$$(\alpha(f+g))(x) = \alpha(f+g)(x) = \alpha(f(x)+g(x))$$
$$= \alpha f(x) + \alpha g(x) = (\alpha f + \alpha g)(x)$$

(d)  $\forall f \in C^b[a, b], \alpha, \beta \in \mathbb{R}$ , to prove  $(\alpha + \beta)f = \alpha f + \beta f$ 

$$((\alpha + \beta)f)(x) = (\alpha + \beta)f(x) = \alpha f(x) + \beta f(x)$$
$$= (\alpha f)(x) + (\beta f)(x) = (\alpha f + \beta f)(x)$$

(e) Let  $f \in C^b[a, b]$  and 1 is the unity of  $\mathbb{R}$ , then (1f)(x) = 1 f(x) = f(x).

## **General Properties of Linear Space** (without prove)

**Theorem(1.12):-** Let (L, +, .) be a linear space over F. Then

- $(1) 0. x = 0_L, \quad \forall x \in L$
- $(2) \lambda. 0_L = 0_L , \lambda \in F$
- (3)  $(-\alpha.x) = (-\alpha).x = \alpha.(-x)$ ,  $\forall x \in L, \alpha \in F$
- (4) If  $x, y \in L \Rightarrow \exists! z \in L$  such that x + z = y
- (5)  $\alpha.(x-y) = \alpha.x \alpha.y, \forall x,y \in L, \alpha \in F$
- (6) If  $\alpha . x = 0_L \implies \alpha = 0$  or  $x = 0_L$
- (7) If  $x \neq 0_L$  and  $\alpha_1 x = \alpha_2 x \implies \alpha_1 = \alpha_2$
- (8) If  $x \neq 0_L$ ,  $\alpha \neq 0$ ,  $y \neq 0_L$  and  $\alpha \cdot x = \alpha \cdot y \implies x = y$

# Linear subspace

**Definition(1.13):-** Let L be a linear space over F and  $\emptyset \neq S \subseteq L$ , then we say that S is **linear subspace** of L if S itself is a linear spase over F.

If L be a linear space over F and  $\emptyset \neq S \subseteq L$ , then S is linear Theorem (1.14):subspace if satisfy the following conditions

$$(1)x + y \in S$$
,  $\forall x, y \in S$ 

$$(2) \alpha. x \in S$$
,  $\forall x \in S$  and  $\alpha \in F$ 

Solodh Hosson Or satisfy the equivalent condition of two conditions above,

$$\alpha.x + \beta.y \in S, \forall x, y \in S \text{ and } \alpha, \beta \in F$$

#### Remark(1.15):-

- (1) A special subspace of L is improper subspace S = L
- (2) Every other subspace of  $L(\neq \{0\})$  is called proper
- (3) Another special subspace of any linear space L is  $S=\{0\}$

**Example (1.16):-** show that  $S = \{(x, x_2) \in \mathbb{R}^2 : x_2 = 3x_1\}$  is subspace of  $\mathbb{R}^2$ ?

**Solution :-** It is clear that  $S \subseteq \mathbb{R}^2$ , and  $S \neq \emptyset$  because  $(0,0) = 0 \in S$ 

To prove that  $\alpha.x + \beta.y \in S$ ,  $\forall \alpha, \beta \in F = \mathbb{R}$ ,  $x, y \in \mathbb{R}^2$ 

$$x = (x_1, x_2), y = (y_1, y_2)$$

$$\alpha.x + \beta.y = (\alpha x_1, \alpha x_2) + (\beta y_1, \beta y_2)$$
$$= (\alpha x_1 + \beta y_1, \alpha x_2 + \beta y_2)$$

Now, 
$$\alpha x_2 + \beta y_2 = \alpha(3x_1) + \beta(3y_1) = 3(\alpha x_1 + \beta y_1)$$

$$\Rightarrow \alpha.x + \beta.y \in S.$$

**Example (1.17):-** show that  $S = \{ \begin{pmatrix} \frac{0}{b} & a \\ 0 \end{pmatrix} ; a, b \in \mathbb{R} \}$  is subspace of  $M_{2 \times 2}(\mathbb{R})$ ?

**Solution:**- It is clear that  $S \subseteq M_{2 \times 2}(\mathbb{R})$ , and  $S \neq \emptyset$  because  $0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in S$ 

 $\forall x, y \in S \text{ and } \alpha, \beta \in F.$ 

To prove that  $\alpha.x + \beta.y = \alpha.\left(\frac{0}{b_1} - \frac{a_1}{0}\right) + \beta.\left(\frac{0}{b_2} - \frac{a_2}{0}\right)$ 

$$= \left( \frac{0 \quad \alpha a_1}{\alpha b_1 \quad 0} \right) + \left( \frac{0 \quad \beta a_2}{\beta b_2 \quad 0} \right)$$

$$= \left( \frac{0}{\alpha b_1 + \beta b_2} \frac{\alpha a_1 + \beta a_2}{0} \right) \in S$$

**Example (1.18):-** show that  $S = \{(x_1, x_2) \in \mathbb{R}^2; ax_1 + bx_2 = 0\}$  is subspace of  $\mathbb{R}^2$ ? (H.W.)

**Example** (1.19):-The set  $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 = 1 + x_2\}$  is not subspace of  $\mathbb{R}^3$ ?

#### **Solution:**

Consider  $\alpha = 2$  and  $x = (2,1,0) \in S$ , because (2 = 1 + 1)

$$\alpha. x = 2.(2,1,0) = (4,2,0) \notin S$$
, because $(4 \neq 1 + 2)$ 

Hence, *S* is not subspace of  $\mathbb{R}^3$ .

**Theorem(1.20):-**Let  $S_1$  and  $S_2$  be two subspaces of linear space L . then

 $(1)S_1\cap S_2$  is subspace of linear space L .

(2)  $S_1 + S_2$  is subspace of linear space L

$$(3)S_1 \subseteq S_1 + S_2$$
,  $S_2 \subseteq S_1 + S_2$ . (H.W.)

## **Exercise**:

(1) Which of the following subsets of  $\mathbb{R}^3$  be a subspace of  $\mathbb{R}^3$ 

a) 
$$S_1 = \{x = (x_1, x_2, x_3); x_1 = x_2 \text{ and } x_3 = 0\}$$

b) 
$$S_2 = \{(x_1, x_2, x_3); x_3 = x_2 + 1\}$$

c) 
$$S_3 = \{(x_1, x_2, x_3); x_1, x_2, x_3 \ge 0\}$$

d) 
$$S_4 = \{(x_1, x_2, x_3); x_1 - x_2 + x_3 = k\}$$

- (2) If  $S_1$  and  $S_2$  are subspaces of linear space L, then  $S_1 \cup S_2$  not necessary subspace of L (Give example)
- (3) If  $S \neq \emptyset$  is any subset of L show that span S is subspace of L.
- (4) Show that the Cartesian product  $L=L_1\times L_2$  of two linear spaces over the same field becomes a vector space, we define the two algebraic operations by

$$\frac{(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)}{\alpha(x_1, x_2) = (\alpha x_1, \alpha x_2)} \frac{\forall \ x = (x_1, x_2)}{y = (y_1, y_2)} \in L$$

(5) Let M be a subspace of a linear space L. The coset of an element  $x \in L$  with respect to M is denoted by x + M where

 $x + M = \{z, z = x + m, m \in M\}$ . Show that  $(\frac{L}{M}, +, .)$  is linear space over under algebraic operations defined as