الفصل الدراسي الثاني

Theory of Differential Equations Chapter one: Systems of differential equations

Introduction: First Order Differential Equations

$$
y' = f(t, y)
$$
 (DE)
\n
$$
y' = f(t, y), y(t_0) = y_0.
$$
 (IDE)
\n
$$
\dot{X}(t) = F(t, X(t)) \dots \dots \dots \dots \quad (1)
$$

Definition 1. Let $F(t, X)$ be real valued function with Domain $D \subseteq R^n$ a vector function $X(t)$ is said to be a solution of equation (1) if it satisfies equation (1).

1.1. Existence and uniqueness theorem

Theorem 1. If $f_i(t, X)$ is continuous on open domain $D1 \subset D$ so for any $(t_0, X_0) \in$ D1 there is a solution $X(t)$, $t \in I$ such that $X(t_0) =$

Theorem 2. If $f_i(t, X)$ and $\frac{\partial f_i(t, X)}{\partial x_i}$ continuous in an open domain $D1 \subset D$ so for any $(t_0, X_0) \in D1$ there is a unique solution $X(t)$, $t \in I$ such that $X(t_0) =$ **1.2. Introduction**

$$
Y'(t) = F(t, Y)
$$

\n
$$
y'_1 = f_1(t, y_1, y_2, ..., y_n)
$$

\n
$$
y'_2 = f_2(t, y_1, y_2, ..., y_n)
$$

\n
$$
\vdots
$$

\n
$$
y'_n = f_n(t, y_1, y_2, ..., y_n)
$$

\n(1.1)

Linear differential system

$$
y'_1 = a_{11}(t)y_1 + a_{12}(t)y_2 + \dots + a_{1n}(t)y_n + h_1(t)
$$

\n
$$
y'_2 = a_{21}(t)y_1 + a_{22}(t)y_2 + \dots + a_{2n}(t)y_n + h_2(t)
$$

\n
$$
\vdots
$$

\n(1.2)

$$
y'_n = a_{n1}(t)y_1 + a_{n2}(t)y_2 + \dots + a_{nn}(t)y_n + h_n(t)
$$

A differential equation in standard form (1.2) is *homogeneous* if $h_i(t)$ = $1, 2, \ldots, n$. Now, the homogeneous linear system with constant coefficients

$$
y'_{1} = a_{11}y_{1} + a_{12}y_{2} + \dots + a_{1n}y_{n}
$$

\n
$$
y'_{2} = a_{21}y_{1} + a_{22}y_{2} + \dots + a_{2n}y_{n}
$$

\n
$$
\vdots
$$

\n
$$
y'_{n} = a_{n1}y_{1} + a_{n2}y_{2} + \dots + a_{nn}y_{n}
$$

\n
$$
\text{The}(\text{scalar}) \text{ vector } Y = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix} \text{ is said vector valued function if } Y(t) = \begin{bmatrix} y_{1}(t) \\ y_{2}(t) \\ \vdots \\ y_{n}(t) \end{bmatrix}
$$

$$
A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}
$$

then the system (1.3) can be written as

$$
\dot{Y}(t) = AY(t) = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \begin{bmatrix} y_1(t) \\ y_2(t) \\ \vdots \\ y_n(t) \end{bmatrix}
$$
(1.4)

Theorem 1. Let $X(t)$ and $Y(t)$ be two solutions of (1.4). Then (a) $cX(t)$ is a solution, for any constant c, and (b) $X(t) + Y(t)$ is again a solution. It is clear that $A(cX) = cAX = c\dot{X} = (c\dot{X})$ 1- لنحويل نظام 2 × 2 الى معادلة واحدة من الرتبة الثانية نتبع مايلي

Example 1. Convert | y'_1 $\begin{bmatrix} y_1' \\ y_2' \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\mathbf{1}$ $\mathbf{||}$ \mathcal{Y} $\begin{bmatrix} 5 & 1 \\ y_2 \end{bmatrix}$, to one equation $y'_1 = y_1 + y_2, \quad y'_2$ $y_1 = y_2' + y_2 \rightarrow y_1' = y_2'$ $\overline{\mathbf{c}}$ $y'' - y' - y' - y' + y - y'$ $\overline{\mathbf{c}}$ $= y'_2 + y_2 + y_2 - y'_2 \rightarrow y''_2 = 2y_2$ or y' 2- لنحو بل معادلة و احدة من الر تبة الثانية الى نظام ِ 2 × 2 نتيع مابلي

Example 2. Convert $y'' - 2y = 0$ to a system

Let
$$
y_1 = y
$$
, $y_2 = y' \rightarrow y'_1 = y_2$, $y'_2 = 2y_1 \rightarrow \begin{bmatrix} y'_1 \\ y'_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$,
ملاحظة: نلاحظ في مثال 2 لم يرجم إلى النظام الإصلي ولangle |انظاسين لهما تنس المعادمة المميزة.

Definition. A set of vectors X_1, X_2, \ldots, X_n in V is said to be linearly dependent if one of these vectors is a linear combination of the others. That is a set of vectors X_1, X_2, \ldots, X_n is said to be linearly dependent if there exist constants $c_1, c_2, ..., c_n$, not all zero such that $c_1X_1 + c_2X_2 + ... + c_nX_n = 0$. If all $c_1, c_2, \ldots, c_n = 0$ then X_1, X_2, \ldots, X_n is said linearly independent. Example 3. Show that e^t , e^{2t} , e^{3t} are linearly independent while e^t , $2e^t$, $3e^t$ are linearly dependent.

$$
c_1e^t + c_2e^{2t} + c_3e^{3t} = 0.
$$
 (1)
\n
$$
e^t[c_1 + c_2e^t + c_3e^{2t}] = 0, e^t \neq 0 \rightarrow
$$

\n
$$
c_1 + c_2e^t + c_3e^{2t} = 0.
$$
 (2)
\nDifferentiate $c_2e^t + 2c_3e^{2t} = 0 \rightarrow e^t[c_2 + 2c_3e^t] = 0 \rightarrow$
\n
$$
c_2 + 2c_3e^t = 0.
$$
 (3)
\nDifferentiate $2c_3e^t = 0 \rightarrow c_3 = 0$, put it in (3) $c_2 = 0$, from (2) $\rightarrow c_1 = 0$

So that e^t , e^{2t} , e^{3t} are linearly independent. To see e^t , $2e^t$, $3e^t$ are linearly independent.

$$
c_1e^t + 2c_2e^t + 3c_3e^t = 0 \rightarrow e^t[c_1 + 2c_2 + 3c_3] = 0 \rightarrow c_1 + 2c_2 + 3c_3 = 0 \rightarrow c_1
$$

