Lecture 5 Integrals & Methods of Integration

Complex Numbers

Dr. Auras Khalid Hameed

Strategy for Evaluating { sin™x cos x dx

(a) If the power of cosine is odd (n = 2& + 1), save one cosine factor and use
z
cos

x = 1 — sin’x to express the remaining factors in terms of sine:

j sin"xcos My dx = J sin™x (cos’x) cos x dx
= J sinTx {1 — sinﬂx}l‘cm xdx
Then substitute v = sin x

(b) If the power of sine is odd (m = 2k + 1), save one sine factor and use

sinx = 1 — cos®x to express the remaining factors in terms of cosine:

j sin™* 'y cos"x oy = [ (sin’x)* cos"x sin x dx
-

= [ (1 — cos’xifcos"x sin x dx
-

Then substitute v = cos x. [Mote that if the powers of both sine and cosine are
odd, either (a) or (b) can be used.]

(c) If the powers of both sine and cosine are even, use the half-angle identities

2

sin®x = 3(1 — cos 2x) cos’x =3(1 + cos 2x)

It is sometimes helpful to use the identity

sin x cos x = 1sin 2x

Strategy for Evaluating { tan®x secy dx

(a) If the power of secant is even (n = 2k, &k = Z), save a factor of sec®x and use
sec’y = 1 + tan’x to express the remaining factors in terms of tan x:

[ tanx secix dx = J‘ tan™x (sec®x) ' secix dx

=J tan™x (1 + tan®x)* "seciyx dyx

Then substitute » = tan x.

(b) If the power of tangent is odd (m = 24& + 1), save a factor of sec x tan x and
use tan®y = sec?

x — 1 to express the remaining factors in terms of sec x:

J tan®* 'y secx dy = j (tan®x)* sec™ 'x sec x tan x dx

= J (sec’y — 1}¥sec™ 'x sec x tan x odx

Then substitute v = sec x.




EI EvaluateJ cos x dx.

SOLUTION Simply substituting v = cos xisn't helpful, since then du = —sin x dv. In
order to integrate powers of cosine, we would need an extra sin x factor. Similarly, a
power of sine would require an extra cos x factor. Thus here we can separate one cosine
factor and convert the remaining cos’x factor to an expression involving sine using the

identity sin’x + cos®x = 1:
i _ 32 _ . 2
cos'x = cos'x - cos x = (1 — sin“x) cos x

We can then evaluate the integral by substituting o = sin x, so du = cos x dx and

2

J- cos’y dy = J‘ccksx * cos X dx = [{l — sin’x) cos x dx

= J‘llfl —du=uv— 3"+ C

= sin x — 3sin’r + [ |
M ETIT¥#] Find J sin”x cos’x di.

SOLUTION We could convert cos®xto | — sin’x, but we would be left with an expression

in terms of sin x with no extra cos x factor. Instead, we separate a single sine factor and
. ) a i a -
rewrite the remaining sin x factor in terms of cos x:

Yxsinx

sin’x cos’x = (sin’x)* cos’xsin x = (1 — cos’x)® cos
Substituting ¢ = cos x, we have du = —sin x dx and so

J sin"x cos’r dx = [ {sinzx]zcnszxsin xdx
J

2

= [ (1 — cos’x)* cos’r sin x dx

= [{l — Vot (—du) = —[ (w? — 2u" + ") du
u' o
_—(T—z 5 +7)+c

L T
= —zcosx + zeos'x—yoos'x + O [

E To evaluate the integrals (a) J sin mx cos nx dx, (b) [ sin mx sin nx dx, or
(c) [ cos mx cos nx dx, use the corresponding identity:

(a) sin A cos B =1[sin(dA — B) + sin(4 + B]
(b) sin A sin B=1[cos(4 — B) — cos(4 + B)]
(c) cos A cos B = z[cos(A — B) + cos(4 + B)]

Evaluatej sin 4x cos Sx dr.

