Cardio-active glycosides

Lab II Chemical tests for identification of cardio-active glycosides

Color reactions of cardio-active glycosides for cardinolides

1. Reaction due to (--CH2--)group of the lactone ring

> Baljet's Test

Equipment & Reagents:

Test tube, Picric Acid, sodium hydroxide solution.

Procedure:

Take **1ml** of fraction A, add **2 drops** of **Picric acid** then make it alkaline with Sod. hydroxide solution. (Litmus paper).

Results:

Turbid yellow to orange in color.

> Raymond 's Reaction:

Equipment and Reagents:

Test tube, 10% sodium hydroxide solution, 1% m-dinitrobenzene.

Procedure:

To 1ml of fraction A add 1-2 drops of 10% sodium hydroxide and few drops of an alcoholic solution of 1%m-dinitrobenzene.

Result: Pink color.

> Kedde's Reaction :

Equipment and Reagents:

Test tube, 1% 3, 5-dinitrobenzoic acid, 0.5 N aqueous methanolic KOH (50 %).

Procedure:

To a solution of glycoside add a solution of **1% 3,5-dinitrobenzoic acid** in 0.5N aqueous **methanolic KOH (50%)**.Report the color.

Result: Pink color.

> Legal's Reaction:

Few mls of the glycoside or the purified extract of the crude drug is dissolved in pyridine. When sodium hydroxide and sodium nitroprusside are added alternatively, a transient **blood-red** color develops. This is a test for the unsaturated lactone ring of the genin.

2. Reaction due to the steroidal nucleus:

► Lieberman's Sterol Reaction:

Equipment and Reagents:

Test tube, porcelain dish, anhydrous acetic acid. Conc. H₂SO₄.

Procedure:

Take 1ml of fraction A in a test tube then add 5ml of anhydrous acetic acid and shake well. Take 4 drops of the above mixture and place in a porcelain dish, then add one drop of conc. H₂SO₄.

Result:

A change of color from **rose**, through **red**, **violet** and **blue** to **green**. The colors are slightly different from compound to compound.

Discussion:

This reaction is due to the steroidal part of the molecule and it is characteristic of the **aglycone** of the scillarenin type (unsaturated steroidal part).

3. Reaction due to presence of 2-deoxy sugar

> Keller- Killian's Test

Equipment & Reagents:

Test tube, glacial acetic acid, 0.1% of ferric chloride solution, Conc. H₂SO₄.

Procedure:

Take 1ml of fraction A, and 2ml of glacial acetic acid, add 1 drop of 0.1 % of ferric chloride solution.

Take 1ml of conc. H_2SO_4 and add to the above mixture in drops so as to make two layers.

Results:

Two layers are formed; the upper one has **light bright green** color. The lower layer has transparent clear color (H_2SO_4 layer). The junction appears as a **reddish** – **brown** ring.

Identification of cardioactive glycosides by chromatography:

By the use of thin layer chromatography (T.L.C)

The stationary phase = Silica gel G.

The mobile phase = **Chloroform: Ethanol: Water (7:3:1)**

Or Ethyl acetate: Methanol: Water (75:10:5).

Or Ethyl acetate: Methanol: Water (81:11:8)

The standard compound = **Oleandrin.**

The spray reagent = Lieberman's reagent \mathbf{or} sulphuric acid reagent (5% ethanolic H_2SO_4

Mechanism of separation =Adsorption.

Developing = Ascending.

Other mobile phases:

Butanone: Xylene: Formamide (50:5:4),

Chloroform: tetrahydrofuran: Formamide (50:50:6).

Procedure:

- 1. Prepare **100ml** of mobile phase, and place it in the glass tank.
- 2. Cover the tank with glass lid and allow standing for 45 minutes before use.

Lec. Noor S Jaafar

- 3. Apply the sample spots (fraction A & fraction B), and the standard spot on the silica gel plates, on the base line.
- 4. Put the silica gel plate in the glass tank and allow the mobile phase to rise to about two-third the plate.
- 5. Remove the plate from the tank, and allow drying, and then detecting the spots by the use of the spray reagent and heat the plates at 105 -110 °C for 5-10 min in the oven.
- 6. Note the spots, and calculate the Rf value for each spot.

Study problems:

- Q1. What is the meaning of CATSC, explain with structure?
- **Q2.** Give the reasons for:
 - a) The addition of lead sub acetate, sodium phosphate and anhydrous sodium sulphate to the extract?
 - b) The use of chloroform: ethanol in partitioning of fraction A?
 - c) The use of HCl in the extraction procedure of cardio-active glycosides (Fraction B)?
 - d) The use of chloroform alone in partitioning of fraction B?
 - e) The use of picric acid in the performance of Baljet's test?
 - f) The use of glacial acetic acid in Keller Killian test procedure?
 - g) The addition of conc.H₂SO ₄ in Keller-Kellian test& Lieberman's sterol reactions?
- Q3. How can you identify an extract containing cardio-active glycosides?