= -2c₂ - 3c₃.
(s) ∂t₁ = 0

Example 4. Let $V = R^3$ and let X_1, X_2 , and X_3 be the vectors

$$
X_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, X_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, X_3 = \begin{bmatrix} 3 \\ 0 \\ 5 \end{bmatrix}
$$

$$
c_1 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + c_3 \begin{bmatrix} 3 \\ 0 \\ 5 \end{bmatrix} = 0.
$$

$$
c_1 + c_2 + 3c_3 = 0 \qquad (1)
$$

$$
-c_1 + 2c_2 = 0 \qquad (2)
$$

$$
c_1 + 3c_2 + 5c_3 = 0 \qquad (3)
$$

From (1),(3) we get $-2c_1 + 4c_2 = 0 \rightarrow -c_1 + 2c_2 = 0 \rightarrow c_1 = 2c_2$, linearly dependent, has infinitely many solutions

Example 5. Let $V = R^2$ and let X_1, X_2 , be the vectors

$$
X_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, X_2 = \begin{bmatrix} 2 \\ 0 \end{bmatrix},
$$

 $det\begin{bmatrix}1\\2\end{bmatrix}$ \overline{c} $= -4 \neq 0$ then X_1, X_2 , linearly independent

1.2 The eigenvalue-eigenvector method

of finding solutions

Our goal is to find n linearly independent solutions $X_1(t)$, $X_2(t)$, ..., $X_n(t)$. Now, recall that both the first-order and second-order linear homogeneous scalar equations have exponential functions as solutions. This suggests that we try

$$
\dot{X} = AX, \ \ X(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix}, \ \ A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \tag{1}
$$

Let $X(t) = e^{\lambda t} V$ where V is a constant vector, to see when X be a solution of (1). $\dot{X}(t) = \lambda e^{\lambda t} V = e^{\lambda t} \lambda V$ and $AX = Ae^{\lambda t} V = e^{\lambda t}$

So X is a solution of (1) if and only if $e^{\lambda t} \lambda V = e^{\lambda t} \lambda V$ that is

$$
AV = \lambda V \tag{2}
$$

Thus $X(t) = e^{\lambda t} V$ is a solution of (1) if and only if (2) holds. Definition. A nonzero vector V satisfying (2) is called an eigenvector of A with eigenvalue λ .

Remark if $V = 0$ then (2) is trivial (not acceptable)

From (2) we get $AV - \lambda V = 0$ \rightarrow

$$
(A - \lambda I)V = 0 \tag{3}
$$

So if V is eigenvector then $V \neq 0$ then $det(A - \lambda I) = 0$ that is

$$
det\begin{bmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{bmatrix} = 0
$$
 (4)

The characteristic polynomial of the matrix A and λ is said the eigenvalue of A. **First: Real distinct eigenvalues:**

Theorem 1. Any n eigenvectors V_1, V_2, \ldots, V_n of A with distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ respectively, are linearly independent.

Proof: By induction we have V_1, V_2, \ldots, V_n nonzero eigenvector and $\lambda_1, \lambda_2, \ldots, \lambda_n$ not equal eigenvalue($\lambda_i \neq \lambda_j$),

1. if $n = 1$ the theorem is true,

2. Suppose it is true when $n = k$ that is

 $c_1V_1 + c_2V_2 + ... + c_kV_k = 0$ and $c_1 = c_2 = ... = c_k = 0$ (a)

3. To see the statement is true when $n = k + 1$ then

$$
c_1V_1 + c_2V_2 + \dots + c_kV_k + c_{k+1}V_{k+1} = 0 \t (b)
$$

\n
$$
c_1AV_1 + c_2AV_2 + \dots + c_kAV_k + c_{k+1}AV_{k+1} = 0
$$

\n
$$
c_1\lambda_1V_1 + c_2\lambda_2V_2 + \dots + c_k\lambda_kV_k + c_{k+1}\lambda_{k+1}V_{k+1} = 0 \t (c)
$$

Multiplying (b) by λ_1 and subtract from (c) we get

 $c_2(\lambda_1 - \lambda_2)V_2 + ... + c_k(\lambda_1 - \lambda_k)V_k + c_{k+1}(\lambda_1 - \lambda_{k+1})V_{k+1} = 0$ (d) Since $V_2, V_3, \ldots, V_{k+1}$ are k Linearly independent then $c_{k+1}(\lambda_1 - \lambda_{k+1}) =$ And $\lambda_1 \neq \lambda_{k+1} \to c_{k+1} = 0$ hence $c_1 = c_2 = \cdots = c_k = c_{k+1} = 0$. Example 1. Find all solutions of the equation

$$
\dot{X} = \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix} X
$$

Solution. The characteristic polynomial of the matrix A from (4) is

$$
det\begin{bmatrix} 1 - \lambda & -1 & 4 \\ 3 & 2 - \lambda & -1 \\ 2 & 1 & -1 - \lambda \end{bmatrix} = 0
$$

= -(1 + λ)(1 – λ)(2 – λ) + 2 + 12 – 8(2 – λ) + (1 – λ) – 3(1 + λ)
= (1 – λ)(λ – 3)(λ + 2).

Thus the eigenvalues of A are $\lambda_1 = 1$, $\lambda_2 = 3$, and $\lambda_3 = -2$. (i) $\lambda_1 = 1$: We find the corresponding eigenvector $V_1 =$ \mathcal{V} \mathcal{V} $\boldsymbol{\mathcal{V}}$ \vert from (3) $(A - \lambda_1 I) V_1 =$ $\boldsymbol{0}$ 3 \overline{c} \prod \mathcal{V} \mathcal{V} \mathcal{V} \vert = This implies that $-v_{21} + 4v_{31} = 0$, $3v_{11} + v_{21} - v_{31} = 0$, $2v_{11} + v_{21} - 2v_{31} = 0$ Solving these equations we get $v_{21} = 4v_{31}$, $v_{11} = -v_{31}$. Let $v_{31} = 1$ then $v_{21} = 4$, $v_{11} = -1$ then $V_1 =$ \equiv $\overline{4}$ $\mathbf{1}$] $X_1(t) = e^{\lambda_1 t} V_1 = e^t$ \equiv $\overline{4}$ $\mathbf{1}$] (ii) $\lambda_2 = 3$: We find the corresponding eigenvector $V_2 =$ $\boldsymbol{\mathcal{V}}$ \mathcal{V} \mathcal{V} \vert from (3) $(A - \lambda_2 I) V_2 =$ $=$ 3 \overline{c} \prod \mathcal{V} \mathcal{V} \mathcal{V} \vert = This implies that $-2v_{12} - v_{22} + 4v_{32} = 0$, $3v_{12} - v_{22} - v_{32} = 0$, $2v_{12} + v_{22} - v_{32} = 0$ $4v_{32} = 0$ Solving these equations we get $v_{12} = v_{32}$, $v_{22} = 2v_{32}$. Let $v_{32} = 1$ then $v_{12} = 1, v_{22} = 2$ then $V_2 =$ $\mathbf{1}$ \overline{c} $\mathbf{1}$] $X_2(t) = e^{\lambda_2 t} V_2 = e^{3t}$ $\mathbf{1}$ \overline{c} $\mathbf{1}$] (iii) $\lambda_3 = -2$: We find the corresponding eigenvector $V_3 =$ \mathcal{V} \mathcal{V} \mathcal{V} \vert from (3) $(A - \lambda_3 I) V_3 =$ 3 3 \overline{c} \prod $\boldsymbol{\mathcal{V}}$ \mathcal{V} \mathcal{V} \vert =

