Dr. Auras Khalid
Lecture 7

Taylor and Maclaurin Series

DEFINITIONS Taylor Series, Maclaurin Series

Let f be a function with derivatives of all orders throughout some interval con-
taining a as an interior point. Then the Taylor series generated by f at x = a is
00 (ﬁ]{a) ] H(a)

> / (x — a)f = fla) + f(a)(x — a) + fz! (x — a)?

f=s

f™(a)

n!

+ -+ (x—a)" +---.

The Maclaurin series generated by f is
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the Taylor series generated by fatx = 0.

EXAMPLE 1 Finding a Taylor Series

Find the Taylor series generated by f(x) = 1/x at @ = 2. Where, if anywhere, does the
series converge to 1,/x7

Solution We need to find f(2), £'(2), f"(2)..... Taking derivatives we get

fx) = x7, @) =2 =1
) = —x2 F@=-3s
£rx) =213, R ==
fr) = 34, 2L
£ = (—1ymte o, oo

The Taylor series 1s
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This is a geometric series with first term 1/2 and ratio r = —(x — 2)/2. It converges ab-
solutely for [x — 2| << 2 and its sum is
1/2 1 1

[+ (x-2)2 2+(x-2) *

In this example the Taylor series generated by f(x) = 1/x at @ = 2 converges to 1/x for
|* — 2] <2or0 <x < 4. [ |
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DEFINITION  Taylor Polynomial of Order n

Let f be a function with derivatives of order k for k = 1, 2,..., NV in some inter-
val containing a as an interior point. Then for any integer n from 0 through N, the
Taylor polynomial of order n generated by f at x = a is the polynomial

f"( )

(x —a) +

Py(x) = fla) + f'(a)(x — a) +
) f{ifﬂ] x

Wt

—a) + (x — a).

EXAMPLE 2  Finding Taylor Polynomials for e*
Find the Taylor series and the Taylor polynomials generated by f(x) = eatx = 0.

Solution Since

flx) = €5, fx) =€, s fMix) = e, e
we have
floy=€"=1, fO=1. ... f9%0) =1,
The Taylor series generated by fatx = 0is
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This 1s also the Maclaurin series for e*. In Section 11.9 we will see that the series con-
verges to e at every x.
The Taylor polynomial of order nat x = 0 1s

"

2
Pux) =1+ x+ 5 ++ >

EXAMPLE 3  Finding Taylor Polynomials for cos x
Find the Taylor series and Taylor polynomials generated by f(x) = cosxatx = 0.

Solution The cosine and its derivatives are
flx) = COS X, flx) = —sinx,

K = OB ) = sin x,

F3(x) - (=1)" cosx, fP0(x) = (-1 ginx.
At x = 0, the cosines are | and the sines are 0, so
£220) = (=17, f2N0) =0
The Taylor series generated by fat 0 is
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This is also the Maclaurin series for cos x. In Section 11.9, we will see that the series con-
verges to cos x at every Xx.

Because fz"’ D(0) = 0, the Taylor polynomials of orders 2n and 2n + 1 are identical:

5
i X

(2n)! "

Pr(x) = Prsi(x) = 1 —3—;1—% — e 4 (=)

EXAMPLE 2 The Taylor Series for sin x at x = 0

Show that the Taylor series for sin x at x = 0 converges for all x.

Solution The function and its derivatives are
flx) = sin x, flx) = cos X,
f(x) = — sin x. f(x) = — cos X,
F2(x) = (— 1) sinx. FHEF N x) = (—1)¥cosx.
S0

P90y =0 and @ 0) = (-DE

The series has only odd-powered terms and, forn = 2k + 1, Taylor’s Theorem gives
x3 x5 (_l)kx2k+l

sinx:x—§+§—---+m+ﬁ’-zk+l(x)-

EXAMPLE 5  Finding a Taylor Series by Multiplication

Find the Taylor series for x sinx at x = (.

Solution We can find the Taylor series for x sin x by multiplying the Taylor senes for

sin x (Equation 4) by x:
3 3 7
xsinx=x(x—%+%—“;—!+...)

4 i E
_ 22X X _x ...
=X oyt ot

The new series converges for all x because the series for sin x converges for all x. Exer-
cise 45 explains why the series is the Taylor series for x sin x. [ |

Applications of Power Series

This section introduces the binomial series for estimating powers and roots and shows how
series are sometimes used to approximate the solution of an initial value problem, to eval-
uate nonelementary integrals, and to evaluate limits that lead to indeterminate forms. We
provide a self-contained derivation of the Taylor series for tan™' x and conclude with a ref-
erence table of frequently used series.

-Y-
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The Binomial Series for Powers and Roots
The Taylor series generated by f(x) = (1 + x)™, when m is constant, is

m(my— l)x2 N m(m — ;)'(m - 2)x3 N

N m(m — 1)(m — i-?---(m—,{'+ l)xk—k

This series, called the binomial series, converges absolutely for |x| << 1.

| + mx +

(1)

The Binomial Series
For —1 = x = 1,

where we define

and

fork = 3.

