Major intra and extra cellular electrolytes

Dr. Muthanna ALttaee

Electrolytes

Substances whose molecules dissociate into ions when they are placed in water. *CATIONS (+) ANIONS (-)* Medically significant / routinely ordered electrolytes include:

Cation:Positively Charged particles Anion:Negatively charged particles.Sodium (Na +)Chloride (Cl-)Potassium (K+)Bicarbonate (HCO₃-)Calcium (Ca++)Phosphate (HPO₄ -)Magnesium (Mg++)Magnesium (Mg++)

Electrochemical Equivalence

- Equivalent (Eq/L) = moles x valence >
 - Monovalent lons (Na+, K+, Cl-): >
 - 1 milliequivalent (mEq/L) = 1 millimole \circ
- Divalent lons (Ca⁺⁺, Mg⁺⁺, and HPO₄²⁻) >
 - 1 milliequivalent = 0.5 millimole •

Electrolyte Functions

- -Volume and osmotic regulation
- -Myocardial rhythm and contractility
- -Cofactors in enzyme activation
- -Regulation of ATPase ion pumps
- -Acid-base balance
- -Blood coagulation
- -Neuromuscular excitability
- -Production of ATP from glucose

Sodium

Functions

<u>-Most abundant extracellular cation.</u> <u>-Regulates body water distribution.</u> -Aids nerve impulse transmission. -Aids transfer of calcium into cells.

Regulation of Sodium

-Concentration depends on:

 -intake of water in response to thirst
 -excretion of water due to blood volume or -osmolality changes

 -Regulation of sodium

 -Kidneys can conserve or excrete Na+ depending on ECF and blood volume -by aldosterone

-and the renin-angiotensin system this system will stimulate the adrenal cortex to secrete aldosterone. Aldosterone *From the (adrenal cortex) Functions promote excretion of K in exchange for reabsorption of Na*

Sodium normal values Serum - 135-148 mEq/L

Clinical Features: Sodium

Hyponatremia: < 135 mmol/L Increased Na+ loss Aldosterone deficiency Addison's disease (hypoadrenalism, result in 🔩 aldosterone) Diabetes mellitus In acidosis of diabetes, Na is excreted with ketones Potassium depletion K normally excreted, if none, then Na Loss of gastric contents

Electrolyte replacement therapy

Dr. Muthanna ALttaee

- Identify when electrolyte replacement is needed and underlying cause
 - Potassium, Magnesium, Calcium, Phosphorous
- Understand different formulations, route, dosage and adverse effects of replacement
- Identify when goal replacement has been achieved
- Identify when maintenance therapy may be required

Hypokalemia

- Usually secondary to:
 - GI loss (vomiting, diarrhea)
 - Urinary losses (diuretics)

Also think about : co-existing electrolyte abnormality (hypomagnesemia), hyperaldosteronism, insulin therapy, alkalosis)

- Indications for replacement:
 - Evidence of potassium loss
 - Significant deficit in body potassium
 - Acute therapy in redistributive disorders (periodic paralysis, thyrotoxicosis)

- Symptoms: usually manifest when serum K <3.0
 - Muscle weakness (K <2.5), cramps
 - Respiratory muscle weakness
 - GI symptoms: anorexia, nausea, vomiting
 - Cardiac arrhythmias: atrial tachycardia, junctional tachycardia, AV block, ventricular tachycardia or fibrillation
 - sinus bradycardia, ST segment depression, decreased amplitude of T-wave, increased amplitude of U-wave.
 - If prolonged hypokalemia: functional changes in the kidney and glucose intolerance

Therapy

- Calculate potassium deficit (if normal distribution is present)
 - Acute: 0.27meq/L decrease in serum K+ for every 100meq reduction in total potassium stores
 - Chronic: 1meq/L decrease in serum K+ for every 200-400meq reduction in total potassium stores

Simplified:

<u>Goal K – Serum K</u> x 100 = total meq K required serum Cr

10meq of KCL will raise the serum K by ~.1meq/L

Formulations

- Potassium Chloride : PREFERRED AGENT
 - Most patients with hypokalemia and alkalosis are also chloride depleted
 - Raises serum potassium at a faster rate
 - Available as liquid, slow release tablet or capsule, and IV
 - Oral: 40meq tid-qid; IV 10meq/hr-20meq/hr
- Potassium Bicarbonate/Citrate/Acetate:
 - can be used in patients with hypokalemia and metabolic acidosis
- Potassium Phosphate:
 - Rarely used (Fanconi syndrome with phosphate wasting)