This implies that $3v_{13} - v_{23} + 4v_{33} = 0$, $3v_{13} + 4v_{23} - v_{33} = 0$, $2v_{13} + v_{23} + v_{33} = 0$ $v_{33} = 0$

Solving these equations we get $v_{13} = -v_{33}$, $v_{23} = v_{33}$. Let $v_{33} = 1$ then

$$
v_{13} = -1, v_{23} = 1
$$
 then $V_3 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$
 $X_3(t) = e^{\lambda_3 t} V_3 = e^{-2t} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$

The general solution is

$$
X(t) = c_1 X_1 + c_2 X_2 + c_3 X_3 = c_1 e^t \begin{bmatrix} -1 \\ -4 \\ 1 \end{bmatrix} + c_2 e^{3t} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + c_3 e^{-2t} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}
$$

$$
X(t) = \begin{bmatrix} -c_1 e^t + c_2 e^{3t} - c_3 e^{-2t} \\ -4c_1 e^t + 2c_2 e^{3t} + c_3 e^{-2t} \\ c_1 e^t + c_2 e^{3t} + c_3 e^{-2t} \end{bmatrix}
$$

$$
\begin{bmatrix} -e^t & e^{3t} & -e^{-2t} \end{bmatrix} \begin{bmatrix} c_1 \end{bmatrix}
$$

 $\mathrm{or} X(t) = |$ $-4e^{t}$ $2e^{3t}$ e^{-} e^t e^{3t} $e^ \prod$ \mathcal{C} \overline{c} $\vert = \Phi(t)C$, $\Phi(t)$ is said fundamental matrix

Example 2. Solve the initial-value problem $\dot{X} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 3 $X, X(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\mathbf{1}$ 1 Solution. The characteristic polynomial of the matrix A by (4) is

$$
det(A - \lambda I) = 0 \rightarrow det \begin{bmatrix} 1 - \lambda & 12 \\ 3 & 1 - \lambda \end{bmatrix} = 0 \rightarrow \lambda^2 - 2\lambda - 35 = 0
$$

\n
$$
\rightarrow (\lambda - 7)(\lambda + 5) = 0 \rightarrow \lambda_1 = 7, \lambda_2 = -5
$$

\n(i) $\lambda_1 = 7$ to find the corresponding eigenvector $(A - \lambda_1 I) V_1 = 0$, $V_1 = \begin{bmatrix} a \\ b \end{bmatrix} \rightarrow$

$$
(A - \lambda I)V = 0
$$

(ii)

Example 2. Solve the initial-value problem
$$
\dot{X} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 & 4 \\ 5 & 5 & 5 & 5 & 5 \end{bmatrix} X
$$
,
\ndet A = 0 4e¹ (3) 40² (4) 44² (5) 5
\n
$$
\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 & 4 \\ 5 & 5 & 5 & 5 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$
\n
$$
\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 & 4 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$
\n
$$
\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$
\n
$$
\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 3 & 3 & 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 & 4 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$
\n
$$
\begin{bmatrix} 1 & 1 & 1
$$

 () [] [] نهسٕٓنت َدعم نكم يخدّ ثالثت اعذاد اصفاس نُٛخح [] [] [] [] ايا بانُسبت نهقًٛت انزاحٛت غٛش انصفشٚت Let [] [] [] [] [] [] [] []

Home Work

1- Find the solution of

$$
a - \dot{X} = \begin{bmatrix} 6 & -3 \\ 2 & 1 \end{bmatrix} X, \qquad b - \dot{X} = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix} X
$$

\n
$$
c - \dot{X} = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} X, \ X(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \quad d - \dot{X} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 2 & 1 \\ 1 & 10 & 2 \end{bmatrix} X, \ X(0) = \begin{bmatrix} -1 \\ -4 \\ 13 \end{bmatrix}
$$

Second: Complex eigenvalue

If $\lambda = a + ib$ is a complex eigenvalue of A with eigenvector $V = V_1 + i V_2$, then $X(t) = e^{\lambda t} V$ is a complex-valued solution of the differential equation

$$
\dot{X} = AX.
$$
 (1)

This complex-valued solution gives rise to two real-valued solutions, as we now show.

Lemma 1. Let $x(t) = Y(t) + iZ(t)$ be a complex-valued solution of (1). Then, both $y(t)$ and $z(t)$ are real-valued solutions of (1).

$$
X(t) = e^{\lambda t} V = e^{(a+ib)t} (V_1 + i V_2) = e^{at} (\cos bt + i \sin bt) (V_1 + i V_2)
$$

$$
= e^{at}[(V_1 \cos bt - V_2 \sin bt) + i(V_1 \sin bt + V_2 \cos bt)]
$$

\n
$$
Y(t) = e^{at}(V_1 \cos bt - V_2 \sin bt)
$$

\n
$$
Z(t) = e^{at}(V_1 \sin bt + V_2 \cos bt)
$$

are two real-valued solutions of (1). Moreover, these two solutions must be linearly independent solution.

Example 3 Solve the system
$$
\dot{X} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix} X
$$
, $X(0) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

The characteristic polynomial of the matrix \vec{A} from (4) is

$$
det\begin{bmatrix} 1 - \lambda & 0 & 0 \\ 0 & 1 - \lambda & -1 \\ 0 & 1 & 1 - \lambda \end{bmatrix} = 0
$$

= $(1 - \lambda)^3 + (1 - \lambda) = -\lambda^3 + 3\lambda^2 - 3\lambda + 1 + 1 - \lambda = (1 - \lambda)(\lambda^2 - 2\lambda + 2)$
= 0.

Thus the eigenvalues of A are $\lambda_1 = 1$, $\lambda_{2,3} = 1 \pm i$.