S0LUTION This integral could be evaluated using integration by parts, but it's easier to use
the identity in Equation 2(a) as follows:

[ sin dx cos Sx dy = [ [sin(—x) + sin 9x] dx

= %J (—sin x + sin 9x) dx

=ch\sx—1];cns ox) + O [



U EII™ ] Evaluate [ tan®x sec’x d.

SOLUTION If we separate one secx factor, we can express the remaining sec®x factor in
terms of tangent using the identity sec’x = 1 + tan’x. We can then evaluate the integral
by substituting o = tan x so that g = sec’x dx:

[ tan®y sec’y dy = J tan®x sec’x sec’x dx
J

tan®x (1 + tan®x) sec’x dx

J.
J- il + u¥)du = J- (o + u*)du

7 a

u u
=— 4+ —+
T g
=1 T 1 =]
= stan'x + g tanx + [ ]

EX0 Find | tan’0 sec’d db.

SOLUTION If we separate a sec®@ factor, as in the preceding example, we are left with a
sec’ factor, which isn't easily converted to tangent. However, if we separate a

sec tan @ factor, we can convert the remaining power of tangent to an expression
involving only secant using the identity tan’f = sec’® — 1. We can then evaluate the
integral by substituting v = sec #, so du = secf tan # d:

‘tan:'ﬁ' sec’f df = { tan'® sec®§ sec @ tan § 49
= [ (sec® — 1)sec’@ sec ) tan 0 d6
= 1 (* — 1Pu®du

= { (o' — 2u® + u®) du

1 5 1
u v u
= -2—+—+C
| 9 7
= sec''f — 7 sec®® + +sec’d + [ ]

Important Methods of Integration

1. U substitution

2. Integration by parts

3. Integration by partial fraction decomposition
4.Completing the square

5.Long division

6. Tabular method



BE3 The Substitution Rule

Diffarentials were defined in Section 3.10.
If 2 = #ix), then
du = {x) dx

Because of the Fundamental Theorem, it’s important to be able to find antiderivatives. But
our antidifferentiation formulas don’t tell us how to evaluate integrals such as

El [2_:\11 + x? dx

To find this integral we use the problem-solving strategy of infroducing something extra.
Here the “something extra™ is a new variable; we change from the variable x to a new vari-
able u. Suppose that we let u be the quantity under the root sign in [T], u = 1 + x*. Then
the differential of wis du = 2x dx. Notice that if the dx in the notation for an integral were
to be interpreted as a differential, then the differential 2x dx would occur in [T] and so,
formally, without justifying our calculation, we could write

E‘ '{medx=jm2xdx=!quu

P+ C=3 1P+ O

e

But now we can check that we have the correct answer by using the Chain Rule to differ-
entiate the final function of Equation 2:

d .
E[ﬁf PR+ ) =R ) 2 =2 T T

In general, this method works whenever we have an integral that we can write in the form

‘|' flg(x)) g'(x) dx. Observe that if F'= f, then

(3] | Flatg(x) dx = Flgla) + €

EIIEE Find j‘ x*cos(x* + 2) dx.

SOLUTION We make the substitution o = x* + 2 because its differential is du = 4x* dx,
which, apart from the constant factor 4, oceurs in the integral. Thus, using x* dx = _'; du
and the Substitution Rule, we have

[ Y eos(x* + 2) dx

J unsu-_l,du—jj cos udo

I
=gzsinu+ C
1
i

sin(x* +2)+ C

Motice that at the final stage we had to return to the original variable x. [

XN Evaluate | 2x + 1 dx

SOLUTION 1 Letu = 2x + 1. Then du = 2dx, so dx = §du. Thus the Substitution Rule

gives
’ V2x + 1 dx = ‘ JVu °§du=§f u'? du
I nin o
EE — —— = e :’-+
3 3 C=3u €

=;("x+ 1?2+ C

Find dx.
(0 R Find | ———

SOLUTION Let u= 1 — 4x*. Then du = —8xdx, so xdx = —i du and

dt=—§' du=—;';'.u""’du

. X 1
Y=y J .

= -i2Va) + C= -} T=aF + C =



EIIEE] Calculate j' ™ dx.

