_wtl:—:_, limit s found. [ |

EXAMPLE 3 Incorrectly Applying the Stronger Form of UHopital's Rule

.1 — cosx 0
lim ————— -
x—0 x + x -

- sinx 0 oo
= Ill_% T+ 2= 1 _ 0 Nr_ﬁtﬁ_ limit 15 found.
Up to now the calculation is correct, but if we continue to differentiate in an attempt to ap-
ply I'Hopitals Rule once more, we get
.1 — cosx . sinx
lim ————— = lim ———=—
x—0 x + x
which is wrong. I’Hopital’s Rule can only be applied to limits which give indeterminate
forms, and 0/1 is not an indeterminate form. ]
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Continuity

Continuity Test
A function f(x) is continuous at x = ¢ if and only if it meets the following three

conditions.
1. f(c)exists (c lies in the domain of f)
2. limy—. f(x) exists (f has a limit as x — ¢)

3. limy—. f(x) = f(c) (the limit equals the function value)

THEOREM 9 Properties of Continuous Functions

If the functions f and g are continuous at x = ¢, then the following combinations
are continuous at x = c.

1. Sums: f+g

2. Differences: f—g

3. Products: f-g

4. Constant multiples: k- f., for any number k&

5. Quotients: f/g provided g(c) # 0

6. Powers: [, provided it is defined on an open interval

containing ¢, where r and s are integers

Example Which of the following functions are continuous on the interval (0, 0o):

3 2 7
+r-1 r 43 Vet +1
r)= —— T)= . hir)= ———,  ki{zr)=|sinz|
= @)= M@= k)=l
Since f(x) is a rational function, it is continuous everywhere except at x = —2, Therefore it is continuous

on the interval (0, o).

By Theorem 2 and the continuity of polynomials and trigonometric functions, g(x) is continuous except
where cosr = (. Since cosx =0 for r = 3, q'?“ ..., we have g(r) is not continuous on (0, 0o).

By theorems 2 and 3, h(z) is continuous everywhere except at ¥ = 2. In fact z = 2 is not in the domain
of this function. Hence the function is not continuous on the interval ((), 0c).

Since k(r) = |sinz| = F(G(x)), where G(z) = sinz and F(z) = |z|, we have that k(r) is continuous
everywhere on its domain since both F' and (¢ are both continuous everywhere on their domains. Its
not difficult to see that the domain of k is all real numbers, hence k is continuous everywhere. (What

does its graph look like?)
Example Which of the following functions have a removable discontinuity at = = 27:

_z“+::—1 . V4l

r—2 z) = -2

f(z)

lim, ., f(r) does not exist, since limz — 2(z* + x — 1) = 9 and limx — 2(x — 2) = 0. Therefore the
discontinuity is not removable.

lim, 3 h{z) does not exist, since lim,_a(v/z? + 1) = \/E'i]l and limz — 2(r — 2) = . Therefore the
discontinuity is not removable.
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Derivatives of functions

DEFINITION Derivative Function

The derivative of the function f(x) with respect to the variable x is the function
f" whose value at x is

f) = fim 1) = 1y

provided the limit exists.

EXAMPLE 1 Applying the Definition

X

Differentiate f(x) = F—

x
x — 1

Solution Here we have f(x) =

and

h
f(x + h) Z(x(_t:;f)l,so

fx + h) — f(x)

r :1-
£ kl—rI}] h
x + h _ x
x+h—1 x—1
B h
L G AN ) Xt h =)y i
h—sn h x+h—1)x—1) b d bd

— lim ~ —h

hs0h (x + B — D)(x — 1)
—1 —1

g 1- — .
;,l_rf}](x+h—1)(x—l) (x — 1)? -
RULE 1 Derivative of a Constant Function
If f has the constant value f(x) = ¢, then
adf _ d
ax a9 =0

RULE 2 Power Rule for Positive Integers
If n 1s a positive integer, then
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RULE 3 Constant Multiple Rule
It u is a differentiable function of x, and ¢ is a constant, then

d (cu) = c@
dx dx’

RULE 4 Derivative Sum Rule

If « and v are differentiable functions of x, then their sum # + v is differentiable
at every point where # and v are both differentiable. At such points,

d _du  dv
E(H—Fv)—dx—Fdx.

RULE 5 Derivative Product Rule
If # and v are differentiable at x, then so is their product uv. and

RULE 6 Derivative Quotient Rule

If # and v are differentiable at x and if v(x) # 0. then the quotient u/v is differ-
entiable at x, and

dv

Ldu _dv
i(g) _ _ dx dx
dx \v 2 :

RULE 7 Power Rule for Negative Integers
If 7 1s a negative integer and x # 0, then

n—1

d  ny _
a(x}—nx

Tangent to the curve
Point Slope Equation of the tangent: y — y, = m(x — x,)

Example

Find an equation for the tangent to the curve

2 .
Yy =X+ % atthe point (1, 3)
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Solution  The slope of the curve is

dy ¢ d (1 1 2
E_E(x)_'_za(f —]+2—F —I—F.