(i) $\lambda_1 = 1$: We find the corresponding eigenvector $V_1 =$ α \boldsymbol{b} \overline{c} \vert from (3)

$$
(A - \lambda_1 I)V_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0
$$

This implies that $c = 0, b = 0$. Let $a = 1$ then $V_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

$$
X_1(t) = e^{\lambda_1 t} V_1 = e^t \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}
$$

(ii) $\lambda_2 = 1 + i$: We find the corresponding eigenvector $V_2 =$ \overline{a} \boldsymbol{b} $\mathcal{C}_{0}^{(n)}$ \vert from (3)

$$
(A - \lambda_2 I)V_2 = \begin{bmatrix} -i & 0 & 0 \\ 0 & -i & -1 \\ 0 & 1 & -i \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0
$$

This implies that $-ia = 0 \rightarrow a = 0, -ib - c = 0, b - ic = 0 \rightarrow b = ic$. Let $c = 1$

then
$$
b = i \rightarrow V_2 = \begin{bmatrix} 0 \\ i \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ i \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + i \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}
$$

$$
X_2(t) = e^{\lambda_2 t} V_2 = e^{(1+i)t} \left(\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + i \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right) = e^t e^{it} \left(\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + i \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right)
$$

$$
X_2(t) = e^t(\cos t + i \sin t) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + i \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}
$$

\n
$$
X_2(t) = e^t[\cos t \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - \sin t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + i[\cos t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \sin t \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}]]
$$

\n
$$
X_2(t) = e^t[\cos t \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - \sin t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}] = e^t \begin{pmatrix} 0 \\ -\sin t \\ \cos t \end{pmatrix}
$$
and
\n
$$
X_3(t) = e^t[\cos t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \sin t \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}] = e^t \begin{pmatrix} 0 \\ \cos t \\ \sin t \end{pmatrix}
$$

\n
$$
X(t) = c_1X_1 + c_2X_2 + c_3X_3 = c_1e^t \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c_2e^t \begin{pmatrix} 0 \\ -\sin t \\ \cos t \end{pmatrix} + c_3e^t \begin{pmatrix} 0 \\ \cos t \\ \sin t \end{pmatrix}
$$

\n
$$
X(t) = e^t \begin{pmatrix} c_1 \\ -c_2 \sin t + c_3 \cos t \\ c_2 \cos t + c_3 \sin t \end{pmatrix}
$$

\nWhen $t = 0$, $X(0) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} c_1 \\ c_3 \\ c_2 \end{pmatrix}$, $X(t) = e^t \begin{pmatrix} 1 \\ -\sin t + \cos t \\ \cos t + \sin t \end{pmatrix}$.

Home work

1- Find the solution of

$$
\begin{aligned}\na - \dot{X} &= \begin{bmatrix} -3 & 2 \\ -1 & -1 \end{bmatrix} X, & b - \dot{X} &= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ -2 & 0 & -1 \end{bmatrix} X \\
c - \dot{X} &= \begin{bmatrix} 1 & -1 \\ 5 & -3 \end{bmatrix} X, & X(0) &= \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \text{d} - \dot{X} &= \begin{bmatrix} -3 & 0 & 2 \\ 1 & -1 & 0 \\ -2 & -1 & 0 \end{bmatrix} X, & X(0) &= \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix}\n\end{aligned}
$$

Third: Equal roots

If the eigenvalue λ_i with multiplicity k then the other linear independent eigenvector can be obtain from the equation

$$
(A - \lambda_i I)^k V = 0 \tag{5}
$$

Or we can use

 $(A - \lambda_1 I)V_2 = V_1$, $(A - \lambda_1 I)V_3 = V_2$, ..., $(A - \lambda_1 I)V_k = V_{k-1}$, (6) And the solution is

$$
X_2(t) = e^{\lambda_1 t} [V_2 + t(A - \lambda_1 I) V_2 + \frac{t^2}{2} (A - \lambda_1 I)^2 V_2 + \cdots
$$

+
$$
\frac{t^{k-1}}{(k-1)!} (A - \lambda_1 I)^{k-1} V_2
$$
 (7)

Example 1. Find three linearly independent solutions of the differential equation $\dot{X} =$ $\mathbf{1}$ $\boldsymbol{0}$ $\boldsymbol{0}$ $\vert X$ The characteristic polynomial of the matrix \vec{A} from (4) is det $\mathbf{1}$ $\boldsymbol{0}$ $\boldsymbol{0}$ \vert = $\Rightarrow (1 - \lambda)^2 (2 - \lambda) = 0 \Rightarrow \lambda_1 = 1$, with multiplicity two $(k = 2)$, $\lambda_3 = 2$ with multiplicity one, (i) $\lambda_1 = 1$: We find the corresponding eigenvector $V_1 =$ α \boldsymbol{b} \mathcal{C} \vert from (3) $(A - \lambda_1 I) V_1 =$ $\boldsymbol{0}$ $\boldsymbol{0}$ $\boldsymbol{0}$ \prod α \boldsymbol{b} \overline{c} \vert = This implies that $b = 0$, $c = 0$. Let $a = 1$ then $V_1 =$ $\mathbf{1}$ $\boldsymbol{0}$ $\boldsymbol{0}$] $X_1(t) = e^{\lambda_1 t} V_1 = e^t$ $\mathbf{1}$ $\boldsymbol{0}$ $\boldsymbol{0}$] From (5) or (6) we get $V_2 =$ \overline{a} \boldsymbol{b} \mathcal{C}_{0}] $(A - \lambda_1 I)V_2 = V_1 \implies$ $\boldsymbol{0}$ $\boldsymbol{0}$ $\boldsymbol{0}$ \prod α \boldsymbol{b} \overline{c} $\vert = \vert$ $\mathbf{1}$ $\boldsymbol{0}$ $\boldsymbol{0}$ $\Rightarrow b = 1, c = 0, a$ arbitrary $V_2=$ $\boldsymbol{0}$ $\mathbf{1}$ $\boldsymbol{0}$] $(A - \lambda_1 I)^2 V_2 = 0 \Longrightarrow$ $\boldsymbol{0}$ $\boldsymbol{0}$ $\boldsymbol{0}$] $\overline{\mathbf{c}}$ l α \boldsymbol{b} \overline{c} $|= 0 \Rightarrow |$ $\boldsymbol{0}$ $\boldsymbol{0}$ $\boldsymbol{0}$ \prod α \boldsymbol{b} \overline{c} \vert = \Rightarrow c = 0, a, b arbitrary $V_2 =$ $\boldsymbol{0}$ $\mathbf{1}$ $\boldsymbol{0}$] from (7) we get

$$
X_2(t) = e^{\lambda_1 t} [V_2 + t(A - \lambda_1 I) V_2] = e^t \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} =
$$

$$
= e^t \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = e^t \begin{bmatrix} t \\ 1 \\ 0 \end{bmatrix}
$$

