
Systems of Differential Equations            Hussain Ali Mohamad 

 الفصل الدراسي الثاني

Theory of Differential Equations 

Chapter one: Systems of differential equations 

Introduction: 

First Order Differential Equations  

    (   )                                     (  ) 

    (   )       (  )                    (   ) 

 ̇( )   (   ( ))        ( ) 

Definition 1. Let  (   ) be real valued function with Domain      a vector 

function  ( ) is said to be a solution of equation (1) if it satisfies equation (1).  

1.1.   Existence and uniqueness theorem  

Theorem 1. If   (   ) is continuous on open domain      so for any (     )  

   there is a solution  ( )      such that  (  )            

Theorem 2. If   (   ) and 
   (   )

   
 continuous in an open domain      so for any 

(     )     there is a unique solution  ( )      such that  (  )           

1.2.  Introduction  

  ( )   (   ) 

  
    (            )

  
    (            )

 
  

    (            )

           (   ) 

Linear differential system 

  
     ( )      ( )        ( )     ( )

  
     ( )      ( )        ( )     ( )

 
  

     ( )      ( )        ( )     ( )

           (   ) 

A differential equation in standard form (1.2) is homogeneous  if   ( )      

         Now, the homogeneous linear system with constant coefficients 

  
                     

  
                     

 
  

                     

           (   ) 

The(scalar) vector   [

  

  

 
  

] is said vector valued function if  ( )  [

  ( )
  ( )

 
  ( )

] 



Systems of Differential Equations            Hussain Ali Mohamad 

  (

       

   
       

+ 

then the system (1.3) can be written as 

 ̇( )    ( )  (

   

   

 
 

   

   

   
       

,[

  ( )
  ( )

 
  ( )

]  (   ) 

Theorem 1. Let  ( ) and  ( ) be two solutions of (1.4). Then  

(a)   ( ) is a solution, for any constant  , and (b)  ( )   ( ) is again a solution. 

It is clear that  (  )        ̇  (  ̇)  

 انٗ يعادنت ٔاحذة يٍ انشحبت انثاَٛت َخبع ياٚهٙ       نخحٕٚم َظاو 1- 

Example 1.  Convert  [
  

 

  
 ]  0

  
   

1 0
  

  
1   to one equation 

  
          

        

     
       

    
           

     
    

          
 

   
          

      
            

         

 َخبع ياٚهٙ       َظاو يعادنت ٔاحذة يٍ انشحبت انثاَٛت انٗ نخحٕٚم  2-

Example 2.  Convert            to a system 

Let               
       

       [
  

 

  
 ]  0

  
  

1 0
  

  
1  

 نى ٚشخع انٗ انُظاو الاصهٙ ٔنكٍ انُظايٍٛ نًٓا حفس انًعادنت انًًٛزة. 2َلاحظ فٙ يثال  يلاحظت:

Definition. A set of vectors               in   is said to be linearly dependent  

if one of these vectors is a linear combination of the others. That is a set of vectors  

              is said to be linearly dependent if there exist constants  

             , not all zero such that                         

If all                 then               is said linearly independent. 

Example 3. Show that            are linearly independent while            are 

linearly dependent. 

   
     

       
           ( ) 

  ,      
      

  -             

       
      

          ( ) 

Differentiate    
      

       ,       
 -     

       
             ( ) 

Differentiate     
          put it in (3)       from (2)        
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 So that            are linearly independent. To see            are linearly 

independent. 

   
      

      
       ,          -                   

           

 ا٘ اٌ كم ثابج ٚعخًذ عهٗ انباقٍٛ

Example 4. Let      and let         and    be the vectors  

   [
 

  
 

]     [
 
 
 
]     [

 
 
 
]   

  [
 

  
 

]    [
 
 
 
]     [

 
 
 
]          

                    ( ) 

                      ( ) 

                     ( ) 

From (1),(3) we get                            , linearly 

dependent, has infinitely many solutions 

Example 5. Let      and let          be the vectors  

   0
 
 
1     0

 
 
1   

   0
  
  

1       then        linearly independent 

1.2 The eigenvalue-eigenvector method  

of finding solutions 

Our goal is to find n linearly independent solutions   ( )   ( )        ( ). Now,  

recall that both the first-order and second-order linear homogeneous scalar  

equations have exponential functions as solutions. This suggests that we try 

 ̇         ( )  [

  ( )

  ( )
 

  ( )

]       (

       

   
       

+    ( ) 

Let  ( )          where   is a constant vector, to see when   be a solution of (1). 

 ̇( )              and                

So   is a solution of (1) if and only if             that is  

                          ( ) 

Thus   ( )       is a solution of (1) if and only if (2) holds. 

Definition. A nonzero vector   satisfying (2) is called an eigenvector of    
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with eigenvalue  . 

Remark if     then (2) is trivial (not acceptable ) 

From (2) we get           

(    )                        ( ) 

So if   is eigenvector then     then    (    )    that is  

    [

         
         
 

   

 
   

 
 

   

   

 
     

]                      ( ) 

The characteristic polynomial of the matrix           is said the eigenvalue of A. 

First: Real distinct eigenvalues: 

Theorem 1. Any n eigenvectors               of   with distinct eigenvalues  

              respectively, are linearly independent. 

