Partial differential Equations Chapter 3 Dr. Hussain Ali Mohamad
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Example 3.14. For a particular solution of the equation

(3DZ + 4D, Dy, — D, Ju = e*™3Y,

note that
U, = ! ex_Sy
’  (3Dz+4D,D, —D,)
— 1 ex—3y — _lex—Sy
[3+4(—3) — (—3)] 6

Example 3.15. For a particular solution of partial differential equation
(3D2 — D, )u = sin(ax + by)

we have
~_sin(ax + by) in(ax + by)
u, = ————SIn(ax V) = sin(ax v
?  (3Dz-D,) (-3a2-D,)
D, —3a* bcos(ax + by) — 3a?sin(ax + by)
= "Dz _gge i@+ by) = b7 + 947

Example 3.16. To find a particular solution for the equation
(3D2 — D, )u = e*sin(x + y)
we have
1 *sin(x + ) x 1
U, = ————e"sIn(x =e
¥ (3Dz-D,) Y (3(Dy +1)2-D,)
1

= eX

(3D + 6D, +3—D,)

sin(x +y)

sin(x + y)

= e* 1
(3(-1);3 + 6D, +3-D,)

sin(x + y)
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_ 6D,+Dy) .
sin(x +y) = e* ﬁsm(x +y)

X
(6Dx—Dy)

=e

L 7cos(x +y)
—35

1
= —gexcos(x +y)

Example 3.17. To solve u;; — c?u,, = 0, such that u(x,0) = e™%,
u:(x,0) = 1 + x, note that the partial differential equation can be written as
(D; — ¢D,.)(Dy + cD,)u = 0, which gives the solutionas u = f(x + ct) +
g(x — ct). This solution is known as the d'Alembert's solution (see Eq
(5.24)). Applying the initial conditions, we get
fG) +9g(x) =e™*

cf'(x)—cg'(x) =1+x

On integrating (3.16) with respect to x we get

1 x?
f(x) —gx) =E(X+7>+Cl

Egs (3.15) and (3.17) yield

1 1
f(X) =§e‘x+z—c<x+

_1 —-X 1 _|_

Hence

1
u= Ee‘x(e“ +e )+ (x + 1t

A general scheme for initial value problems for the wave equation is as
follows: Solve u;; = c?u,,, subject to the conditions u(x, 0) = ¢ (x),
u:(x,0) = ' (x). Then as in the above example

fx) +g(x) = ¢(x)
cf'(x) —cg'(x) ='(x)

Consequently



Partial differential Equations Chapter 3 Dr. Hussain Ali Mohamad

1 1
F) = 5|60 + v + ¢
1 1
90 = 3[60) - v ¢
which yields
1
u(x,t) ==[dp(x+ct) —p(x —ct)] + o [Y(x + ct) —Y(x — ct)]

Example 3.18. It is interesting to note that we can solve the Laplace equation

N =

by the above method. We will solve
Uy T Uyy = 0

such that u(x, 0) = ¢(x) and u, (x, 0) = 1’(x). We can express u,, +
Uy, = 0as

(Dy +iD,)(Dy —iD,)u =0
and, therefore, its general solution is

u=f(x+iy)+gx—iy)

Applying the initial conditions, we get f(x) + g(x) = ¢(x), and if'(x) —
ig'(x) =Y’ (x). Consequently

1
fl) = §[¢(x) — ip(x) +c]
1
gx) = §[¢(x) + ip(x) —c]
Thus,
1 .
u(,y) = 5[0+ ) + $(x = in)] + 5 [Px - ) = YCx + )]

1 . .
>, the solution is
1+x

The final value of wisreal. If ¢(x) = e ™™, and ¢’ =

given by
1 . . [
u(x,y) = 3 [eCF) 4 =] 5 [tan™1(x — iy) — tan"(x + iy)]

- 1l x?+ (1 -y)?
me Sy TN Ty 1 y)2

where we have used the formula
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_ i (1+2)
tana =iz, or a = —=In
2 1—2z

with @ = tan™1(x — iy) — tan™1(x + iy).
Example 3.19. Consider
U = CPUyy, 0<x <1

subject to the conditions u(0,t) = u(l,t) = 0, fort = 0, and u(x, 0) = x,
us(x,0) = 0. The general solution is

u=f(x+ct)+g(x—-ct)
From the boundary conditions we find that

flct) + g(=ct) =0, or f(z) +g(-2) =0

which yields f(z) = —g(—=z). Also f(L + ct) + g(l — ct) = 0 is equivalent
to

fet+D)—f(ct=01)=0
which in turn gives f(z) = f(z + 21). This last equation implies that the
function f(x) is a periodic function of period 21. The solution, thus, reduces
to

u=f(ct+x)—f(ct—x)
Applying the initial conditions, we get

f)=f(=x)=x, and f'(x) = f'(=x) =0

i.e., f'(x) is an even function, which means that f(x) is an odd function,
I.e., f(x) = —f(—x). Hence 2f(x) = x. Since f(x) is an odd periodic
function of period 21, it can be expressed as a Fourier sine series. Thus

_x_li (-D™"! nnx
f(x)—z—ﬂ ‘ - sin l

which yields

u(x,t) = %zo: (_172“ [sinnTn (ct+1)— sinnTﬂ(ct — l)]
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215: (—D™Y  nmx  nmct
=— sin cos
L n l !