(iii) $\lambda_3 = 2$: We find the corresponding eigenvector $V_3 =$ \boldsymbol{b} \mathcal{C} \vert from (3)

$$
(A - \lambda_3 I)V_3 = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0
$$

This implies that $-a + b = 0, -b = 0 \Rightarrow a = 0, c$ is arbitrary. Let $c = 1$ then $V_3 =$ $\boldsymbol{0}$ $\boldsymbol{0}$ $\mathbf{1}$]

$$
X_3(t) = e^{\lambda_3 t} V_3 = e^{2t} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
$$

Example 2. Solve the initial-value problem $\dot{X} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ $\overline{4}$ $X, X(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ \overline{c} 1 Solution. The characteristic polynomial of the matrix A by (4) is

 $det(A - \lambda I) = 0 \rightarrow det$ ^{[2}] $\overline{4}$ $= 0 \rightarrow (\lambda - 2)^2$ Is eigenvalue of multiplicity 2.

(i) $\lambda_1 = 2$ to find the corresponding eigenvector $(A - \lambda_1 I)V_1 = 0$, $V_1 =$ \overline{a} $\begin{bmatrix} a \\ b \end{bmatrix}$ \rightarrow $(A - 2I)$ α $\begin{bmatrix} a \\ b \end{bmatrix} = 0 \Longrightarrow \begin{bmatrix} 0 \\ 4 \end{bmatrix}$ 4 $\mathbf{1}$ α $\begin{bmatrix} a \\ b \end{bmatrix} = 0 \implies a = 0$, let $b = 1$ then $V_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\mathbf{1}$ 1 $X_1 = e^{2t} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\mathbf{1}$ 1 to find the second vector $V_2 =$ \overline{a} $\begin{bmatrix} a \\ b \end{bmatrix}$ from (3) $\rightarrow \begin{bmatrix} 0 \\ 4 \end{bmatrix}$ $\overline{4}$ $\mathbf{||}$ \overline{a} $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\mathbf{1}$ $| \Rightarrow$ Γ 11

$$
\frac{1}{4}, \quad V_2 = \begin{bmatrix} \frac{1}{4} \\ 0 \end{bmatrix} \text{ from (7) we get}
$$
\n
$$
X_2(t) = e^{\lambda_1 t} [V_2 + t(A - \lambda_1 I) V_2] = e^{2t} \begin{bmatrix} 1 \\ \frac{1}{4} \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 & 0 \\ 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ \frac{1}{4} \\ 0 \end{bmatrix} = e^{2t} \begin{bmatrix} 1 \\ \frac{1}{4} \\ t \end{bmatrix}
$$
\n
$$
X(t) = c_1 X_1 + c_2 X_2 = c_1 e^{2t} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} \Rightarrow X(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{4} c_2 \\ c_1 \end{bmatrix}
$$
\n
$$
c_1 = 2, \quad c_2 = 4
$$
\n
$$
X(t) = 2e^{2t} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 4e^{2t} \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} = e^{2t} \begin{bmatrix} 1 \\ 2 + 4t \end{bmatrix}
$$

Example 3. Solve the initial-value problem $\dot{X} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ \overline{c} $\boldsymbol{0}$ $\boldsymbol{0}$ $X, X(0) =$ $\mathbf{1}$ \overline{c} $\mathbf{1}$ +

The characteristic polynomial of the matrix A from (4) is

$$
det\begin{bmatrix}2-\lambda & 1 & 3\\ 0 & 2-\lambda & -1\\ 0 & 0 & 2-\lambda\end{bmatrix} = 0
$$

\n
$$
\Rightarrow (2-\lambda)^3 = 0 \Rightarrow \lambda_1 = 2, \text{ with multiplicity 3 } (k = 3),
$$

\n(i) $\lambda_1 = 1$: We find the corresponding eigenvector $V_1 = \begin{bmatrix} a\\ b\\ c \end{bmatrix}$ from (3)
\n
$$
(A - \lambda_1 I)V_1 = \begin{bmatrix} 0 & 1 & 3\\ 0 & 0 & -1\\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a\\ b\\ c \end{bmatrix} = 0
$$

\nThis implies that $b + 3c = 0, c = 0 \Rightarrow b = 0$. Let $a = 1$ then $V_1 = \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$
\n
$$
X_1(t) = e^{\lambda_1 t} V_1 = e^{2t} \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}
$$

\nFrom (5) or (6) we get $V_2 = \begin{bmatrix} a\\ b\\ c \end{bmatrix}$
\n
$$
(A - \lambda_1 I)V_2 = V_1 \Rightarrow \begin{bmatrix} 0 & 1 & 3\\ 0 & 0 & -1\\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a\\ b\\ c \end{bmatrix} = \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix} \Rightarrow b + 3c = 1, c = 0, b = 1, a
$$

\narbitrary $V_2 = \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix}$, since this is the second eigenvalue then by (7)
\n
$$
X_2(t) = e^{\lambda_1 t} [V_2 + t(A - \lambda_1 I) V_2] = e^{2t} \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} + t \begin{bmatrix} 0 & 1 & 3\\ 0 & 0 & -1\\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} = e^{2t} \begin{bmatrix} t\\ 1\\ 0 \end{bmatrix}
$$

\n
$$
(A - \lambda_1 I)V_3 = V_2 \Rightarrow \begin{bmatrix} 0 & 1 & 3\\ 0 &
$$

$$
X_3(t) = e^{\lambda_1 t} [V_3 + t(A - \lambda_1 I) V_3 + \frac{t^2}{2} (A - \lambda_1 I)^2 V_3
$$

\n
$$
= e^{2t} \begin{bmatrix} 0 \\ 3 \\ -1 \end{bmatrix} + t \begin{bmatrix} 0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \\ -1 \end{bmatrix} + \frac{t^2}{2} \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \\ -1 \end{bmatrix}
$$

\n
$$
= e^{2t} \begin{bmatrix} \frac{t^2}{2} \\ \frac{t^2}{2} \\ -1 \end{bmatrix}
$$

\n
$$
X(t) = c_1 X_1 + c_2 X_2 + c_3 X_3 = e^{2t} [c_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} t \\ 1 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} \\ \frac{t^2}{3} + t \\ -1 \end{bmatrix}
$$

\n
$$
X(0) = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 + 3c_3 \\ -c_3 \end{bmatrix}, c_1 = 1, c_3 = -1, c_2 = 5
$$

$$
X(t) = e^{2t} \begin{bmatrix} 1 + 5t - \frac{t^2}{2} \\ 2 - t \\ 1 \end{bmatrix}
$$

Theorem 2 (Cayley-Hamilton Theorem) Every $n \times n$ constant matrix satisfies its characteristic equation.