Proof: By induction we have               nonzero eigenvector and              

not  equal eigenvalue(     ),  

1. if     the theorem is true, 

2. Suppose it is true when     that is 

                      and                      ( ) 

3. To see the statement is true when       then  

                                   ( ) 

                                    

                                         ( ) 

Multiplying (b) by    and subtract from (c) we get 

  (     )         (     )       (       )        ( ) 

Since                 are   Linearly independent then     (       )    

And                hence                     

Example 1. Find all solutions of the equation  

 ̇  [
      
      
      

]  

Solution. The characteristic polynomial of the matrix   from (4) is 

   [
        

        
        

]    

   (   )(   )(   )        (   )  (   )   (   )  

 (   )(   )(    )   
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Thus the eigenvalues of A are    = 1,   = 3, and      . 

(i)     : We find the corresponding eigenvector    [

   

   

   

] from (3) 

(     )   [
      
      
      

] [

   

   

   

]    

This implies that                                            

Solving these equations we get                  . Let       then 

               then    [
  
 
 

] 

  ( )           [
  
 
 

] 

(ii)     : We find the corresponding eigenvector    [

   

   

   

] from (3) 

(     )   [
       
      
      

] [

   

   

   

]    

This implies that                                          

       

Solving these equations we get                 . Let       then 

              then    [
 
 
 
] 

  ( )            [
 
 
 
] 

(iii)      : We find the corresponding eigenvector    [

   

   

   

] from (3) 

(     )   [
      
      
     

] [

   

   

   

]    

This implies that                                          

      

Solving these equations we get                 . Let       then 
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               then    [
  
 
 

] 

  ( )             [
  
 
 

] 

The general solution is  

 ( )                    
 [

  
  
 

]     
  [

 
 
 
]     

   [
  
 
 

] 

 ( )  *

    
     

      
   

     
      

      
   

   
     

      
   

+ 

or ( )  [
           

            

         

] [

  

  

  

]   ( )    ( ) is said fundamental matrix 

Example 2. Solve the initial-value problem  ̇  0
   
  

1   ( )  0
 
 
1 

Solution. The characteristic polynomial of the matrix   by (4) is 

   (    )          0
     

    
1              

 (   )(   )                 

(i)       to find the corresponding eigenvector (     )         0
 
 
1   

(    )    

(ii) 

Example 2. Solve the initial-value problem  ̇  

[
 
 
 
 
     
     
     
     
     ]

 
 
 
 

    

يعخًذة عهٗ بعضٓا ٔالاعًذة يخشابّٓلاٌ انصفٕف          

[
 
 
 
 
     
     
     
     
     ]

 
 
 
 

 

[
 
 
 
 
     
     
     
     
     ]

 
 
 
 

 

 ارٌ ٕٚخذ اسبع يخدٓاث راحٛت خاصت       ٔانقًٛت انخايست  4عذدْا       ارٌ عذد انقٛى انزاحٛت

 (3)ٔنًعشفت ْزِ انًخدٓاث َسخخذو       ٕٔٚخذ يخدّ ٔاحذ نهقًٛت       
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(    )  

[
 
 
 
 
     
     
     
     
     ]

 
 
 
 

[
 
 
 
 
 
 
 
 ]
 
 
 

               

 ثلاثت اعذاد اصفاس نُٛخح نكم يخدّ نهسٕٓنت َدعم

                                                   

                   

   

[
 
 
 
 

 
 
 
 

  ]
 
 
 
 

    

[
 
 
 
 

 
 
 
 

  ]
 
 
 
 

    

[
 
 
 
 

 
 
 
 

  ]
 
 
 
 

     

[
 
 
 
 

 
 
 
 

  ]
 
 
 
 

 

 بت نهقًٛت انزاحٛت غٛش انصفشٚتايا بانُس

Let     

[
 
 
 
 
 
 
 
 
 ]
 
 
 
 

          

[
 
 
 
 
     
     
     
     
     ]

 
 
 
 

[
 
 
 
 
 
 
 
 
 ]
 
 
 
 

  

[
 
 
 
 
 
 
 
 
 ]
 
 
 
 

 

[
 
 
 
 
  
  
  
  
  ]

 
 
 
 

  

[
 
 
 
 
 
 
 
 
 ]
 
 
 
 

 

  

[
 
 
 
 
 
 
 
 
 ]
 
 
 
 

  

[
 
 
 
 
 
 
 
 
 ]
 
 
 
 

      

Home Work 

1- Find the solution of 

a-  ̇  0
   
  

1                            b-  ̇  [
   
   
   

]   

c-  ̇  0
  
  

1   ( )  .
 
 
/    d-    ̇  [

      
     
      

]      ( )  (
  
  
  

+ 

Second:   Complex  eigenvalue  

If         is a complex eigenvalue of A with eigenvector          , then 

 ( )        is a complex-valued solution of the differential equation  

 ̇                        ( )  

This complex-valued solution gives rise to two real-valued solutions, as we  

now show. 

Lemma 1. Let  ( )     ( )     ( ) be a complex-valued solution of (1). Then,  

both  ( ) and  ( ) are real-valued solutions of (1). 

 ( )        (    ) (       )     (            )(      ) 
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    ,(               )   (               )- 

 ( )     (               ) 

 ( )     (               ) 

are two real-valued solutions of (1). Moreover, these two solutions must be  

linearly independent solution. 