SOLUTION If we let u = 5x, then do = 5 dx, so dx = %du_ Therefore
j‘c“dx=:'-:j‘c”du=éc”+|"_"=§c5*+(_" ]

V] Calculate ' tan x dx.

SOLUTION First we write tangent in terms of sine and cosine:

J. tan x dx =J. Sl dx
COs X
This suggests that we should substitute v = cos x, since then doy = —sin x dx and so
sin x dx = —du:
. - SN X -1
Jla.nxdx=‘ d'x=—1—du
J oS X Yo
=—In|u| + C=—-In|eosx| + C |
Since —In|cos x| = Inf| cos x|™") = In(1/|cos x|} = In|sec x|, the result of Example
6 can also be written as
IE '1tanxdx=1n|sc-::.:|+f

Integration by Parts

Every differentiation rule has a corresponding integration rule. For instance, the Substitu-

tion Rule for integration corresponds to the Chain Rule for differentiation. The rule that

corresponds to the Product Rule for differentiation is called the rule for mtegration by parts.
The Product Rule states that if £ and g are differentiable functions, then

£ [x)g] = Fg(3) + 90 1)

In the notation for indefinite integrals this equation becomes

J- [ fix)g'(x) + g(x) Fix)] dx = f(x)g(x)
or ' flx)g'(x) dx + J glx) F(x) dx = f(x)gl(x)

We can rearrange this equation as

[1] }- f(x)g'(x) dx = f(x)g{x) — J glx) {x) dx

Formula 1 is called the formula for integration by parts. It is perhaps easier to remem-
ber in the following notation. Let u= f(x) and v = g{x). Then the differentials are
du = {"(x) dxand dv = g'(x) dx, so, by the Substitution Rule, the formula for integration by
parts becomes

E Judn=um—1ﬂdu

EXEE] Find ' x sin x dx.

SOLUTION USING FORMULA 1 Suppose we choose f(x) = xand g'(x) = sin x. Then
f'(x) = 1 and g(x) = —cos x. (For ¢ we can choose any antiderivative of g'.) Thus,
using Formula 1, we have




.. xsin x dx = f(x)g(x) — | g(x) f'(x) dx
= x(—cos x) — ‘ (—cos x) dx
= —xcos X + ' cos x dx

= —xcosx+smx+ C

It’s wise to check the answer by differentiating it. If we do so, we get xsin x, as
expected.

Integration of Rational Functions by Partial Fractions

In this section we show how to mtegrate any rational function (a ratio of polynomials) by
expressing it as a sum of simpler fractions, called partial fractions, that we already know
how to integrate. To illustrate the method, observe that by taking the fractions 2/(x — 1)
and 1/(x + 2) to a common denominator we obtain

2 1 =2(x+2)—(x—l)= x+.5
x—1 x+2 (x—1)(x+2) x2+x=2

If we now reverse the procedure, we see how to integrate the function on the right side of

this equation:

- x+5 ( 2 1 )

——dx= — d

J.xz+.x—2 * J._x—l x+2 *
=2In|jx—1|—Injx+ 2|+ C

To see how the method of partial fractions works in general, let’s consider a rational
function

_Axn
Qlx)
where Pand {J are polynomials. [t's possible to express f as a sum of simpler fractions pro-

vided that the degree of Pis less than the degree of (J. Such a rational function is called
proper: Recall that if

flx)

Ax)=aux" + arx™ '+ -+ aix+ an

where a, # 0, then the degree of Pis nand we write deg(P) = n.

If fis improper, that is, deg(P) = deg{(}), then we must take the preliminary step of
dividing (J into P (by long division) until a remainder R(x) is obtained such that
deg( k) < deg((}). The division statement is

_ A9 _ R
(7] 0 = G5 =50 + 555

where 5and K are also polynomials.
As the following example illustrates, sometimes this preliminary step is all that is
required.