Theorem 2 (Cayley-Hamilton). Let $p(\lambda) = p_0 + p_1 \lambda + ... + (-1)^n p_n \lambda^n$ be the characteristic polynomial of A . Then,

 $p(A) = p_0 + p_1 A + \ldots + (-1)^n p_n A^n$ Example let $A = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ \overline{c} then $p(\lambda) = \lambda^2 + 4\lambda - 1 = 0$ its characteristic equation so $p(A) = A^2$ Home work

1- Find the solution of

$$
a - \dot{X} = \begin{bmatrix} -3 & 1 \\ -1 & -1 \end{bmatrix} X, \qquad b - \dot{X} = \begin{bmatrix} -1 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix} X
$$

\n
$$
c - \dot{X} = \begin{bmatrix} 1 & -3 \\ 3 & -5 \end{bmatrix} X, \ X(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad d - \dot{X} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ -3 & 2 & 4 \end{bmatrix} X, \ X(0) = \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix}
$$

1.3 Fundamental matrix solutions $\Phi(t)$; and exponential matrix e^A

$$
\dot{X} = AX \tag{1}
$$

Definition 2. An $n \times n$ matrix function Φ is said to be a fundamental matrix for the vector differential equation (1) provided Φ is a

solution of the matrix equation (1) on I , often

$$
\mathbf{\Phi}(\mathbf{t}) = [X_1 \, X_2 \, \dots \, X_n] \to X(t) = \mathbf{\Phi}(\mathbf{t})\mathbf{C} \tag{2}
$$

Definition 3. An $n \times n$ matrix function e^{At} is said to be a exponential matrix for the vector differential equation (1) provided

$$
X(t) = e^{A(t-t_0)}C \tag{3}
$$

Example 1. Find a fundamental matrix solution of the system of differential

equations

The independent solutions are
$$
X_1 = e^t \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}
$$
, $X_2 = e^{2t} \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$, $X_3 = e^{3t} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$
\n $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3, V_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, $V_2 = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$, $V_3 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$
\n
$$
\Phi(t) = \begin{bmatrix} e^t & -2e^{2t} & 0 \\ 0 & e^{2t} & e^{3t} \\ -e^t & 0 & -e^{3t} \end{bmatrix}
$$
\n
$$
\begin{bmatrix} a-1 & b & c \\ d & e-1 & f \\ g & h & i-1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = 0 \rightarrow a - c = 1, d - f = 0, g - i = -1
$$
\n
$$
\begin{bmatrix} a-2 & b & c \\ d & e-2 & f \\ g & h & i-2 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} = 0 \rightarrow -2a + b = -4, -2d + e = 2, -2g + h = 0
$$
\n
$$
\begin{bmatrix} a-3 & b & c \\ d & e-3 & f \\ g & h & i-3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} = 0 \rightarrow b - c = 0, e - f = 3, h - i = -3,
$$
\n
$$
\rightarrow b - 2c = -2, b = c = 2, a = 3, -f + 2d = 1, f = d = 1, e = 4, g - h = 2, g = -2, h = -4, i = -1
$$
\n
$$
MJ = AM \rightarrow \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 1 & -2 & 0 \\
$$

Theorem 3. Let $\Phi(t)$ be a fundamental matrix solution of the differential equation $\dot{X} = AX$ (1)

Then,
$$
e^{At} = \Phi(t)\Phi^{-1}(0)
$$
 (4)

In other words, the product of any fundamental matrix solution of (I) with its inverse at $t = 0$ must yield e^{At} .

Lemma 2. A matrix $\Phi(t)$ is a fundamental matrix solution of (1) if and only if $\dot{\Phi}(t) = A\Phi(t)$ and $\det \Phi(0) \neq 0$.

Proof of Lemma: Let $X_1(t)X_2(t)$... $X_n(t)$ be linearly independent solution of (1). Let $\Phi(t) = [X_1(t) X_2(t) ... X_n(t)]$ then $\Phi(t)$ is Fundamental solution iff $\dot{\Phi}(t) = [\dot{X}_1(t) \dot{X}_2(t) ... \dot{X}_n(t)] = [AX_1(t) \quad AX_2(t) \quad ... \quad AX_n(t)] =$ $A[X_1(t) \ X_2(t) \ ... \ X_n(t)] = A\Phi(t)$ and $\Phi(t) = [e^{\lambda_1 t} V_1 \, e^{\lambda_2 t} V_2 \, ... \, e^{\lambda_n t} V_n] \Rightarrow \Phi(0) = [V_1 \, V_2 \, ... \, V_n]$

Since V_1 V_2 ... V_n are eigenvectors so they are linearly independent then $\det \Phi(0) \neq 0.$ \Box

Lemma 3. The matrix-valued function $e^{At} = I + At + A^2 \frac{t^2}{2}$ $\frac{1}{2} + \cdots$ (5) is a fundamental matrix solution of (1).

Proof: $\frac{d}{dt}$ $\frac{d}{dt}e^{At} = A + A^2t + A^3\frac{t^2}{2}$ $\frac{t^2}{2} + \dots = A\left(I + At + A^2\frac{t^2}{2}\right)$ $\left(\frac{c}{2} + \cdots\right) = Ae^{At}$ so e^{At} is a solution of (1), $\det(e^{A0}) = \det(e^{0}) = \det(I) =$

So by Lemma 2 e^{At} is fundamental matrix solution. \Box

Lemma 4. Let $\Phi(t)$ be a fundamental matrix solution of (1). Then, $\Psi(t) = \Phi(t)C$ is also a fundamental matrix solution of (1) provided C is constant nonsingular matrix (det $C \neq 0$).