Example 3 Solve the system  ̇  [
   
    
   

]   ( )  (
 
 
 
+ 

 The characteristic polynomial of the matrix   from (4) is 

   [
     

      
       

]    

 (   )  (   )                   (   )(       )

     

Thus the eigenvalues of A are    = 1,         . 

(i)     : We find the corresponding eigenvector    [
 
 
 
] from (3) 

(     )   [
    
      
     

] [
 
 
 
]    

This implies that        . Let     then     [
 
 
 
] 

  ( )           [
 
 
 
] 

(ii)       : We find the corresponding eigenvector    [
 
 
 
] from (3) 

(     )   [
     
     
      

] [
 
 
 
]    

This implies that                              . Let     

then           [
 
 
 
]  [

 
 
 
]  [

 
 
 
]  [

 
 
 
]   [

 
 
 
] 

  ( )          (   ) ([
 
 
 
]   [

 
 
 
]+       ([

 
 
 
]   [

 
 
 
]+ 
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  ( )    (          ) ([
 
 
 
]   [

 
 
 
]+ 

  ( )    ,    [
 
 
 
]      [

 
 
 
]   ,    [

 
 
 
]      [

 
 
 
]-- 

   ( )    ,    [
 
 
 
]      [

 
 
 
]-    [

 
     
    

] and 

   ( )    ,    [
 
 
 
]      [

 
 
 
]-    [

 
    
    

] 

 ( )                    
 [

 
 
 
]     

 [
 

     
    

]     
 [

 
    
    

] 

 ( )    [

  

              
              

] 

When       ( )  (
 
 
 
+  [

  

  

  

],   ( )    [
 

          
          

] . 

Home work 

1- Find the solution of 

a-  ̇  0
   
    

1                            b-  ̇  [
   
    

     
]   

c-  ̇  0
   
   

1   ( )  .
 
 
/    d-    ̇  [

    
    

     
]      ( )  (

 
  
  

+ 

Third: Equal roots  

If the eigenvalue    with multiplicity k then the other linear independent eigenvector 

can be obtain from the equation 

(     )
                     ( ) 

Or we can use 

(     )         (     )           (     )              ( ) 

And the solution is  

  ( )      ,    (     )   
  

 
(     )

     

 
    

(   ) 
(     )

              ( ) 
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Example 1. Find three linearly independent solutions of the differential  

equation  ̇  [
   
   
   

]     

The characteristic polynomial of the matrix   from (4) is 

   [
     

     
     

]    

 (   ) (   )          with multiplicity two (   ),        with 

multiplicity one, 

(i)     : We find the corresponding eigenvector    [
 
 
 
] from (3) 

(     )   [
   
   
   

] [
 
 
 
]    

This implies that        . Let     then     [
 
 
 
] 

  ( )           [
 
 
 
] 

From (5) or (6) we get    [
 
 
 
] 

(     )      [
   
   
   

] [
 
 
 
]  [

 
 
 
]            arbitrary 

   [
 
 
 
]  

(     )
      [

   
   
   

]

 

[
 
 
 
]    [

   
   
   

] [
 
 
 
]    

             arbitrary     [
 
 
 
] 

from (7) we get 

  ( )      ,    (     )  -    *[
 
 
 
]   [

   
   
   

] [
 
 
 
]+   
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   *[
 
 
 
]   [

 
 
 
]+    [

 
 
 
] 

(iii)     : We find the corresponding eigenvector    [
 
 
 
] from (3) 

(     )   [
    
    
   

] [
 
 
 
]    

This implies that                   is arbitrary. Let     then  

   [
 
 
 
] 

  ( )            [
 
 
 
] 

Example 2. Solve the initial-value problem  ̇  0
  
  

1   ( )  0
 
 
1 

Solution. The characteristic polynomial of the matrix   by (4) is 

   (    )          0
    

    
1    (   )           

Is eigenvalue of multiplicity 2. 

(i)       to find the corresponding eigenvector (     )         0
 
 
1   

(    ) 0
 
 
1    0

  
  

1 0
 
 
1       , let     then    0

 
 
1  

      0
 
 
1 

to find the second vector    0
 
 
1 from (3)   0

  
  

1 0
 
 
1  0

 
 
1         

 

 
,        [

 

 

 
] from (7) we get 

  ( )      ,    (     )  -     *[
 

 
 
]   0

  
  

1 [
 

 
 
]+     [

 

 
 
] 

  ( )               
  0

 
 
1     

  [
 

 

 
]   ( )  0

 
 
1  [

 

 
  

  
] 

             

  ( )      0
 
 
1      [

 

 

 
]     0

 
    

1 
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Example 3. Solve the initial-value problem  ̇  [
   
    
   

]   ( )  (
 
 
 
+ 

The characteristic polynomial of the matrix   from (4) is 

   [
     

      
     

]    

 (   )          with multiplicity 3 (   ),  

(i)     : We find the corresponding eigenvector    [
 
 
 
] from (3) 

(     )   [
   
    
   

] [
 
 
 
]    

This implies that               . Let     then     [
 
 
 
] 

  ( )            [
 
 
 
] 

From (5) or (6) we get    [
 
 
 
] 

(     )      [
   
    
   

] [
 
 
 
]  [

 
 
 
]                   

arbitrary     [
 
 
 
], since this is the second eigenvalue then by (7) 

   ( )      ,    (     )  -     ,[
 
 
 
]   ,[

   
    
   

] [
 
 
 
]--     [

 
 
 
] 

(     )      [
   
    
   

] [
 
 
 
]  [

 
 
 
]                     

    arbitrary     [
 
 

  
], since this is the third eigenvalue then by (7) 
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  ( )      ,    (     )   
  

 
(     )

   

    ,[
 
 

  
]   [

   
    
   

] [
 
 

  
]  

  

 
[
    
   
   

] [
 
 

  
]

    [

  

 
   
  

] 

 ( )                    ,  [
 
 
 
]    [

 
 
 
]    [

  

 
   
  

]- 

   ( )  [
 
 
 
]  [

  

      

   

]                  

 ( )     [
     

  

 
   

 

] 

Theorem 2  (Cayley-Hamilton Theorem) Every     constant matrix satisfies its 

characteristic equation. 

