

1.6 Combining Functions (Sums, Differences, Products, and Quotients)

$$(f + g)(x) = f(x) + g(x).$$

$$(f - g)(x) = f(x) - g(x).$$

$$(fg)(x) = f(x)g(x).$$

At each of these functions the domain = domain (f) \cap *domain*(*g*)

At any point of domain (f) \cap *domain*(*g*) at which $g(x) \neq 0$, we can also define the function f/g by the formula:

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
 (where $g(x) \neq 0$)

Functions can also be multiplied by constants: If c is a real number, then the function cf is defined for all x in the domain of f by (cf)(x) = cf(x).

EXAMPLE 1 The functions defined by the formulas

$$f(x) = \sqrt{x}$$
 and $g(x) = \sqrt{1-x}$

have domains $D(f) = [0, \infty)$ and $D(g) = (-\infty, 1]$. The points common to these domains are the points

$$[0, \infty) \cap (-\infty, 1] = [0, 1].$$

The following table summarizes the formulas and domains for the various algebraic combinations of the two functions. We also write $f \cdot g$ for the product function fg.

Function	Formula	Domain
f + g	$(f+g)(x) = \sqrt{x} + \sqrt{1-x}$	$[0,1] = D(f) \cap D(g)$
f - g	$(f-g)(x) = \sqrt{x} - \sqrt{1-x}$	[0, 1]
g-f	$(g - f)(x) = \sqrt{1 - x} - \sqrt{x}$ $(f \cdot g)(x) = f(x)g(x) = \sqrt{x(1 - x)}$	[0, 1] [0, 1]
$f \cdot g$		
f/g	$\frac{f}{g}(x) = \frac{f(x)}{g(x)} = \sqrt{\frac{x}{1-x}}$	[0, 1) (x = 1 excluded)
g/f	$\frac{g}{f}(x) = \frac{g(x)}{f(x)} = \sqrt{\frac{1-x}{x}}$	(0,1] (x = 0 excluded)

1.7 Composite Functions

Definition: If f and g are functions, the composite function fog is defined by $(f \circ g)(x) = f(g(x)).$

The domain of fog consists of the numbers x in the domain of g for which g(x) lies in the domain of f.

$$x \longrightarrow g \longrightarrow f(g(x))$$

EXAMPLE 2 If
$$f(x) = \sqrt{x}$$
 and $g(x) = x + 1$, find

(a)
$$(f \circ g)(x)$$

(b)
$$(g \circ f)(x)$$

(c)
$$(f \circ f)(x)$$

(a)
$$(f \circ g)(x)$$
 (b) $(g \circ f)(x)$ (c) $(f \circ f)(x)$ (d) $(g \circ g)(x)$.

Composite

(a)
$$(f \circ g)(x) = f(g(x)) = \sqrt{g(x)} = \sqrt{x+1}$$
 [-1, \infty)

(b)
$$(g \circ f)(x) = g(f(x)) = f(x) + 1 = \sqrt{x} + 1$$
 $[0, \infty)$

(c)
$$(f \circ f)(x) = f(f(x)) = \sqrt{f(x)} = \sqrt{\sqrt{x}} = x^{1/4}$$
 [0, ∞)

(d)
$$(g \circ g)(x) = g(g(x)) = g(x) + 1 = (x+1) + 1 = x+2$$
 $(-\infty, \infty)$

To see why the domain of $f \circ g$ is $[-1, \infty)$, notice that g(x) = x + 1 is defined for all real x but belongs to the domain of f only if $x + 1 \ge 0$, that is to say, when $x \ge -1$.

Notice that if $f(x) = x^2$ and $g(x) = \sqrt{x}$, then $(f \circ g)(x) = (\sqrt{x})^2 = x$. However, the domain of $f \circ g$ is $[0, \infty)$, not $(-\infty, \infty)$, since \sqrt{x} requires $x \ge 0$.

1.8 Shifting a Graph of a Function

Vertical Shifts

$$y = f(x) + k$$
 Shifts the graph of $f up k$ units if $k > 0$

Shifts it down | k | units if k < 0

Horizontal Shifts

$$y = f(x + h)$$
 Shifts the graph of f left h units if $h > 0$
Shifts it $right|h|$ units if $h < 0$

(b) Adding -2 to the right-hand side of the formula $y = x^2$ to get $y = x^2 - 2$ shifts the graph down 2 units (Figure 1.29).

9

(c) Adding 3 to x in $y = x^2$ to get $y = (x + 3)^2$ shifts the graph 3 units to the left

(d) Adding -2 to x in y = |x|, and then adding -1 to the result, gives y = |x - 2| and shifts the graph 2 units to the right and 1 unit down (Figure 1.31).

Vertical and Horizontal Scaling and Reflecting Formulas

For c > 1, the graph is scaled:

y = cf(x) Stretches the graph of f vertically by a factor of c.

 $y = \frac{1}{c} f(x)$ Compresses the graph of f vertically by a factor of c.

y = f(cx) Compresses the graph of f horizontally by a factor of c.

y = f(x/c) Stretches the graph of f horizontally by a factor of c.

For c = -1, the graph is reflected:

- y = -f(x) Reflects the graph of f across the x-axis.
- y = f(-x) Reflects the graph of f across the y-axis.

EXAMPLE 4 Here we scale and reflect the graph of $y = \sqrt{x}$.

(a) Vertical: Multiplying the right-hand side of $y = \sqrt{x}$ by 3 to get $y = 3\sqrt{x}$ stretches the graph vertically by a factor of 3, whereas multiplying by 1/3 compresses the graph by a factor of 3 (Figure 1.32).

- **(b) Horizontal:** The graph of $y = \sqrt{3x}$ is a horizontal compression of the graph of $y = \sqrt{x}$ by a factor of 3, and $y = \sqrt{x/3}$ is a horizontal stretching by a factor of 3 (Figure 1.33). Note that $y = \sqrt{3x} = \sqrt{3}\sqrt{x}$ so a horizontal compression *may* correspond to a vertical stretching by a different scaling factor. Likewise, a horizontal stretching may correspond to a vertical compression by a different scaling factor.
- (c) Reflection: The graph of $y = -\sqrt{x}$ is a reflection of $y = \sqrt{x}$ across the x-axis, and $y = \sqrt{-x}$ is a reflection across the y-axis (Figure 1.34).