Proof: Let $\Psi(t) = \Phi(t)C \rightarrow \Psi'(t) = \Phi'(t)C$, $\Psi'(t) = A\Phi(t)C = A\Psi(t)$. Then $\Psi(t)$ is a solution of (1)

 $\det \Psi(t) = \det \Phi(t)C = \det \Phi(t) \det C \rightarrow \det \Psi(0) = \det \Phi(0) \det C \neq 0$ Then $\Psi(t)$ is a fundamental matrix \Box

Proof of Theorem3: Let $\Phi(t)$ be fundamental matrix, by Lemma 3 e^{At} is also a fundamental matrix, then by Lemma 4, $e^{At} = \Phi(t)C$ (6) Let $t = 0$ in (6) $I = \Phi(0)C \rightarrow C = \Phi^{-1}(0) \rightarrow e^{At} = \Phi(t)\Phi^{-1}(0)$. $e^{A(t-t_0)} = \Phi(t)\Phi^{-1}(t_0)$ (7)

Example 2. Find e^{At} if $\dot{X} =$ $\mathbf{1}$ $\boldsymbol{0}$ $\boldsymbol{0}$ X and use it to solve the system

Solution. Our first step is to find 3 linearly independent solutions of the system:

$$
\lambda_1 = 1, \lambda_2 = 3, \lambda_3 = 5
$$
 and $V_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, V_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, V_3 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ their corresponding

 $\boldsymbol{0}$

 $\mathbf{1}$

5

 \overline{c}

eigenvalues, then
$$
\Phi(t) = \begin{bmatrix} e^{t} & e^{3t} & e^{5t} \\ 0 & 2e^{3t} & 2e^{5t} \\ 0 & 0 & 2e^{5t} \end{bmatrix}
$$
 is FMS from (6)
\n $e^{At} = \Phi(t)\Phi^{-1}(0) = \begin{bmatrix} e^{t} & e^{3t} & e^{5t} \\ 0 & 2e^{3t} & e^{5t} \\ 0 & 0 & 2e^{5t} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 2e^{5t} \end{bmatrix}^{-1} = \begin{bmatrix} e^{t} & e^{3t} & e^{5t} \\ 0 & 2e^{3t} & 2e^{5t} \\ 0 & 0 & 2e^{5t} \end{bmatrix} \begin{bmatrix} 1 & -2 & 0 \\ 0 & 2 & -2 \\ 0 & 0 & 2 & e^{5t} \end{bmatrix} = \begin{bmatrix} e^{t} & e^{3t} & e^{5t} \\ 0 & 2e^{3t} & 2e^{5t} \\ 0 & 0 & 2e^{5t} \end{bmatrix} \begin{bmatrix} 1 & \frac{-1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{-1}{2} \\ 0 & 0 & e^{5t} \\ 0 & 0 & 2e^{5t} \end{bmatrix} = \begin{bmatrix} e^{t} & \frac{-1}{2}e^{3t} & \frac{1}{2}e^{5t} \\ 0 & e^{3t} & e^{5t} \\ 0 & 0 & 0 & e^{5t} \\ 0 & 0 & 0 & e^{5t} \end{bmatrix}$
\n**Example 3** Find e^{At} and Use it to solve $\dot{X} = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 3 \end{bmatrix} X$,
\nAns. The matrix A is lower triangular so $\lambda_1 = 2 = \lambda_2, \lambda_3 = 3$ and $V_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, X_1 = e^{2t} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, V_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, X_2 = e^{2t} \begin{bmatrix} 1 \\ t \\ t \\ -1 \end{bmatrix}, V_3 = \begin{bmatrix$

$$
= \begin{bmatrix} 1 + 2t + \frac{(2t)^2}{2!} + \frac{(2t)^3}{3!} + \cdots & 0 & 0 \\ t + \frac{4t^2}{2} + \frac{12t^3}{3!} + \cdots & 1 + 2t + \frac{(2t)^2}{2!} + \frac{(2t)^3}{3!} + \cdots & 0 \\ t + \frac{5t^2}{2} + \frac{19t^3}{3!} + \cdots & 0 & 1 + 3t + \frac{(3t)^2}{2!} + \frac{(3t)^3}{3!} + \cdots \end{bmatrix}
$$

=
$$
\begin{bmatrix} e^{2t} & 0 & 0 \\ te^{2t} & e^{2t} & 0 \\ e^{3t} - e^{2t} & 0 & e^{3t} \end{bmatrix}
$$

Properties of e^A

1- if A is diagonal
$$
\begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}
$$
 then $e^{At} = \begin{bmatrix} e^{3t} & 0 & 0 \\ 0 & e^{2t} & 0 \\ 0 & 0 & e^{4t} \end{bmatrix}$
\n2- if A is upper (or lower)triangular $A = \begin{bmatrix} 2 & a \\ 0 & 3 \end{bmatrix} \rightarrow e^{At} = \begin{bmatrix} e^{2t} & -ae^{2t} + ae^{3t} \\ 0 & e^{3t} \end{bmatrix}$
\n $\begin{bmatrix} 3 & 1 & 2 \\ 0 & 2 & -1 \\ 0 & 0 & 4 \end{bmatrix}$ then $e^{At} = \begin{bmatrix} e^{3t} & 0 & 0 \\ 0 & e^{2t} & 0 \\ 0 & 0 & e^{4t} \end{bmatrix}$

1.4 The nonhomogeneous equation; variation of parameters

Let the matrix $\Phi(t) = [X_1(t) \ X_2(t) \ \cdots \ X_n(t)]$ be FMS of the homogenous system $\dot{X}(t) = AX(t)$ (1)

Then the system

$$
\dot{X}(t) = AX(t) + H(t) \tag{2}
$$

Is the nonhomogenous system,

Theorem 4 Let $\Phi(t)$ be FMS and e^{At} be exponential matrix then the general solution satisfying $X(t_0) = X_0$ of (2) is

$$
X(t) = e^{A(t-t_0)}X_0 + e^{At} \int_{t_0}^t e^{-As} H(s) \, ds
$$

Proof: We have to seek a solution in the form

$$
X(t) = \Phi(t)U(t).
$$
\n(3)
\n
$$
U(t) = \Phi^{-1}(t)X(t)
$$
\n(4)
\nDifferentiating (3) we get $\dot{X}(t) = \dot{\Phi}(t)U(t) + \Phi(t)\dot{U}(t)$,
\n
$$
AX(t) + H(t) = \dot{\Phi}(t)U(t) + \Phi(t)\dot{U}(t) = A\Phi(t)U(t) + \Phi(t)\dot{U}(t)
$$
\n
$$
= AX(t) + \Phi(t)\dot{U}(t),
$$
\n
$$
H(t) = \Phi(t)\dot{U}(t) \rightarrow \dot{U}(t) = \Phi^{-1}(t)H(t)
$$

Integrating this expression between t_0 and t gives

$$
U(t) - U(t_0) = \int_{t_0}^t \Phi^{-1}(s)H(s) ds
$$

\n
$$
U(t) = \Phi^{-1}(t_0)X(t_0) + \int_{t_0}^t \Phi^{-1}(s)H(s) ds
$$

\n
$$
\Phi(t)U(t) = \Phi(t)\Phi^{-1}(t_0)X_0 + \Phi(t)\int_{t_0}^t \Phi^{-1}(s)H(s) ds
$$