The slope atx = 1 is

dv
a'} ={]—%] =1—-2=—1.
x=1 X Jx=1
The line through (1, 3) with slope m = —1 is

y—3= (—1)x—1) Point-slope equation
y=—x+1+3
y=—x+4. m

Second- and Higher-Order Derivatives

If y = f(x) is a differentiable function, then its derivative f'(x) is also a function. If f is
also differentiable, then we can differentiate f’ to get a new function of x denoted by f".
So f" = (f")". The function f" is called the second derivative of f because it is the deriv-
ative of the first derivative. Notationally,

d* dy dy'
f@ == ( )) =2 =y = D) = DL ().

dx

The symbol D? means the operation of differentiation is performed twice.
If y = x®. then y" = 6x° and we have

y' = 1:3.; = %((}xs) = 30x*.

Thus D?‘(xﬁ) = 30x*.
If y” is differentiable, its derivative, y" = dy”/dx = d’y/dx’ is the third derivative
of y with respect to x. The names continue as you imagine, with

y» = d%y‘”‘” = ny = D"y
EXAMPLE 14 Finding Higher Derivatives
The first four derivatives of y = x> — 3x? + 2 are
First derivative: y = 3x? — 6x
Second derivative: " = 6x — 6

Third derivative: y' =6
Fourth derivative: ym = 0.

The function has derivatives of all orders, the fifth and later derivatives all being zero.
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DEFINITION Velocity
Velocity (instantaneous velocity) is the derivative of position with respect to
time. If a body’s position at time fis s = f(¢). then the body’s velocity at time  is

ds _ o ft+ M) — f(1)
df B Ai—0 Af .

v(t) =

DEFINITION Speed

Speed is the absolute value of velocity.

ds

dt

Speed = |v(t)| =

DEFINITIONS Acceleration, Jerk

Acceleration is the derivative of velocity with respect to time. If a body’s posi-
tion at time ¢ is s = f(t), then the body’s acceleration at time 7 is

_dv _ ds
alt) = dt g2

Jerk is the derivative of acceleration with respect to time:
() — da _ d’s

The derivative of the sine function is the cosine function:

d , . B
E(smx) = cosXx.

EXAMPLE 1 Derivatives Involving the Sine

(a) y = x? — sinx:

d
Ey = 2x — %(sinx} Difference Rule
= 2x — CcosX.
(b) y = x?sinx:
d'
d_i = xzi (sin x) + 2xsinx Product Rule
= x?cosx + 2xsinx.
sin x
() y=—~5:
d . .
dy x-a(smx) — smnx-1
— = uotient Rule
dx x2 Q

_ XCOSX — sinx

x2.

-
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The derivative of the cosine function is the negative of the sine function:

% (cosx) = —sinx

EXAMPLE 2  Derivatives Involving the Cosine

(a) vy = 5x + cosx:

dy
(ix' = %(5:{} + d;‘.;' (C—OSI) Sum Rule
= 5 — sinx.
(b) y = sinxcosx:
d
d_i = sinxa(cosx) + cosx%(sinx} Product Rule
= sinx(—sinx) + cosx(cosx)
= cos’x — sin®x.
_ cosXx
© V=7 "G
dv (l — sinx)%(cosx) — cosx%(] — sinx)
agx = (1 — sin e Quotient Rule
_ (1 — sinx)(—sinx) — cosx(0 — cosx)
(1 — sinx)?
1 — sinx L )
= ( - )2 sin“x + cos~x = 1
— sInXx
SR S =
I — sinx’

EXAMPLE 3 Motion on a Spring

A body hanging from a spring (Figure 3.24) is stretched 5 units beyond its rest position
and released at time # = 0 to bob up and down. Its position at any later time 7 is

§ = S5cost.

What are its velocity and acceleration at time #?

Solution We have

Position: s = 5cost
. ds d .
Velocity v = di (5 cost) Ssint
. duv d ,
Acceleration: a=-_-= —,r{—S sinf) = —5cost.
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Rest
position

Positon at
r=0

EXAMPLE 4  Jerk

The jerk of the simple harmonic motion in Example 3 is

. da

_d. — s
_E_dt( 5cost) = 5sint.

It has its greatest magnitude when sin# = =1, not at the extremes of the displacement but
at the rest position, where the acceleration changes direction and sign. |

Derivatives of the Other Basic Trigonometric Functions
Because sin x and cos x are differentiable functions of x, the related functions

sinx = Co5X secx = _1 and CSCXx = 1
COS X * sinx ’ COS X ° sin x

tanx =

Derivatives of the Other Trigonometric Functions

dL:rc (tanx) = sec’x

d (secx) = secxtanx
dx

%(cotx) = —cscTx

d (cscx) = —cscxcotx
dx

EXAMPLE 5
Find d(tan x)/dx.

