$$(x+m) + (y+m) = (x+y) + m, \forall x+m, y+m \in \frac{L}{M}$$
$$\alpha.(x+m) = \alpha.x + m, \forall x+m \in \frac{L}{M}, \ \alpha \in F$$

Note: The space $(\frac{L}{M}, +, .)$ is called quotient space (or factor space).

Dimensional Linear Spaces

Definition (1.21):- A **linear combination** of vectors $x_1, x_2,, x_n$ of a linear space L is an expression of the from $\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n$, where $\alpha_1, \alpha_2, ..., \alpha_n$ are any scalars

i.e., x is linear combination of $x_1, x_2, ..., x_n$ if $\exists \alpha_1, \alpha_2,, \alpha_n$ s.t.

$$x = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n.$$

Example (1. 22):- Let $S = \{(1,2,3), (1,0,2)\}$, Express x = (-1,2,-1), as a linear combination of x_1 and x_2 .

Solution: We must find scalars $\alpha_1, \alpha_2 \in F$ such that $x = \alpha_1, x_1 + \alpha_2, x_2$

$$(-1,2,-1) = \alpha_1 \cdot (1,2,3) + \alpha_2 \cdot (1,0,2)$$

$$= (\alpha_1, 2\alpha_1, 3\alpha_1) + (\alpha_2, 0, 2\alpha_2)$$
So, $\alpha_1 + \alpha_2 = -1 \implies \alpha_2 = -\alpha_1 - 1$

$$2\alpha_1 + 0 = 2 \Longrightarrow 2\alpha_1 = 2 \Longrightarrow \alpha_1 = 1$$
 and,
$$3\alpha_1 + 2\alpha_2 = -1$$

$$\therefore \alpha_2 = -1 - 1 = -2$$
.

Example (1. 23):-If $S = \{(1,2,3), (1,0,2)\}$. Show that x = (-1,2,0), is not linear Solodh Hosse combination of x_1, x_2 .

Solution:

Let $\alpha_1, \alpha_2 \in F$ and $x_1, x_2 \in S$ such that $x = \alpha_1, x_1 + \alpha_2, x_2$, we have

$$\frac{\alpha_1 + \alpha_2 = -12\alpha_1 + 0 = 2}{3\alpha_1 + 2\alpha_2 = 0}$$

$$\left(\frac{1}{2} \frac{1}{0:23} \frac{1:-1}{2:0}\right) \Longrightarrow \left(\frac{1}{0} \frac{1:-10}{0-1:3}\right)$$

The system has no solution

x not linear combination of x_1, x_2 .

Example (1.24):- Let $S = \{x_1, x_2, x_3\}$ where $x_1 = (1,2), x_2 = (0,1)$ and $x_3 = (0,1)$ (1,1). Express (1,0) as a linear combination of x_1, x_2 and x_3 .

Solution:

We must find scalars $\alpha_1, \alpha_2, \alpha_3 \in F$ such that $x = \alpha_1, x_1 + \alpha_2, x_2 + \alpha_3, x_3$

$$(1,0) = \alpha_1. (1,2) + \alpha_2. (0,1) + \alpha_3. (1,1)$$

$$(1,0) = (\alpha_1, 2\alpha_1) + (0, \alpha_2) + (\alpha_3, \alpha_3)$$

$$\alpha_1 + \alpha_3 = 1 \Rightarrow \alpha_1 = 1 - \alpha_3$$

$$2\alpha_1 + \alpha_2 + \alpha_3 = 0 \Longrightarrow 2(1 - \alpha_3) + \alpha_2 + \alpha_3 = 0 \Longrightarrow -\alpha_3 + \alpha_2 = -2$$

$$\alpha_2 = -2 - \alpha_3$$

This system has multiple solutions in this case there are multiple possibilities for the α_i .

Definition (1.25):- Let $\emptyset \neq M \subseteq L$ the smallest subspace of L contains M is called **subspace generated** by M and denoted by [M] or span M.

Remark(1.26):-

- 1. Let $\emptyset \neq M \subseteq L$, the set of all linear combinations of vectors of M is called span of M.
- 2. $M \subset \text{span}(M)$.
- 3. Span (M) = the intersection of all subspace of L containing M.

Example (1.27):- Find span $\{x_1, x_2\}$ where $x_1 = (1,2,3)$ and $x_2 = (1,0,2)$?

Solution: The span $\{x_1, x_2\}$ is the set of all vectors $(x, y, z) \in \mathbb{R}^3$ such that

$$(x, y, z) = \alpha_1.(1,2,3) + \alpha_2.(1,0,2)$$

We wish to know for what values of (x, y, z) does this system of equations have solutions for α_1, α_2

$$\alpha_1$$
. (1,2,3) + α_2 . (1,0,2) = (x , y , z)