Theorem 2 (Cayley-Hamilton). Let  ( )               (  )      be the  

characteristic polynomial of  . Then,  

 ( )             (  )         

Example let   0
   
   

1 then  ( )            its characteristic 

equation so     ( )            

Home work 

1- Find the solution of 

a-  ̇  0
   
    

1                            b-  ̇  [
     
    
    

]   

c-  ̇  0
   
   

1   ( )  .
 
 
/    d-    ̇  [

   
    

    
]      ( )  (

 
  
  

+ 

1.3 Fundamental matrix solutions  ( ); and exponential matrix       

 ̇                 ( ) 

Definition 2. An n × n matrix function   is said to be a fundamental  

matrix for the vector differential equation (1) provided   is a 
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solution of the matrix equation (1) on  , often 

  ( )  ,         -   ( )   ( )           ( ) 

Definition 3. An n × n matrix function      is said to be a exponential   

matrix for the vector differential equation (1) provided 

  ( )    (    )                           ( ) 

Example 1. Find a fundamental matrix solution of the system of  differential 

equations    ̇  [
   
   

      
]  

The independent solutions are      [
 
 

  
]        [

  
 
 

]        [
 
 

  
] 

                  [
 
 

  
]     [

  
 
 

]     [
 
 

  
] 

 ( )  [
        
       

        

]  

[

     
     
     

] [
 
 

  
]                       

[

     
     
     

] [
  
 
 

]                              

[

     
     
     

] [
 
 

  
]                        

                                            

              

      [
    
   

     
] [

   
   
   

]  [

   
   
   

] [
    
   

     
] 

 [
    
   

     
]  [

           
           
           

] 

Theorem 3.  Let  ( ) be a fundamental matrix solution of the differential equation 

     ̇                       ( )  

Then,                      ( )   ( )                     ( ) 
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In other words, the product of any fundamental matrix solution of (I) with its inverse 

at     must yield     . 

Lemma 2. A matrix  ( ) is a fundamental matrix solution of (1) if and only if 

  ̇( )    ( ) and      ( )   . 

Proof of Lemma: Let   ( )  ( )    ( ) be linearly independent solution of (1). 

Let  ( )  ,  ( )   ( )    ( )- then  ( ) is Fundamental solution iff  

 ̇( )  [ ̇ ( )   ̇ ( )     ̇ ( )]  ,   ( )    ( )     ( )-  

 ,  ( )    ( )      ( )-    ( )   and 

 ( )  [        
             ]   ( )  ,         - 

Since           are eigenvectors so they are linearly independent then  

    ( )          □ 

Lemma 3. The matrix-valued function              

 
     ( ) is a 

fundamental matrix solution of (1). 

Proof: 
 

  
              

 
    .         

 
  /       so     is a 

solution of (1),   (   )     (  )     ( )      

So by Lemma 2       is fundamental matrix solution.      □ 

Lemma 4. Let  ( ) be a fundamental matrix solution of (1). Then,   ( )   ( )  

is also a fundamental matrix solution of (1) provided   is constant nonsingular 

matrix (      )  

Proof: Let  ( )   ( )     ( )    ( )    ( )    ( )    ( )     

Then  ( ) is a solution of (1)  

     ( )      ( )      ( )          ( )      ( )             

 Then  ( ) is a fundamental matrix   □ 

Proof of Theorem3: Let   ( ) be fundamental matrix, by Lemma 3 

    is also a fundamental matrix, then by Lemma 4,      ( )     ( ) 

Let      in (6)    ( )       ( )       ( )   ( )        □ 

  (    )   ( )   (  )         ( ) 

Example 2. Find     if  ̇  [
   
   
   

]  and use it to solve the system  

Solution. Our first step is to find 3 linearly independent solutions of the system: 

               and     [
 
 
 
]     [

 
 
 
]     [

 
 
 
] their corresponding 
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eigenvalues, then  ( )  [
        

         

      

] is FMS  from (6)   

     ( )   ( )  [
        

         

      

] [
   
   
   

]

  

 

[
        

         

      

]
 

 
[
    
    
   

]  [
        

         

      

] *

   

 
 

  

 
  

 

   

 

+ 

 *
    

 
   

 

 
     

 
    

 

 
   

       

     

+ 

Example 3 Find     and Use it to solve  ̇  [
   
   
   

] ,  

Ans. The matrix A is lower triangular so              and     [
 
 
 
]     

   [
 
 
 
]     [

 
 

  
]        [

 
 

  
]     [

 
 
 
]        [

 
 
 
], 

 ( )  [
     

        
        

] is FMS  

     ( )   ( )  [
     

        
        

] [
   
   
    

]

  

 

 [
     

        
        