Important note: Examples (1) & (4) uses long division (if the power of the nominator is greater than or equal to
the power of denominator). Thus the answer is:
residue

+
f (result £ denominator)dx



X+ x

7 EZIGE Find _[ = dx

xX—

aftx +2 SOLUTION Since the degree of the numerator is greater than the degree of the denomina-
x—lx +x tor, we first perform the long division. This enables us to write

. . . .
—X [X+de=‘[(xj+x+2+ 2 )dx
2x Jx—1 . x—1,
x—2 3
2 =%+§+21+21n|1—1|+€ -
¥ +2x—1
Evaluate[ dx.
V] EXAMPLE 2 | )3 132 22

SOLUTION Since the degree of the numerator is less than the degree of the denominator,
we don't need to divide. We factor the denominator as

2x' + 3¢ — 2x=x(2x¥ + 3x— 2) = x(2x— D(x + 2)

Since the denominator has three distinct linear factors, the partial fraction decomposition
of the integrand [2] has the form

X+ 2x-1 _i_'_ B N C
x2x— 1) x+ 2) ¥ 2x—1 x+ 2

To determine the values of A, B, and C, we multiply both sides of this equation by the
product of the denominators, x(2x — 1)(x + 2), obtaining

E ¥+ 2x—1=A2x— D(x+ 2) + Bx(x+ 2) + Cx(2x— 1)

Expanding the right side of Equation 4 and writing it in the standard form for poly-
nomials, we get

[5] E+2x—1=@2A+ B+20)2 + 34+ 2B— CO)x — 24

The polynomials in Equation 5 are identical, so their coefficients must be equal. The
coefficient of x* on the right side, 24 + B + 2C, must equal the coefficient of x* on the
left side—namely, 1. Likewise, the coefficients of x are equal and the constant terms are
equal. This gives the following system of equations for A, B, and C:

24+ B+2C=1
34+ 28— C=2
—24 - -1

Solving, we get A =%, B=1,and C = —, and so

[ X+ 2x—1 d J‘ ]1+1 1 1 1 d
X = —_— — - X
J2x + 3x% — 2x 2 x 5 2x—1 10 x+ 2

—sln|x| +pin|2x— 1| —in|x+ 2| + K

In integrating the middle term we have made the mental substitution « = 2x — 1, which
gives du = 2 dxand dx = —é dl. [



dx
EZIE] Find | —— 7. where a % 0.
— d

v

SOLUTION The method of partial fractions gives

1 I __A B
—a* (x—alx+a x—a x+a

x2

and therefore

Alx+a +Blx—a =1

Using the method of the preceding note, we put x = a in this equation and get
A(2a) = 1,50 A = 1/(2a). If we put x = —a, we get B(—2a) = 1,so B = —1/(2a).

Thus
dx 1 ¢( 1 1
— = — .
j_rz—az 2a (Jr—a _r+a) &

1
=E[ln|x—a|—ln|x+a|}+(:

Since In x — In y = In(x/y), we can write the integral as

dx I
6] ===

—a 2a

[X4_2X2+4X+1
b ¥ —x+1

SOLUTION The first step is to divide. The result of long division is

Find dx.

X —2x"+ax+ 1 14 dx
= x
¥ —x—x+1 ¥ —x+1

The second step is to factor the denominator Q(x) = x* — x* — x + 1. Since Q(1) = 0,
we know that x — 1 is a factor and we obtain

¥—x—x+1=x-DX¥-D=(x—Dix—1)x+1)
=(x—14x+1)

Since the linear factor x — 1 occurs twice, the partial fraction decomposition is

4x _ A, B C
(x—1D(x+1) x—-1 (x-1° =x+1

Multiplying by the least common denominator, (x — 1)*(x + 1), we get

dx=Alx— Dx+ 1)+ Bx+1)+ Cx— 1)
— A+ Ox +(B-20)x+ (-A+ B+ 0)



Now we equate coefficients:
A + C=0

B—2C—14
~A+B+ C=0

Solving, we obtain A =1, B=2,and C' = —1, so

*X4—3f+4x+]d J L1+ 1 N 2 1 d
x= |x - X
»’ X —x—-x+1 x—1 (x— 1% x+1
X 2
=—+x+In|jlx—1|—-———-In|x+ 1|+ K
2 x—1
! 2 —1
=—+x— lnJr + K [
x—1 x+1
2xt —x+ 4
[ ECIEE Fvaluate | ﬁdx