$$(\alpha_1, 2\alpha_1, 3\alpha_1) + (\alpha_2, 0, 2\alpha_2) = (x, y, z)$$

$$\alpha_1 + \alpha_2 = x \Longrightarrow \alpha_2 = x - \alpha_1$$

$$2\alpha_1 = y \Longrightarrow \alpha_1 = \frac{1}{2}y$$

$$\alpha_1 + \alpha_2 = x \Rightarrow \alpha_2 = x - \alpha_1$$

$$2\alpha_1 = y \Rightarrow \alpha_1 = \frac{1}{2}y$$

$$3\alpha_1 + 2\alpha_2 = z \Rightarrow 6\alpha_1 + 4\alpha_2 - 2z = 0$$

$$6\left(\frac{1}{2}y\right) + 4\left(x - \frac{1}{2}y\right) - 2z = 0$$

$$3y + 4x - 2y - 2z = 0$$

$$4x + y - 2z = 0$$
So, solutions when $4x + y - 2z = 0$

$$6\left(\frac{1}{2}y\right) + 4\left(x - \frac{1}{2}y\right) - 2z = 0$$

$$3y + 4x - 2y - 2z = 0$$

$$4x + y - 2z = 0$$

So, solutions when 4x + y - 2z = 0

Thus span $\{x_1, x_2\}$ is the plane 4x + y - 2z = 0

Example (1.28):-Show that $\{x_1, x_2\}$ span \mathbb{R}^2 , when $x_1 = (1,1), x_2 = (2,1)$.

Solution: we being asked to show that any vectors in \mathbb{R}^2 can written as a linear combination of x_1, x_2 . Let $(a, b) \in \mathbb{R}^2$ and $(a, b) = \alpha_1 \cdot (1, 1) + \alpha_2 \cdot (2, 1)$

$$(\alpha_1, \alpha_1) + (2\alpha_2, \alpha_2) = (a, b)$$

$$\alpha_1 + 2\alpha_2 = a \Longrightarrow \alpha_1 = a - 2\alpha_2$$

$$\alpha_1 + \alpha_2 = b \Longrightarrow \alpha_2 = b - (a - 2\alpha_2)$$

$$-\alpha_2 = b - a \Longrightarrow \alpha_2 = a - b$$

 $\alpha_1=a-2(a-b)=2b-a$.Note that these two vectors span \mathbb{R}^2 , that is every vector \mathbb{R}^2 can be expressed as a linear combination of them .

Example (1.29):-Show that $S = \{x_1, x_2, x_3\}$ span \mathbb{R}^2 , where $x_1 = (1,1), x_2 = (2,1), x_3 = (3,2)$. (H.W.)

Definition (1.30):- Let $S = \{x_1,, x_n\}$ be a subset of L, then S is called **linearly independent** if there exist $\alpha_1, \alpha_2, ..., \alpha_n$ such that

if
$$\alpha_1. x_1 + \alpha_2. x_2 + \dots + \alpha_n. x_n = 0$$
 then $\alpha_1 = \alpha_2 = \dots = \alpha_n = 0$.

Definition (1.31):- Let $S = \{x_1, x_2,, x_n\}$ be a subset of L, then S is said to be **linearly dependent** if it is not linearly independent that is if

$$\alpha_1. x_1 + \alpha_2. x_2 + \dots + \alpha_n. x_n = 0$$
 but the $\alpha_1, \alpha_2, \dots, \alpha_n$ not all zero.

Example (1.32):- Determine $S = \{x_1, x_2\}$ is linearly dependent or independent where $x_1 = (1,2,3), x_2 = (1,0,2).$

Solution: Let $\alpha_1, \alpha_2 \in F$

 $\alpha_1(1,2,3) + \alpha_2(1,0,2) = (0,0,0)$, only solution is trivial solution $\alpha_1 = \alpha_2 = 0$. Thus, S is linearly independent.

Example (1.33):-Determine $S = \{x_1, x_2\}$ is linearly dependent or independent where $x_1 = (1,1,1), x_2 = (2,2,2)$?

Solution: Let $\alpha_1, \alpha_2 \in F$

$$\alpha_1(1,1,1) + \alpha_2(2,2,2) = (0,0,0)$$

$$\alpha_1 + 2\alpha_2 = 0 \Longrightarrow \alpha_1 = 2\alpha_2$$

So, S is linearly dependent

Theorem (1.34):- (without prove)

- (1) Every m vectors set in \mathbb{R}^n , if m > n then, the set is linearly dependent
- (2) A linearly independent set in \mathbb{R}^n has at most n vectors.

Remark (1.35):- Let L linear space over F, $S \subseteq L$ and $x_0 \in L$, then

- (1) If $0_L \in S \Longrightarrow S$ is linear dependent . i.e., every subspace is linear dependent set
- (2) If $x_0 \neq 0_2 \Longrightarrow \{x_0\}$ is linearly independent

Definition (1.36):- Let L be a linear space over F. A subset B of L is a **basis** if it is linearly independent and spans L i.e,

(1) B is linearly independent

$$(2)$$
 Span $(B) = L$ تولد الـ L تولد الـ B

The number of elements in a basis for L is called the **dimension** of L and is denoted by dim (L)

Example(1.37):- Consider the linear space $(\mathbb{R}^3, +, ...)$

The dimension of *L* is 3. i.e., $dim(\mathbb{R}^3) = 3$

Since
$$B = \{(1,0,0), (0,1,0), (0,0,1)\}$$
 is basis for \mathbb{R}^3