Ongoing Losses

- In general, use oral therapy
- KCL with normal or elevated serum bicarb
- Potassium citrate/acetate/bicarbonate in presence of acidosis (diarrhea)
- no need for continued supplementation with chronic renal potassium wasting (potassium sparing diuretic is more effective):
 - Chronic diuretic therapy
 - Primary aldosteronism

Adverse Effects

- Hyperkalemia
- Potassium is osmotically active- can increase tonicity of IV fluids
- Oral therapy- pills are large, can be difficult to swallow
- Peripheral IV therapy:
 - Pain
 - Phlebitis

Make sure to recheck serum potassium 2-4 hours later to assess response to therapy

Goal of Therapy

- Prevent life threatening complications
- Urgency of replacement depends on severity, rate of decline and co-morbid conditions
 - Elderly
 - underlying heart disease
 - on digoxin or anti-arrhythmic drugs

Example

- 72 year old female admitted for weakness and dehydration due to acute gastroenteritis. She is having up to 6 BM/day. Her serum K on admission is 2.5 meq and serum Cr is 2.0. ECG reveals u-waves.
 - How much potassium do you order?
 <u>4-2.5</u> x 100 = 75meq
 - 2
 - 2. What formulation do you choose?

KCL; if bicarb is low then consider potassium bicarb or acetate

What route should the potassium be administered?
 40meq (initial) oral and 40meq IV; (re-assess 2-4 hours I

later and give more orally if needed and tolerating po)

3. Serum potassium remains low, what else could be contributing?

Low magnesium, ongoing diarrhea

Hypomagnesemia

- Average daily intake: 360mg
- Presence of low magnesium (nearly 12% of hospitalized patients) suspected in following cases:
 - Chronic diarrhea
 - Hypocalcemia
 - Refractory hypokalemia
 - Ventricular arrhythmias
- Symptoms/Signs :
 - Tetany (seizures in children/neonates)
 - Hypokalemia
 - − Hypoparathyroidism→ hypocalcemia (<1.2mg/dL)
 - Vitamin D deficiency (due to low calcitriol)
 - ECG changes: widened QRS, peaked T-waves,→ dimunition, PR interval prolongation,
 - Ventricular arrhythmias (especially during ischemia or bypass)

Therapy

- IV if symptomatic (magnesium sulfate)
 - − 1.5-1.9mg/dL→ 2g magnesium sulfate IV
 - 1.2-1.4mg/dL→4g
 - .8-1.1mg/dL→ 6g
 - <.8mg/dL→ 8g
 - Low K/Ca w/ tetany/arrhythmia: 50meq (~6g) of IV Mg given slowly over 8-24 hrs
- Oral if asymptomatic: each tablet contains 60-84mg, give 2-4 tabs/day in mild cases, 6-8 tabs for severe depletion

-Slow Mag (magnesium chloride)

-Mag-Tab SR (magnesium lactate)

-Magnesium Oxide

- Avoid replacement in patients with reduced GFR
- Treat underlying disease (diuretics, alcohol, uncontrolled diabetes)

Therapy

- Goal of therapy:
 - maintain plasma magnesium concentration over 1.0mg/dL acutely in symptomatic patients
 - In cardiac patients, maintain Mg >1.7 (usually goal 2.0mg/dL) to avoid arrhythmias
 - Serum levels are poor reflection of actual body stores (mostly intracellular) so aim for high-normal serum level

Adverse effects:

- Abrupt elevation of plasma Mg can remove the stimulus for Mg retention and lead to increased excretion
- Diarrhea
- Drug interactions
- Magnesium intoxication

Hypocalcemia

- Clinical Manifestations:
 - Acute: serum Ca <7.5mg/dL
 - Neurologic: tetany (from paresthesias to seizures and bronchospasm)
 - Cardiac: prolonged QT, hypotension, heart failure, arrhythmia
 - Papilledema

5 5 7772 5 77) 5

- Psychiatric manifestations
- Chronic:
 - EPS, dementia, cataracts, dry skin
- Etiology:
 - Vitamin D
 - PTH
 - Hypomagnesemia
 - Drugs

Therapy

- Correct for albumin
 - Ca lower by 0.8mg/dL for every 1g/dL reduction in serum albumin
 - or check ionized calcium
- Level can be altered by acid/base disturbance
- Symptomatic or acute serum Ca <7.5mg/dL:
 - IV Calcium gluconate 1-2g(amp) over 10-20min (temporary rise for 2-3 hrs, must be followed by slower infusion 50mL/hr if Ca remains low)
- Asymptomatic and serum Ca >7.5mg/dL or chronic:
 - Oral therapy: calcium carbonate or citrate 1-2g/day (500mg bid-qid)
- Add Vitamin D in following cases:
 - Hypoparathyroidism: Vitamin D (Calcitriol .25-.5mcg bid)
 - Vitamin D deficiency: 50,000IU/week for 6-8 weeks then 800-1000IU daily
 - Erogcalciferol (D3)
 - Cholecalciferol (D2)