] [
   
   
   

]  [
     
        

           

] 

 ( )       [
     
        

           

] [

  

  

  

]  *

   
  

    
      

  

  ( 
      )     

  

+ 

     طشٚقت ثاَٛت لاٚداد 

           
  

 
   [

   
   
   

]  [
   
   
   

]   [
   
   
   

]

 
  

  
   

 [
   
   
   

]  [
   
   
   

]   [
   
   
   

]
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[
 
 
 
      

(  ) 

  
 

(  ) 

  
    

  
   

 
 

    

  
        

(  ) 

  
 

(  ) 

  
   

  
   

 
 

    

  
         

(  ) 

  
 

(  ) 

  
  ]

 
 
 
 

 

 [
     
        

           

] 

 

Properties of      

1-  if    is diagonal [
   
   
   

] then      [
     
     
     

] 

2-  if    is upper (or lower)triangular   0
  
  

1      0 
            

    1 

  [
   
    
   

] then      [
     
     
     

] 

1.4 The nonhomogeneous equation; variation of parameters 

Let the matrix  ( )  ,  ( )    ( )      ( )- be FMS of the homogenous system  

 ̇( )    ( )          ( ) 

Then the system 

 ̇( )    ( )   ( )          ( ) 

Is the nonhomogenous system,  

Theorem 4  Let  ( ) be  FMS and     be exponential matrix then the general 

solution satisfying  (  )     of (2) is 

 ( )    (    )      ∫      ( )
 

  

         

 Proof: We have to seek a solution in the form 

  ( )   ( ) ( )                 ( )  

 ( )     ( ) ( )          ( ) 

Differentiating (3) we get  ̇( )   ̇( ) ( )   ( ) ̇( )  

  ( )   ( )   ̇( ) ( )   ( ) ̇( )    ( ) ( )   ( ) ̇( )

   ( )   ( ) ̇( )  

  ( )   ( ) ̇( )   ̇( )     ( ) ( ) 

Integrating this expression between    and   gives 
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 ( )   (  )  ∫    ( ) ( )
 

  

   

 ( )     (  ) (  )  ∫    ( ) ( )
 

  

   

 ( ) ( )   ( )   (  )    ( )∫    ( ) ( )
 

  

    

 ( )   ( )   (  )    ( )∫    ( ) ( )
 

  

           ( ) 

 ( )    (    )     (    ) (  )∫    (    )   (  ) ( )
 

  

   

 ( )    (    )      ∫      ( )
 

  

         ( ) 

 طشٚقت اخشٖ نهبشْاٌ 

Multiply (2) by           ̇( )        ( )       ( ) 

     ̇( )        ( )       ( )       ̇( )        ( )       ( ) 

       ( )  (    )  ( )       ( )  (     ( ))       ( ) 

Integrating this expression between    and   gives 

     ( )        (  )  ∫      ( )  
 

  

 

     ( )        (  )  ∫      ( )  
 

  

 

 ( )    (    )      ∫      ( )
 

  

      

Example 1. Solve the initial-value problem  

 ̇  [
   
    
   

]  [
 
 

       
]   ( )  [

 
 
 
] 

̇ فٙ انبذاٚت َحم انُظاو انًخداَس  ٔرنك باسخخشاج انقٛى انزاحٛت      

   [
     

      
     

]    

(   )(        )              
  √    
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1.      [
   
    
   

] [
 
 
 
]                            

 

 
  

   [
 

  
 

]       [
 

  
 

]  [
   

    

   

] 

2.        [
     
      
     

] [
 
 
 
]                 

                        [
 
 
  

]  [
 
 
 
]  [

 
 
  

] 

   (    ) ([
 
 
 
]  [

 
 
  

]+    (            ) ([
 
 
 
]   [

 
 
 
]+ 

    ,     [
 
 
 
]       [

 
 
 
]   (      [

 
 
 
]       [

 
 
 
])- 

     ,     [
 
 
 
]       [

 
 
 
]-      ,      [

 
 
 
]       [

 
 
 
]- 

     [
 

     
     

]       [
 

     
      

] 

 ( )  [
     

                  
                  

]   ( )  [
   

    
    

] 

   ( )  [

 

 
  

 

 
  

    

] 

     ( )   ( )  [
     

                  
                  

] [

 

 
  

 

 
  

    

] 

    [

    

 
 

 
   

 

 
                              

   
 

 
                             

] 

 Then by (6) we get 
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 ( )

 [

    

 
 

 
   

 

 
                              

   
 

 
                             

] [
 
 
 
]

 [

    

 
 

 
   

 

 
                              

   
 

 
                             

]∫ [

    

 
 

 
   

 

 
                              

   
 

 
                             

]
 

 

[
 
 

       
]   

 ( )  [
  

               
               

]

 [

    

 
 

 
   

 

 
                              

   
 

 
                             

]∫ [
 

              
         

]
 

 

   

 ( )  

[
 
 
 

 

        (  
 

 
)       

(  
 

 
)        

 

 
       ]

 
 
 

 

Example 2 Solve the initial-value problem  ̇  0
   
  

1  0
 
 
1     ( )  .

