Chapter 1: Functions

1.1 Functions , Domain and Range

Def: A function f from a set D to a set Y is a rule that assigns a unique (single) element $f(x) \in Y$ to each element $x \in D$.

The set D of all possible input values is called the **domain** of the function. The set of all values of f(x) as x varies throughout D is called the **range** of the function.

EXAMPLE 1

Function	Domain (x)	Range (y)
$y = x^2$	$(-\infty, \infty)$	$[0,\infty)$
y = 1/x	$(-\infty,0)\cup(0,\infty)$	$(-\infty,0)\cup(0,\infty)$
$y = \sqrt{x}$	$[0,\infty)$	$[0, \infty)$
$y = \sqrt{4 - x}$	$(-\infty, 4]$	$[0,\infty)$
$y = \sqrt{1 - x^2}$	[-1, 1]	[0, 1]

Solution:

1- $y = x^2$ gives a real y-value for any real number x, so the domain is $(-\infty,\infty)$.

The range of $y=x^2$ is $[0,\infty)$ because the square of any real number is nonnegative and $x=\sqrt{y}$, x to be real $y \ge 0$.

2- y = 1/x gives a real y-value for every x except x = 0. For the rules of arithmetic, we cannot divide any number by zero. The domain is $\mathbb{R}\setminus\{0\}$. The range of y = 1/x, can be found by x = 1/y is the input assigned to the output value y. Then range is $\mathbb{R}\setminus\{0\}$.

3- $y = \sqrt{x}$ gives a real y-value only if $x \ge 0$ so the domain is $[0,\infty)$.

2

The range of $y = \sqrt{x}$ can be found by $y \ge 0$ and $x = y^2$ so range $= [0, \infty)$

 $4-y = \sqrt{4-x}$: 4-x ≥ 0 → 4≥x. The formula gives real y-values for all x ≥ 4.

The range : first $y \ge 0$, second $x = 4 - y^2 \rightarrow \text{ range } = [0, \infty)$.

The range of $y = \sqrt{x}$ can be found by $y \ge 0$ and $x = y^2$ so range $= [0, \infty)$

 $4-y = \sqrt{4-x}$: $4-x \ge 0 \rightarrow 4 \ge x$. The formula gives real y-values for all $x \ge 4$.

The range : first $y \ge 0$, second $x = 4 - y^2 \rightarrow \text{range} = [0, \infty)$.

5-
$$y = \sqrt{1-x^2}$$
 gives a real y-value if $1-x^2 \ge 0 \Rightarrow (1-x)(1+x) \ge 0$

Domain= [-1,1].

Range: First $y \ge 0$, second $x^2 = 1 - y^2 \implies x = \pm \sqrt{1 - y^2}$ which means that we get the same solution above i.e. y = [-1,1] this implies that the range should be [0.1].

1.2 Graphs of Functions

If f is a function with domain D, its graph consists of the points in the Cartesian plane whose coordinates are the input-output pairs for f. In set notation, the graph is $\{(x,f(x)) \mid x \in D\}$.

EXAMPLE 1: The graph of the function f(x) = x + 2

EXAMPLE 1: The graph of the function f(x) = x + 2

EXAMPLE 2: Graph the function $y = x^2$ over the interval [-2, 2].

1.3 Piecewise-Defined Functions