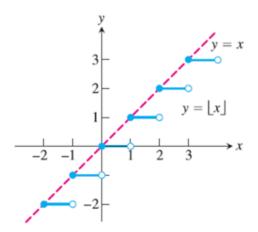
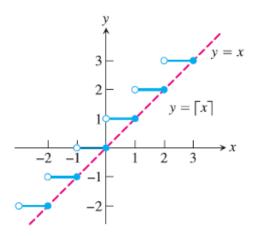

Sometimes a function is described by using different formulas on different parts of its domain. One example is the **absolute value function**.

Example 3:

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0, \end{cases}$$


Example 4: the function

$$f(x) = \begin{cases} -x, & x < 0 \\ x^2, & 0 \le x \le 1 \\ 1, & x > 1 \end{cases}$$


ν

Example 5: greatest integer function or **the integer floor function**: The function whose value at any number x is the *greatest integer less than or equal to x.* It is denoted $\lfloor x \rfloor$. Observe that:

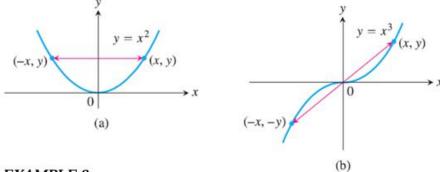
$$\lfloor 2.4 \rfloor = 2$$
, $\lfloor 1.9 \rfloor = 1$, $\lfloor 0 \rfloor = 0$, $\lfloor -1.2 \rfloor = -2$, $\lfloor 2 \rfloor = 2$, $\lfloor 0.2 \rfloor = 0$, $\lfloor -0.3 \rfloor = -1$ $\lfloor -2 \rfloor = -2$.

Example 6: least integer function or the integer ceiling function: The function whose value at any number x is the *smallest integer greater than or equal to x*. It is denoted [x].

DEFINITIONS Let f be a function defined on an interval I and let x_1 and x_2 be any two points in I.

- 1. If $f(x_2) > f(x_1)$ whenever $x_1 < x_2$, then f is said to be increasing on I.
- 2. If $f(x_2) < f(x_1)$ whenever $x_1 < x_2$, then f is said to be **decreasing** on I.

EXAMPLE 7: The function graphed in example 4 is decreasing on $(-\infty,0]$ and increasing on [0, 1]. The function is neither increasing nor decreasing on the interval $[1,\infty)$.


1.4 Even Functions and Odd Functions: Symmetry

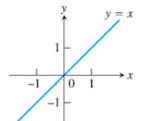
DEFINITIONS A function y = f(x) is an **even function of** x if f(-x) = f(x), **odd function of** x if f(-x) = -f(x),

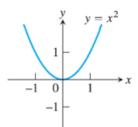
for every x in the function's domain.

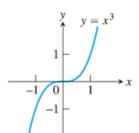
The graph of an even function is symmetric about they-axis. Since f(-x) = f(x), a point (x,y) lies on the graph if and only if the point (-x,y) lies on the graph. A reflection across the y-axis leaves the graph unchanged.

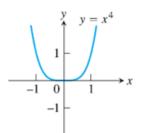
The graph of an odd function is symmetric about the origin. Since f(-x) = -f(x), a point (x,y) lies on the graph if and only if the point (-x, -y) lies on the graph.

EXAMPLE 8:

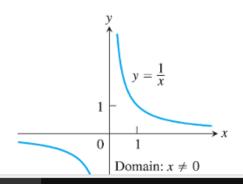

 $f(x) = x^2$ Even function: $(-x)^2 = x^2$ for all x; symmetry about y-axis.

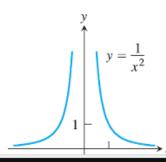

 $f(x) = x^2 + 1$ Even function: $(-x)^2 + 1 = x^2 + 1$ for all x; symmetry about y-axis


f(x) = x Odd function: (-x) = -x for all x; symmetry about the origin.


f(x) = x + 1 Not odd: f(-x) = -x + 1, but -f(x) = -x - 1. The two are not equal.

1.5 Common Function





6