 
 
/ 

   (    )       0
     

    
1    

(   )             

     (    )     0
   
  

1 0
 
 
1           0

 
 
1 

      0
 
 
1 

     (    )      0
   
  

1 0
 
 
1  0

 
 
1          

  

 
    [

 
  

 

] 

      [[
 
  

 

]   0
   
  

1 [
 
  

 

]]     [
 

  

 

] 

 ( )     [
  

 
  

 

]     ( )    [
  

 
 

  

]  0
  
   

1 

     ( )   ( )     [
  

 
  

 

] 0
  
   

1     0
    
  

1 

Then by (6) we get 

 ( )     0
    
  

1 0
 
 
1     0

    
  

1∫    0
    
  

1
 

 

0
 
 
1    

     0
   
 

1     0
    
  

1 ∫ 0 
  

 
1
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    [
    

 

 
,     -

 
] 

 

Homework 

1.  Solve the initial-value problem  ̇  0
   
   

1  0
    
    

1   ( )  .
 
 
/ 

2.  Solve the initial-value problem  ̇  0
   
   

1  0
 
 
1     ( )  .

 
 
/ 

3.13 Solving systems by Laplace transforms 

 ̇( )    ( )   ( )     ( )             ( ) 

 ( )  [
  ( )

 
  ( )

]   * ( )+  

[
 
 
 
 
 ∫  

 

 

      ( )  

 

∫  
 

 

      ( )  
]
 
 
 
 
 

   ( ) 

  ( )  (
  ( )

 
  ( )

+   * ( )+  (

∫  
 

 
      ( )  

 

∫  
 

 
      ( )  

)   ( ) 

Taking Laplace transforms of both sides of (1) gives 

 { ̇( )}   *  ( )   +    * ( )+   * +   

[
 * ̇ ( )+

 
 * ̇ ( )+

]   [
 *  ( )+

 
 *  ( )+

]  [
 *  ( )+

 
 *  ( )+

] 

[
  *  ( )+    ( )

 
 *  ( )+    ( )

]   [
 *  ( )+

 
 *  ( )+

]  [
 *  ( )+

 
 *  ( )+

]         ( ) 

Example 1. Solve the initial-value problem 

 ̇  .
  
  

/  .
 
 
/      ( )  .

 
 
/    

Solution. Taking Laplace transforms of both sides of the differential equation gives 

[
  *  ( )+   

  *  ( )+   
]  .

  
  

/ (
 *  ( )+

 *  ( )+
*  

 

   
.
 
 
/ 

or 

(   ) *  ( )+    *  ( )+    
 

   

  *  ( )+  (   ) *  ( )+    
 

   
 
   

(   )  ( )     ( )    
 

   

   ( )  (   )  ( )    
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((   )   ) *  ( )+   (   )    
 

   
 

((   )   ) *  ( )+  
    

(   )(   )(   )
 

    
 

The solution of these equations is 

 *  ( )+  
 

   
 

 

    
   *  ( )+  

 

   
 

 

(   )(   )(   )
 

Now, 

 

   
   *   + 

 

    
  *     +   {

      

 
} 

 *  ( )+    *   +   {
      

 
}   {     

      

 
} 

  ( )       
      

 
 

 

(   )(   )(   )
 

 

   
 

 

   
 

 

   
 

   (       )   (       )   (    ) 

                           

    
 

 
     

 

 
    

 

 
    

 *  ( )+   *   +  
 

 
 *  +  

 

 
 *   +  

 

 
 *   + 

  ( )  
  

 
    

 

 
   

 

 
    

Homework  

1.  ̇  .
   
   

/    ( )  .
 
 
/ 

2.  ̇  .
   
   

/  .
 

   /    ( )  .
 
 
/ 

3.  ̇  .
  
  

/   .
 

  
/      ( )  .

 
 
/ 

4.  ̇  .
   
   

/  .
     
     

/    ( )  .
  

 
/ 
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 الفصل الدراسي الثاني

Theory of Differential Equations 

Chapter 2; Qualitative theory of differential equations 

2.1  Introduction 

  ( )   (   ( ))                                     (  ) 

 ̇( )   (   ( ))        ( ) 

  ( )   ( ( ))                                     (   ) 

 ̇( )   ( ( ))        (  ) 

An Equation is autonomous if    do not depend explicitly on t, like (ADE) or (  ) 

While equation (DE) & (1) are nonautonomous. 

Definition 1. (Equilibrium points) of (1). 

A points    are said to be equilibrium (critical; fixed; accumulation ) points of 

 equation autonomous equation if  (  )   . 

Example 1. Find the equilibrium points of             

            (    )(   )      
 

 
             

Example 2.  1. Find the equilibrium points of               

                so there is no critical point in these equations.  

2.                         

For the system the critical points are (     ) 

Example 3 Find the equilibrium points of [
  

  ]  [
      

          
]    

                       

If                               
  √    

 
      

ignore     

If                 (   )(   )                

       (     ) (    ) or 0
  
  

1  0
 

  
1 

Example 4 Find the equilibrium points of [
  

  ]  [
(   )(   )
(   )(   )

]    

Home work 

1.  [
  

  ]  [
        

          
]    
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2.  [
  

  

  

]  *

      
       

       
+    

2.2. Stability of linear systems 

 ̇( )   ( ( ))        (  ) 

Definition 1. The solution    ( ) of (1') is stable if every solution  ( ) of (1') 

which starts sufficiently close to  ( )  at     must remain close to  ( ) 

for all future time  . The solution  ( )  is unstable if there exists at least  

one solution  ( ) of (1') which starts near  ( )  at      but which does  

not remain close to  ( )  for all future time. More precisely, the solution  

 ( )  is stable if for every     there exists    ( ) such that  

|  ( )    ( )|    if |  ( )    ( )|   ( )          . for every solution 

  ( ) of (1'). 