SOLUTION Since x° + 4x = x(x* + 4) can't be factored further, we write

' —x+4 A B+ C
x(x* + 4) X X+ 4

Multiplying by x(x* + 4), we have
2x' —x+4=Ax¥+4) + (Bx+ O)x
=(A+ B)x’ + Cx + 44
Equating coefficients, we obtain
A+ B=2 C=-1 44=14
Thus A=1, = 1,and C = —1 and so

2% — x + 4 (1 x—l)
- dx= =+ d
.,[ X+ dx * J.‘X Z+4)"

In order to integrate the second term we split it into two parts:

x—1 N X 1
jf+4ﬂ=1f+4ﬁ_ff+4ﬂ

We make the substitution # = x* + 4 in the first of these integrals so that du = 2x dx.
We evaluate the second integral by means of Formula 10 with a = 2:

We make the substitution # = x* + 4 in the first of these integrals so that du = 2x dkx.
We evaluate the second integral by means of Formula 10 with a = 2:

1

X

dx

s 2xf —x+ 14
JL dx +

X+ 1) dx= |

" X 1
et ey

=In|x| + sIn(x* + 4) — 3tan ' (x/2) + K [ ]



4" —3x+ 2
Evaluate [ —5—

B TOXTE k.
Vi —ax+3 ™

SOLUTION Since the degree of the numerator is not less than the degree of the denomi-
nator, we first divide and obtain

4f—3;r+2=1+ x—1
Ax* — 4x + 3 4 — 4x + 3

Notice that the quadratic 4x* — 4x + 3 is irreducible because its discriminant is
b* — dac = —32 < 0. This means it can't be factored, so we don't need to use the
partial fraction technique.

To integrate the given function we complete the square in the denominator:

¥ —dx+3=2x—- 17"+ 2

This suggests that we make the substitution v = 2x — 1. Then du = 2 dxand
x=13(u+ 1), s0

s 4x — 3x + 2 ( x—1 )
2 T = 1+ ———— )4
ey J a—ax+3) "

RPN Chal el

Iy %u[;llzd”
—xtif gt g

= x+3ln(u’ + 2) —%-%t&m"l(\%) +C

— x+gln(dx — dx + 3) — ﬁm-l(-%) + c_

NOTE Example 6 illustrates the general procedure for integrating a partial fraction of
the form

Ax+ B

_aarTe 7 _
P B —— where b dac < 0

We complete the square in the denominator and then make a substitution that brings the
integral into the form

I'Cu—I-D
D+ &

du

u 1
du = C-[—uz+az du + D”f -

Then the first integral is a logarithm and the second is expressed in terms of tan~".

CASE IV (X x) contains a repeated irreducible quadratic factor.
If Q(x) has the factor (ax* + hx + ¢)*, where b* — 4ac < 0, then instead of the single
partial fraction [9], the sum

Aix+ B n Aax+ B n i Ax+ B
ax’ + bx+ ¢ (ax’ + bx + o) (ax’ + bx + o)

1]



it would be extremely tedious to work out by [ETTTITE] Write out the form of the partial fraction decomposition of the function
hand the numerical values of the coefficients
in Example 7. Most computer algebra systems, P+

however, can find the numerical values very 5 3
quickly. For instance, the Maple command x(x = D"+ x+ D'+ 1)

convert(f, parfrac, x)

) SOLUTION
or the Mathematica command
Apart[f] r+xr+1
gives the following values: x(x— Dx? + x+ D(x* +1)°
A=-1, B=3; C=D--1,
, , . =i+ B " Cx+ D +Ex+F+Gx+H+Ix+] —
E=% F=-s C=H=i X x-1 xtx+l F+1 X+ E+1P

1—x+2x— %

Evaluate [ de{.