Solution

d (. . d
. cc:-sx—(smx) — smx—(cosx)
d(tanx)— d (sinx ) dx dx Quotient Rul
Y —_ T —_— Lotlen uie
dx dx \ cosx cosZ x -
cosxcosx — sinx (—sinx)
cos® x
_ cos?x + sin’x
cos? x
__ 1 _ 2
= 5 — = sec”x [ |
cos™ X
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EXAMPLE 6
Find y” if y = secx.

Solution
y = secx
y' = secxtanx
n d
v = (sec x tan x)
_ d d
= secx dx (tan x) =+ tan xa (sec x) Product Rule
= sec x(sec?x) + tanx(sec x tan x)
= sec’x + secxtan®x ]
EXAMPLE 7 Finding a Trigonometric Limit
V2 + secx V2 + seco V2 + 1 V3 =
lim = = = = —WV3 m
x—0 cos( — tanx) cos(m — tan 0) cos(w — 0) —1

THEOREM 3 The Chain Rule
If f(u) is differentiable at the point # = g(x) and g(x) is differentiable at x. then
the composite function (f = g)(x) = f(g(x)) is differentiable at x, and

(f = g)'(x) = fllgx))-g'(x).
In Leibniz’s notation, if y = f(u) and u = g(x), then

& _ Ay du

dx ~ du dx’

where dy/du is evaluated atu = g(x).

EXAMPLE 2

The function
y=0ox* +6x? +1=3x%+ 1)

is the composite of y = u? and u = 3x? + 1. Calculating derivatives, we see that

4y du
du dx

=2(3x% + 1)-6x
= 36x° + 12x.

= 2u-6x

Calculating the derivative from the expanded formula, we get

dy _ d (g a 2
— = (ot + ex? + 1)
= 36x° + 12x.
Once again,
W odu _ W

du dx _ dx- =
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EXAMPLE 3  Applying the Chain Rule

An object moves along the x-axis so that its position at any time f = 0 is given by
x(#) = cos(#? + 1). Find the velocity of the object as a function of .

Solution  We know that the velocity is dx/dt. In this instance, x 1s a composite function:

x = cos(u)and u = t* + 1. We have
dx
du
du
dt

= —sin(u) x = coslu)
= 2t. u=1*+1

By the Chain Rule,

dx _ dx du
dt  du dt
= —sin(u) -2t %cvaluatcd at u
= —sin(t* + 1)-2¢
= —2fsin(® + 1). m
EXAMPLE 14  Finding d?y/dx® for a Parametrized Curve

Find d”y/dx? as a function of tifx =t — %, y = — .

Solution
1. Express y' = dy/dx in terms of t.

, _dy _dy/dt 1 — 3¢
Y T ax T axjar T 1 — 2

2. Differentiate y' with respect to t.

dy' _d (1 —3t2\ _2— 6t+ 6t
dt — dt \|1 — 2t (1 — 21)2
3. Divide dy'/dt by dx/dt.
d’y _dy'fdt (2 =6t +61)/(1 =20 2 — 6 + 612
dx®  dx/dr 1 — 21 T = 28

Quotient Rule

Eq. (3) |

Implicit Differentiation

1. Differentiate both sides of the equation with respect to x, treating y as a differ-
entiable function of x.

2. Collect the terms with dy/dx on one side of the equation.
3. Solve for dy/dx.

THEOREM 8 A Formula for Implicit Differentiation
Suppose that F(x, y) is differentiable and that the equation F(x, y) = 0 defines y
as a differentiable function of x. Then at any point where F, # 0,

& __E

dx F-
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EXAMPLE 3
Find dy/dx if y* = x* + sinxy (Figure 3.39).

Differentiating Implicitly

Solution

y? = x? + sinxy

d%'c(yz) = (%(xz) + %(sinxy}

Differentiate both sides with
respect to x . ..

2x + (cosxy) %(xy)

.. treating y as a function of
x and using the Chain Rule.

dy
2ya 2x + (cosxy)|y + X

d d
2yd—']; — (cosxy) (x d—i) = 2x + (cosxy)y

Collect terms with dy/dx. ..

d
(2y — xcosxy}d—i = 2x + ycosxy

. and factor out dy/dx.

d 2x + ycos
i = Y iy Solve for dy/dx by dividing.

dx 2y — xcosxy

EXAMPLE 5
Use Theorem 8§ to find dy/dx if y* — x? —

Implicit Differentiation

sinxy = 0.

Solution Take F(x,y) = y* — x? — sinxy. Then
dyv  Fy = —2x — ycosxy
dx = F, 2y — xcosxy
2x + ycosxy

2y — xcosxy

R