 ̇( )            ( ) 

Theorem 1. (a) Every solution    ( ) of (1') is stable if all the eigenvalues  

of   have negative real part.  

(b) Every solution    ( ) of (2) is unstable if at least one eigenvalue of A  

has positive real part.  

(c) Suppose that all the eigenvalues of    which are purely imaginary 

then every solution    ( ) of (1') is stable 

Definition 2.  Let   [

  

 
  

]  be a vector with n components. The numbers 

            may be real or complex. We define the length of X, denoted by ‖ ‖ as  

‖ ‖     *          +.  

For example, if   [
 
 

  
] 

then ‖ ‖    and if   [
    

 
  

] then ‖ ‖   . 

Definition 3. A solution    ( ) of (2.1') is asymptotically stable if it is stable,  

and if every solution  ( ) which starts sufficiently close to  ( )  must   

approach  ( ) as   approaches infinity. In particular, an equilibrium   

solution  ( )       of (1') is asymptotically stable if every solution  ( )  of  

(1') which starts sufficiently close to    at time     not only remains  
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close to    for all future time, but ultimately approaches    as    approaches infinity. 

Example 1. Determine whether each solution  ( ) of the system 

  ̇  [
    
     
      

]     is stable, asymptotically stable, or unstable. 

To find the eigenvalue  

    [
      

       
        

]     (   )   (   )    

 (   ),(   )   -      (   ),       -               

By theorem 1 the solution is asymptotically stable 

Example 2. Determine whether each solution  ( ) of the system 

 ̇  0
  
  

1  

    0
    

    
1                        

By theorem 1 the solution is unstable 

Example 3. Determine whether each solution  ( ) of the system 

 ̇  0
   
  

1  

    0
    
   

1                       

By theorem 1 the solution is stable 

Example 4. Determine whether each solution  ( ) of the system 

  ̇  [
    
     

     
]     is stable, asymptotically stable, or unstable. 

To find the eigenvalue  

    [
      

       
       

]       (   )     

             

By theorem 1 the solution is unstable 

Homework 

1.   ̇  0
  

    
1    2.   ̇  0

   
   

1    3.   ̇  [
     
      
    

]    
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4. ̇  *

  
   

    

    
    

    

  
   
   
  

   

+  

 

2.3 Linear and Nonlinear System 

2.3.1 Linear Changes of Variable   

 ̇     [

  

 
  

]

̇

 [

       
       
 

   

 
   

 
 

    

   

   

 
   

] [

  

 
  

]         (   ) 

We use the linear change of variable                           (   )   

where   [

  

 
  

]    [

  

 
  

]       is nonsingular matrix, then  ̇    ̇         

 ̇                 

 ̇                (   ) 

Definition 1 We say that matrix   is similar to matrix   if there is nonsingular 

matrix   such that                               (   ) 

Example 1. The change of variable                   transform the 

system  ̇      ̇     to the system……………   

0
  

  
1  0

  
   

1 0
  

  
1    0

  
   

1      
  

 
0
    
   

1    0
  
  

1 

         

 
0
  
   

1 0
  
  

1 0
  
   

1  0
  
   

1   by (2.3) 

 ̇     0
  
   

1 0
  

  
1   ̇         ̇      

Example 2. The change of variable                       transform the 

system  ̇      ̇      ̇     to the system……………   

[

  

  

  

]  [
   
   
    

] [

  

  

  

]    [
   
   
    

]      [
   
   
   

]    [
   
   
   

] 

        [
   
   
   

] [
   
   
   

] [
   
   
    

]  [
    
   
   

] 

 ̇     [
    
   
   

] [

  

  

  

]   ̇             ̇      ̇        

Definition 2 We say that matrix   is said Jordan form of   if it is similar to matrix   

and   ,       -            
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Theorem 2  Let   be a real       matrix, then there is a real, nonsingular matrix   

such that          is one of the types: 

(a)If   has distinct real eigenvalue then   [
   
   

]        ;    

(b) If   is diagonal and has equal eigenvalue then    [
   
   

]       

(c) If   is nondiagonal and has equal eigenvalue then   [
   
   

]       

(d) If   has complex eigenvalue        then   [
   
  

] 

Example 3 Find the Jordan forms of each of the following matrices: 

( )    0
  
  

1  ( )    0
  

   
1    ( )    0

   
  

1    ( )   0
   
   

1 

( )    0
    

    
1                  √   

  [
  √  

   √ 
]         are real distinct. 

( )    0
    
     

1                           

  [
   
  

]  0
 
 

  
 

1         are complex. 

( )    0
     

    
1                     A is nondiagonal 

  0
  
  

1         are equal and  A nondiagonal. 

( )               are equal,   is diagonal then   0
   
   

1. 

Remark 1: If   has complex eigenvalue then   (
       

    
*            (   ) 

Example 4. Find a matrix   which converts each of the matrices in Example 3 into 

their appropriate Jordan forms. 

   ,      -    [√ 
 

]     [ √ 
 

]     [√ 
 

 √ 
 

] 

        [√ 
 

 √ 
 

]
  

0
  
  

1 [√ 
 

 √ 
 

]  [
  √  

   √ 
] 

   (
       

    
*  .