SOLUTION The form of the partial fraction decomposition is

l1—-x+2¥%—-x A Bx+C Dx+FE

x(x? + 1) x  x+1 (x> + 1)

Multiplying by x(x* + 1), we have
— X+ 28 —x+1=AKX + 1P+ Br+ O)x(x* + 1) + (Dx + F)x
=Ax'+2x* + 1) + Blx' + x*) + Cx* + x) + Dx* + Fx

—A+ B+ P+ PA+ B+ DY+ (C+ E)x+ A

If we equate coefficients, we get the system

A+ B=0 = —1 2A+ B+ D=2 C+ F= —1 A=1
which has the solution 4 = 1. = —1, C= —1, D=1, and £ = 0. Thus
~ 1 — x+ 2x% — x° "(.1 x+ 1 B's )
dx = — — + o
J x(x2 + 1) x i x 41 FrE)T
=[£_{;ﬂ_{ dx [__xdx
Jox J ¥+ Jxt+1 J (x® + 1)°
1
=1 — I+ 1) —tan'x — ———— + K
I'l|X| 2“( ) X 2(X2+1)
||

Thus in brief the rules of partial fraction decomposition is

Factorin O(x) TeminP.F.D | Factorin O(x) Term in P.F.D
¢ £ T 4 ) 5 +---+ 4,
ax+b . (ax+b) ax+b  (ax+d) (ae)
2 Ax+B . k Ax+ B i Ax+B,
ax* +bx+c = T ie (ax*+bx+e) Gl ibxsc = +b.\'+c)k
Tabular Method

The technique of tabular integration allows one to perform successive integra-
tions by parts on integrals of the form

fF(r)G(r) dt (1)

without becoming bogged down in tedious algebraic details [V. N. Murty, Integra-
tion by parts, Two-Year College Mathematics Journal 11 (1980) 90-94]. There are
several ways to illustrate this method, one of which is diagrammed in Table 1. (We
assume throughout that F and G are “smooth” enough to allow repeated
differentation and integration, respectively.)

R



Table 1

Column #1

+F G
_FO__ T e
+F{2},__‘_ G{—Z}

— F T G-

{_ l}nF(n} G{—n}
{_ l}rr+]F{1r+]j___ G{ -m— 1)

Example. [x?sin xdx

column #1 column #2

+x? sin x

—EI—R‘_‘—"“"‘—CGS X
+2 :-—:Q‘— sin x
0 COs X

Answer: —_xz cosx+2xsinx+2cosx+C

The following are some areas where this elegant technique of integration can be
applied.

#1i| sign | A:derivatives ' | B: integrals vi"?

0 + x> cosT
1 = 322 sinz
2 + b —cosT
3 = —sinz
4 + a cosx

The product of the entries in row i of columns A and B together with the respective sign give the relevant integrals in step [ in the course of repeated integration by parts. Stepi=
yields the original integral. For the complete result in step { > 0 the ith integral must be added to all the previous products (0 =j < ) of the jth entry of column A and the

(j + 1)st entry of column B (i.e., multiply the 1st entry of column A with the 2nd entry of column B, the 2nd entry of column A with the 3rd entry of column B, etc. ...) with the given
7th sign. This process comes to a natural halt, when the product, which yields the integral. is zero (I = 4 in the example). The complete result is the following (with the alternating
signs in each termy:

(+1)(z*)(sinx) + (—1)(32%)(— cosx) + (+1)(6x)(— sinz) + (—1)(6)(cosx) + /(+1)(0}[cosw) dx.
o = —
This yields

fwacos:cd:c = asinz + 32° cosx — B sinz — Geosw + C.

step 0

The repeated partial integration alse tums out useful, when in the course of respectively differentiating and integrating the functions 4" and v their product results in a multiple
of the original integrand. In this case the repetition may also be terminated with this index 1. This can happen, expectably, with exponentials and trigenometric functions. As an
example consider

fe’ cos & dx.

#i| Sign  A: derivatives ul? | B: integrals vin-a

0 + e’ cos
1 - e’ sinx
2 + e’ —cos

In this case the product of the terms in columns A and B with the appropriate sign for index = 2 yields the negative of the original integrand (compare rows 1 =0 and ; = 2).