Other techniques from ordinary differential equations such as the method of
undetermined coefficients and the variation of parameters
3.4. Exercises

Evaluate (use the inverse operator method of 83.1):

3.1. (D —3)"1(x3+ 3x—75).

Ans. —% (9x3 + 9x2 + 33x — 34).

3.2.(D -1 12x).

Ans. —2x.

3.3. (D — 1) 1(x?).

Ans. —(x? + 2x + 2).

3.4. (4D? — 5D) 1 (x%e7%).

Ans. —?(x2 + %x + Zgif).

3.5. (D? — 3D + 2) 1sin 2x.

Ans. 23—0 cos2x — % sin 2x.

3.6. D~?(2sin 2x).

Ans. — % sin 2x..

3.7. D 3x.

Ans. 2.

3.8. D%(3e3X).
3x

Ans. .
3
3.9.D71(2x + 3).

Ans. x? + 3x.
3.10. (D3 — D?)~1(2x3).
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Ans. —2 (i + x + x3 + 3x2).
20 4
3.11. (D? + 3D + 2)71(e™).

1-3i ;
Ans. —e'*,
10

3.12. (D? — 3D + 2)"1(3sinx).

Ans. % (sinx + 3cos x).

3.13. (D? + 3D + 2)" (8 + 6e* + 2sinx).

Ans. 4 + e* +%(sinx — 3c0s X).

3.14. (D°+ 2D3 + D)™*(2x + sinx + cos x)

Ans. x2 + %2 (cos x — sinx).

Find the general solution of the following partial differential equations:
3.15.(3DZ — 2D,D, —5D2)u =3x +y + *7Y.

ANS. u = f(5x+3y) + g(x —y) + ;—ix:" + %xzy + %xex‘y.

3.16. (D — 10DZD2 + 9D )u = 135sin(3x + 2y).

ANS. fiBx+y)+ fob(x —3y) + g1(x +y) + g,(x —y) —sin(3x + 2y).
3.17. (Dx — 2Dy)3u = 125e*siny.

ANs. f1(2x +y) + xf,(2x + y) + x*f5(2x + y) — e*(2cosy + 11siny).

3.18. Find the particular solution for the following partial differential
equations:

(@) (DZ — D, )u = 17e**¥sin(x — 2y).

Ans. —e**Y{sin(x — 2y) + 4cos(x — 2y)}.

(b) (DZ + DZ)u = 6xy + 25e3*+47.

Ans. x3y + e3x¥t4Y,

(c) (DZ + DZ — D, )u = 37e>Ycos(3x + 4y).

ANs. e>Ysin(3x + 4y).

3.19. Show that u = f(ay — bx)e =</ is also a solution of
(aDy +bDy +c)u=0
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3.20. Find the general solution of 3u, + 4u, — 2u = 1, subject to the initial
condition u(x, 0) = x?2.
Solution. Here tan 8 = 4/3, thus

dw 2 1

% 5V75

whose general solution is

1
w(Em) = =5+ gme*’s

or
1 3 4
= __ 22 6x/25+8y/25
u(x,y) 2+g(5y 5x>e

3.21. Find the general solution of u, — u,, + u = 1, such that u(x, 0) =

sin x.

SOLUTION. tan 8 = —1, thus 8 = 4w /4, and
ow 1 1
—_— W =——
9§ 2 V2

whose general solutionisw =1 + g(n)ef/‘/f, or

ulx, =1+ (1 — )e(y_x)/z
(x, ) g >

Using the initial condition, we get sinx = 1 + G(—x/v2)e /2, so that

g(m) = =(sinV2n + e "2
Then
u(x,y) = 1 — (sinV2n + 1)e MV2edN2 = 1 ¢ [1—sin(x +y)]e”
3.22. Solve u, + u, —u = 0, subject to the initial condition u(x, 0) = h(x).

SOLUTION. Here tan 6 = 1, thus 8 = m /4, and \/TZ—‘:: = w, whose general

solution is w = g(n)e$/V2, or
u(x,y) = g(me*"?
The initial condition yields
h(x) = g(~x/N2)e™/* = g(me"/V?
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or g(n) = h(—v2n)e™V2. Hence
u(x,y) = h(—V2n)e/'2 = h(x — y)e¥
3.23. Solve u,; — c?u,, = 0, subject to the conditions u(x, 0) = In(1 + x?)
and u;(x,0) = e™*.
Ans,

u(x, t) = =[In{1 + (x + ct)?} + In{1 + (x — ct)?}] + %e‘xcosh ct

N =