Therapy

- Goals of therapy:
 - Treat and prevent manifestations of hypocalcemia
 - In hypoparathyroidism: to raise serum Ca to low-normal range (8.0-8.5mg/dL)
- Adverse Effects:
 - Rapid infusion- bradycardia, hypotension
 - Extravasation-tissue necrosis
 - Hypercalcemia
 - Hypercalciuria
 - Constipation
 - Hypophosphatemia
 - Milk-alkali syndrome

Example

35 y/o male with hypoparathyroidism , presents with serum Ca of 6.2, albumin of 3.8, ionized Ca .77. Has some mild muscle cramps, otherwise asymptomatic.

- How do you initially treat his hypocalcemia?
 IV Calcium Gluconate 1g IV over 10-20min
- 2. Repeat serum Ca is 6.6, how do you proceed with treatment? -start Calcium gluconate 1mg/mL in D5W 50mL/hr infusion
- 2. After initial treatment, what maintenance regimen should you initiate?

-Calcitriol (.5mcg bid, titrated up in this patient)-Calcium carbonate (1950mg po tid in this patient)

Hypophosphatemia

- Due to:
 - Restribution
 - Decreased intestinal absorption (small bowel)
 - Increased urinary excretion
- Common situations:
 - Chronic alcoholism
 - IV hyperalimentation w/o phosphate supplementation
 - Refeeding syndrome
 - "Hungry Bone" syndrome
 - Respiratory alkalosis (hyperventilation)
 - Chronic ingestion of antacids (containing aluminum or Mg)
 - Hyperparathyroidism (primary or secondary)
 - Vitamin D deficiency
 - Fanconi syndrome (associated with multiple myeloma in adults)

Hypophosphatemia

Signs/Symptoms: <2.0mg/dL, severe usually when serum PO4
 <1.0mg/dL

Acute:

- Metabolic encephalopathy- irritability, paresthesias→ confusion, seizure, coma
- Respiratory failure due to weakened diaphragm
- Reduction in cardiac output leading to heart failure
- Proximal myopathy, dysphagia, ileus
- Elevated CPK, rhabdomyolysis
- Coagulopathy with thrombocytopenia

Chronic:

- Hypercalciuria
- Increased bone resorption: Osteomalacia, Ricketts

Treatment

- Usually aimed at treating the underlying cause (resolution of diarrhea, Vit D therapy, d/c antacid, etc.)
- If tx is needed, oral therapy is preferred
 - Asymptomatic, serum PO4 <2.0mg/dL or symptomatic with serum PO4 1.0-1.9mg/dL
 - Available as tablet and powder/packets (sodium phosphate, potassium phosphate) 250-500mg tid-qid (w/ meals) over 24 hours
 - --- Decrease dose by one-half in patients with reduced GFR
 - Increase dose in severely obese patients
 - Recheck after 12 hours to determine if additional/continued supplementation is required

Treatment

- IV therapy if symptomatic and serum PO4 <1.0mg/dL
 - sodium phosphate is preferred
 - Weight based
 - PO4 >1.3mg/dL: .08-.24mmol/kg over 6 hours
 - PO4 <1.3mg/dL: .25mmol-.05/kg over 8-12 hours
 - Increased dosage for critically ill patients in ICU
 - Frequent monitoring- recheck levels every 6 hours
 - Switch to oral when patient able or serum PO4 >1.5mg/dL
- Goal of therapy: increase serum PO4 to 2.0mg/dL
- Side effects of therapy:

-Oral: Diarrhea, nausea, hyperkalemia (K-phos)

-IV: Hyperphosphatemia→ hypocalcemia, AKI, arrhythmia

Maintenance therapy is not usually required

	Preferred Route	Preferred Formulation	(D) () () () () () () () () () () () () ()	Response
Potassium	Oral	Potassium Chloride	10meq tabs	.1 increase serum K for 10meq given
Magnesium	Oral IV- arrhythmia	Magnesium Oxide Magnesium Sulfate	2-4 tabs/day (420mg; 20meq/tab) 2g IVP or slow infusion	.5 increase for 2g (50meq) IV
Calcium	IV- acute Oral- maintenance	Calcium Gluconate Calcium Carbonate	1-2amp (rapid)1mg/mL in D5W,50mL/hr Infusion1-2g/day	.5mg/dL increase serum Ca for 1g given
Phosphate	Oral	Sodium Phosphate (neutra-phos)	1-2 packet tid-qid 1packet=250mg or 8mmol (weight based)	1.2mg/dL increase serum PO4