    
   

/ 

0
  
  

  
 

1
  

0
  

   
1 0

  
  

  
 

1  0
   
  

1 

   ,      -    0
 
 
1  (    )          0

 
 
1     0

 
 

 
 
1 
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   0
 
 

 
 
1
  

0
   
  

1 0
 
 

 
 
1  0

  
  

1 

   0
 
 

 
 
1 

2.3 Phase Portraits for Canonical Systems in Plane:  

Definition 3: A linear system  ̇     is said to be simple if the matrix   is non-

singular, (i.e.    ( )    and   has non-zero eigenvalues). 

(a) Real, distinct eigenvalues 

 ̇     [
 ̇ 

 ̇ 
]  [

   
   

] 0
  

  
1   ̇           ̇        

                                         (   ) 

 ̇ 

 ̇ 
 

   

   
 

    

    
 
   

  
 

  

  
 
   

  
      

  

  
               

  
   (   ) 

 
 

 

(b) Equal eigenvalues 
If      is diagonal, the canonical system has solutions given by Theorem 2-b with 

        . Thus (2.7) corresponds to a special node       , called a star node  
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(stable if     ; unstable if     ), in which the non-trivial trajectories are 

all radial straight lines (as shown in Fig. 2.3). 

 
(c) Equal eigenvalues,    is non-diagonal,          hence 

  [
   
   

]     (      ) 
             

          (   ) 

    
   

   
 

    

       
          

  

  
             (   ) 

 

(d) Complex eigenvalues 

  [
   
  

]                ̇           ̇          

Using polar coordinate's       
    

          
  

  
  

   ̇      ̇              (    ) 

 ( )     
    ( )                  (    ) 

             (     )                                

              (      ) 
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Example 5 Sketch the phase portrait of the system 

  
           

               
            

                   (    ) 

and the corresponding phase portraits in the   -   plane where 

   0
  
  

1     0
  
  

1     0
   

   
1     0

  
  

1     0
  
   

1    

 0
  
   

1              (    ) 

  0
  
   

1             

 Jordan canonical form سسى صٕسة انطٕسانٗ    

 
 سسى صٕسة انطٕس انخاصت بانًصفٕفاث                  
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Example 6 Sketch the phase portrait of the system 

  
               

                       (    ) 

The eigenvalue are                      

Then    0
   
  

1  and   0
   
  

1 the phase portrait of Jordan form is 

 
And the phase portrait of system       is 

 
2.4 Phase Portraits for Canonical Systems in Plane:  
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Theorem 2.1 (Linearization theorem) 

Let the non-linear system      ( )           (    )          0
  

  
1    [

  (     )
  (     )

] 

have a simple fixed point at (     )  (   ). Then, in a neighborhood of the origin 

the phase portraits of the system and its linearization are qualitatively equivalent 

provided the linearized system is not a center. 

 لخطي؟كيف استخرج النظام الخطي من النظام غير ا

Definition 4: Jacobian Matrix: Let a system [
  

 

  
 ]  [

  (     )
  (     )

] then the jacobian 

matrix at critical point (     ) is defined by   (     )  *

   

   

   

   

   

   

   

   

+

(     )

 . 

Example7 Find critical points and Jacobian matrix at each of them of the system 

  
                

                      (    ) 

             (    )    

Either       or      

If      then                       the first critical point (0,0). 

If      then                the second critical point (    ) 

 (   )  0
       

  
1
(   )

 0
  
  

1 

 (    )  0
       

  
1
(    )

 0
  
  

1 

Example 8 Sketch the phase portrait of the system (    ) 

From example 7 we get the first critical point (0,0) and   (   )  0
  
  

1 

so we have the first system   
           

         that is    0
  
  

1 

the eigenvalue are           (   )(   )     

          

  0
  
  

1     0
 
 
1     0

 
 
1    0

  
  

1 
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the second critical point (    ) and   (    )  0
  
  

1 

so we have the second system   
           

         that is    0
  
  

1 

the eigenvalue are          (   )(   )     

           

  0
  
  

1     0
 
 
1     0

 
 
1    0

  
  

1 

 

  *

 

 
 √ 

 

 √ 

 

 

 

+       [ 
 

 
 √ 

 

  
] 

The final phase portrait is 

 
 

Example 9 Sketch the phase portrait of the system   
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To find the critical points:        if       then from second equation 

  
          we get the critical points (   ) (   )  and if        then from 

second equation   
          we get the critical points (    ) (    ) 

  (   )  [
     

       
]
(   )

 0
   
   

1 

 (   )  [
     

       
]
(   )

 0
   
   

1 

 (    )  [
     

       
]
(    )

 0
    
  

1 

 (    )  [
     

       
]
(    )

 0
    
  

1 

For   (   )  0
   
   

1 the eigenvalue are                
   √  

 
 

2
    

     
 saddle point. 

For   (   )  0
   
   

1 the eigenvalue are                
   √  

 
 

2
      
     

 node stable. 

 (    )  0
    
  

1 the eigenvalue are               
  √   

 
 spiral 

unstable. 

 (    )  0
    
  

1 the eigenvalue are                      saddle 

point. 

Example 10 Sketch the phase portrait of the system   
        

    
       

  

To get the critical points from the first equation:       
  then from second  

equation      
      (    

 )    so either      then      we get the 

critical point (   )  or   
           then       the critical point (    ) 

 