[eT coszdr = (+1)(e")(sinz) + (—1)(e" )(—cosz) + f(+1)(e”)(—cos @) da.
=0 i1 —_—

step 0 fae

Observing that the integral on the RHS can have its own constant of integration C”, and bringing the abstract integral to the other side, gives
2[81 coszdr = ¢’ sinz + " cosz + €,
and finally:

fez coszdr = % (e*(sina + cosz)) + C,

'Y



“ Complex Numbers

Im
+ ® 2+ 3F
o —4+325 +

—2—2is + «3—2j

FIGURE 1
Complex numbers as points in
the Argand plane

A complex number can be represented by an expression of the form a + b/, where a and
b are real numbers and 7 is a symbol with the property that i* = —1. The complex num-
ber a + bi can also be represented by the ordered pair (a, b) and plotted as a point in a
plane (called the Argand plane) as in Figure 1. Thus the complex number i = 0 + 1 - iis
identified with the point (0, 1).

The real part of the complex number a + b is the real number a and the imaginary
part is the real number h. Thus the real part of 4 — 3/ is 4 and the imaginary part is —3.
Two complex numbers a + bi and ¢ + di are equal if 2 = cand b = d, that is, their real
parts are equal and their imaginary parts are equal. In the Argand plane the horizontal axis
is called the real axis and the vertical axis is called the imaginary axis.

The sum and difference of two complex numbers are defined by adding or subtracting
their real parts and their imaginary parts:

(a+ bi) + (c+ diy=(a+c) + (b+ d)i
(a+ bi) — (c+di)=(a—c)+ (b— d)i
For instance,

(1= +@+TH =1 +4) +(=1+Ti—=5+6i

The product of complex numbers is defined so that the usual commutative and distributive
laws hold:

(a + bi)(c + di) = alc + di) + (bi)(c + di)

ac + adi + bci + bdi®

Since i* = —1, this becomes

(a + bi)(c+ di) = (ac — bd) + (ad + bo)i

EIE

(—1 + 3/)(2 — 51)

(—1)(2 — 5i) + 3i2 — 5i)
— —2+45i+6i—15(—1) = 13 + 11; -

Division of complex numbers is much like rationalizing the denominator of a rational
expression. For the complex number z = a + bi, we define its complex conjugate to be
z = a — bi. To find the quotient of two complex numbers we multiply numerator and
denominator by the complex conjugate of the denominator.

IETITF] Express the number il in the form a + bi.

-1+
2+ 5i

SOLUTION We multiply numerator and denominator by the complex conjugate of 2 + 5,
namely 2 — 54, and we take advantage of the result of Example 1:

=1+3; =2¥H =86 W+ 13 11

2+ 5i

. = -=—
2+51 2-5i 22+56° 29 29°

The geometric interpretation of the complex conjugate is shown in Figure 2: Z is the
reflection of z in the real axis. We list some of the properties of the complex conjugate in
the following box. The proofs follow from the definition and are requested in Exercise 18.

Properties of Conjugates
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Notice that

zZ = (a + bi)(a — bi) = a®? + abi — abi — b%i* = a%? + b?

and so

zz = | z?

VY



This explains why the division procedure in Example 2 works in general:

I Iw W

w ww |w]
Since i* = —1, we can think of 7 as a square root of —1. But notice that we also have
(—i)* = i* = —1 and so —i is also a square root of —1. We say that i is the principal

square root of —1 and write /—1 = . In general, if ¢ is any positive number, we write
Vv —C = \?’E Fi

With this convention, the usual derivation and formula for the roots of the quadratic equa-
tion ax’ + bx + ¢ = 0 are valid even when b° — 4ac < 0:

—b *+ Jb? — dac
X =

2a

IETTITF] Find the roots of the equation x* + x + 1 = 0.
SOLUTION Using the quadratic formula, we have

-1+xJ17-4-1 -1=J=-3 -1x3i
2 2 2

X=

V¢