()~ mm = Dtm =2 k2 1)

EXAMPLE 1 Using the Binomial Series

Ifm = —1,
(D= (-2

(—;) _ —1(—2}[—33-}:-!(—1 —k+ D _ (%) —(—1

and

With these coeflicient values and with x replaced by —x, the binomial series formula gives
the familiar geometric series

(1+x)'=1 +§(—l)*xk= l—x+x*—x*+ - + (-1 + ... =

EXAMPLE 2 Using the Binomial Series

We know from Section 3.8, Example 1, that %1 + x == 1 + (x/2) for |x| small. With
m = 1/2, the binomial series gives guadratic and higher-order approximations as well,
along with error estimates that come from the Alternating Series Estimation Theorem:

B3, B,

I X
(1+x)‘-2=1+§+ 37 x* + 37
VAN 3y (2
2 2 2 2)
+ A x4+
2 3 4
_ X _x L x ox
=l =% e 1wt
Substitution for x gives still other approximations. For example,
) . 2 x4 )
W1 —x =] _T_? for |x<| small
"Il -1 I — L for 1 small, that is, |x| large |
VITE i x | small that s, ‘
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Power Series Solutions of Differential Equations
and Initial Value Problems

When we cannot find a relatively simple expression for the solution of an initial value prob-
lem or differential equation, we try to get information about the solution in other ways. One
way 1s to try to find a power series representation for the solution. If we can do so, we im-
mediately have a source of polynomial approximations of the solution, which may be all
that we really need. The first example (Example 3) deals with a first-order linear differen-
tial equation that could be solved with the methods of Section 9.2, The example shows how,
not knowing this, we can solve the equation with power series. The second example (Exam-
ple 4) deals with an equation that cannot be solved analytically by previous methods.

EXAMPLE 3 Series Solution of an Initial Value Problem

Solve the initial value problem

¥y —y=nx o)y =1.

Solution We assume that there is a solution of the form

vy =ag + ax + @axl + o+ @Gox™ N+ apx™ + e (2)

Our goal is to find values for the coefficients a; that make the series and its first derivative
Y =a; + 2ax + 3azxt + -+ g x4 (3)

satisfy the given differential equation and initial condition. The series y' — v 1s the differ-
ence of the series in Equations (2) and (3):

v —y=(a1 —a) + 2@ — a)x + (3az — a)x* + -+
+ (na, — a’n_l]x"_l + e, (4)

If v 1s to satisfy the equation ' — ¥ = x, the series in Equation (4) must equal x. Since
power series representations are unique (Exercise 45 in Section 11.7), the coefficients in
Equation (4) must satisfy the equations

ay —ag =0 Constant terms

2a; —ay =1 Coefficients of x

3ay—ax =10 Coefficients of x°
Ry — a1 =0 Coefficients of x"'

We can also see from Equation (2) that ¥y = ag when x = 0, so that ap = 1 (this being the
mitial condition). Putting it all together, we have

B o e 1+1 2
ag = 1, ar =ag = 1, @m=—5_="73 =73

a2 2 _ fn-]
ﬂ'}—T—ﬁ—T,..., dyn =~ =

2
!t

Substituting these coefficient values into the equation for v (Equation (2)) gives
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2 3 "
y=1+x+2-%+ 2-335—!+---+2-%+-~-

2 3 n
=1+I+z(%+%+.-.+%+.-.)

the Taylor series fore™— | —x

=1l+x+2e*—1—-x)=2"-1—x.

The solution of the initial value problemis y = 2™ — | — x.
As a check, we see that

_v([)]=2€”—1—{]=2—1=1
and

YV —y=(2-1)— (2" -1 —x) =x. ]

EXAMPLE 4  Solving a Differential Equation
Find a power series solution for

¥+ xty = 0. (5)

Solution We assume that there is a solution of the form
y=ap+ ax + @mx’ + -+ ax" + -, (6)
and find what the coefficients a; have to be to make the series and its second derivative
¥ =2ay 4+ 3 2a3x + -+ nln — Dax™ 2 + - (7
satisfy Equation (5). The series for x°y is x” times the right-hand side of Equation (6):
y=ax? + ax® +ax* + -+ g™+ (8)
The series for ¥" + x°y is the sum of the series in Equations (7) and (8):
¥4+ x%y = 2apy + 6ax + (12ag + agx? + (20as + ay)x’
4+ (nln — Dag + apa)x™ 2 + - (9)

Notice that the coefficient of x" 2 in Equation (8) is a@,—4. If y and its second derivative y”
are to satisfy Equation (5), the coefficients of the individual powers of x on the right-hand
side of Equation (9) must all be zero:

2a; =0, bay = 0, 12a3 + ag = 0, 20as + a =0, (10)
and forallm = 4,
nln — ay, + ag—4 = 0. (11)
We can see from Equation (6) that
ap = y(0),  a = y'(0).

In other words, the first two coefficients of the series are the values of yand y" at x = 0.
Equations in (1) and the recursion formula in Equation (11) enable us to evaluate all the
other coefficients in terms of ap and a; .

The first two of Equations ( 10) give

ar = 0, ay = 0.
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The answer 1s best expressed as the sum of two separate series—one multiplied by ap, the

other by a;:
4 ] 12
— _x X —_ x awa
}—ﬁ'u(l 3.4+3-4-?-3 3-4-?-8-11-12+ )
_‘.l_'i xl;i IU
+m(x—4.5+4.5.g-9‘4-5-3-9-12-13+"')‘

Both series converge absolutely for all x, as 1s readily seen by the Ratio Test.

[
TABLE 11.1 Frequently usad Taylor series
]lt=|+x+:‘t+---+ "+---=Ex". x| <1
]_}_t=|—.r+xl—--- (—x)" + - Eﬁ{ It e =1
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ol a o3 N e k
(]+.t]"'=l+m.r+m{m 1 +m[m 1i(m 2].1'4_ +n1'|:m IMm —2)---(m fc+]}x+
2 3l kl
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W
where
m my  mlm —1) mh  omim—1)(m—-k+1)
(])—m. (EJ_ 3 (k)_ T fork = 3.

Note: To write the binomial series compactly, it is customary to define (’;) o be 1 and to take x” = 1 (even in the usually

excluded case where x = 0), yielding (1 + x)" = Sy (J: )tl. If m is 4 positive inteser, the series terminates at x™ and the

result converges for all x.