\n
$$
X(t) = \Phi(t)\Phi^{-1}(t_0)X_0 + \Phi(t)\int_{t_0}^t \Phi^{-1}(s)H(s) ds
$$
(5)
\n
$$
X(t) = e^{A(t-t_0)}X_0 + e^{A(t-t_0)}\Phi(t_0)\int_{t_0}^t e^{-A(s-t_0)}\Phi^{-1}(t_0)H(s) ds
$$

\n
$$
X(t) = e^{A(t-t_0)}X_0 + e^{At}\int_{t_0}^t e^{-As}H(s) ds
$$
(6)

طر يقة اخر ي للبر هان

Multiply (2) by $e^{-At} \to e^{-At} \dot{X}(t) = e^{-At} A X(t) + e^{-At} H(t)$ $e^{-At}\dot{X}(t) - e^{-At}AX(t) = e^{-At}H(t) \rightarrow e^{-At}\dot{X}(t) - Ae^{-At}X(t) = e^{-At}H(t)$ $\Rightarrow e^{-At}X'(t) + (e^{-At})'X(t) = e^{-At}H(t) \Rightarrow (e^{-At}X(t))' = e^{-At}H(t)$

Integrating this expression between t_0 and t gives

$$
e^{-At}X(t) - e^{-At_0}X(t_0) = \int_{t_0}^t e^{-As}H(s)ds
$$

$$
e^{-At}X(t) = e^{-At_0}X(t_0) + \int_{t_0}^t e^{-As}H(s)ds
$$

$$
X(t) = e^{A(t-t_0)}X_0 + e^{At} \int_{t_0}^t e^{-As}H(s) ds.
$$

Example 1. Solve the initial-value problem

$$
\dot{X} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1 \end{bmatrix} X + \begin{bmatrix} 0 \\ 0 \\ e^t \cos 2t \end{bmatrix}, \qquad X(0) = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}
$$

\n
$$
\begin{aligned}\n\dot{X} &= \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ 2 & 1 & -\lambda \end{bmatrix}, \qquad \dot{X}(0) = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \\
\dot{X} &= AX \quad \text{Initial} \text{Maxwell} \quad \text{Laplacian} \quad \text{Lapl
$$

1.
$$
\lambda_1 = 1 \rightarrow \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & -2 \\ 3 & 2 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0 \rightarrow 2a - 2c = 0, 3a + 2b = 0, c = a, b = -\frac{3}{2}a
$$

\n
$$
V_1 = \begin{bmatrix} 2 \\ -3 \\ 2 \end{bmatrix}, X_1 = e^t \begin{bmatrix} 2 \\ -3 \\ 2 \end{bmatrix} = \begin{bmatrix} 2e^t \\ 2e^t \end{bmatrix}
$$
\n2. $\lambda = 1 + 2i \rightarrow \begin{bmatrix} -2i & 0 & 0 \\ 2 & -2i & -2 \\ 3 & 2 & -2i \end{bmatrix} \begin{bmatrix} b \\ c \end{bmatrix} = 0 \rightarrow -2ia = 0 \rightarrow a = 0,$
\n
$$
2a - 2ib - 2c = 0, \quad ib + c = 0 \rightarrow V = \begin{bmatrix} 0 \\ 1 \\ -i \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -i \end{bmatrix}
$$
\n
$$
X = e^{(1+2i)t} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \begin{bmatrix} 0 \\ 0 \\ -i \end{bmatrix} = e^t (\cos 2t + i \sin 2t) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + i(-\cos 2t) \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \sin 2t \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \sin 2t \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + i(-\cos 2t) \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \sin 2t \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix})
$$
\n
$$
X_2 = e^t [\cos 2t] \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + \sin 2t \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, X_3 = e^t [-\cos 2t] \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \sin 2t \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}]
$$
\n
$$
X_3 =
$$

Then by (6) we get

$$
X(t) = \begin{bmatrix} e^{t} & 0 & 0 \\ -\frac{3}{2}e^{t} + \frac{3}{2}e^{t} \cos 2t + e^{t} \sin 2t & e^{t} \cos 2t & -e^{t} \sin 2t \\ e^{t} + \frac{3}{2}e^{t} \cos 2t + e^{t} \sin 2t & e^{t} \sin 2t & e^{t} \cos 2t \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}
$$

+
$$
\begin{bmatrix} -\frac{3}{2}e^{t} + \frac{3}{2}e^{t} \cos 2t + e^{t} \sin 2t & e^{t} \cos 2t & -e^{t} \sin 2t \\ e^{t} + \frac{3}{2}e^{t} \cos 2t - e^{t} \sin 2t & e^{t} \cos 2t & -e^{t} \sin 2t \\ e^{t} + \frac{3}{2}e^{t} \cos 2t - e^{t} \sin 2t & e^{t} \cos 2t \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} e^{t} \\ e^{t} \cos 2t - e^{t} \sin 2t & e^{t} \cos 2t \\ e^{t} \cos 2t + e^{t} \sin 2t & e^{t} \cos 2t \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} e^{t} \\ e^{t} \cos 2t - e^{t} \sin 2t \\ e^{t} \cos 2t + e^{t} \sin 2t & e^{t} \cos 2t & -e^{t} \sin 2t \\ e^{t} + \frac{3}{2}e^{t} \cos 2t + e^{t} \sin 2t & e^{t} \cos 2t & -e^{t} \sin 2t \\ e^{t} + \frac{3}{2}e^{t} \cos 2t - e^{t} \sin 2t & e^{t} \cos 2t \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -e^{2s} \cos 2s \sin 2s \\ e^{2s} \cos^2 2s \end{bmatrix} ds
$$

 $X(t) =$

Example 2 Solve the initial-value problem $\dot{X} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$ $\boldsymbol{0}$ $X + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\boldsymbol{0}$ $\int e^{t}$, $X(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\mathbf{1}$ / $\det(A - \lambda I) = 0 \rightarrow \det \begin{bmatrix} 3 \end{bmatrix}$ $\boldsymbol{0}$ \vert = $(3 - \lambda)^2$ $\lambda_1 = 3 \rightarrow (A - 3I)V_1 = 0 \rightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\boldsymbol{0}$ $\mathbf{1}$ \overline{a} $\begin{bmatrix} a \\ b \end{bmatrix} = 0 \rightarrow b = 0, V_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\boldsymbol{0}$ 1 $X_1 = e^{3t} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\boldsymbol{0}$ 1

$$
\lambda_1 = 3 \to (A - 3I)V_2 = V_1 \to \begin{bmatrix} 0 & -4 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, -4b = 1, b = \frac{-1}{4}, V_2 = \begin{bmatrix} 0 \\ \frac{-1}{4} \end{bmatrix}
$$

$$
X_2 = e^{3t} \begin{bmatrix} 0 \\ \frac{-1}{4} \end{bmatrix} + t \begin{bmatrix} 0 & -4 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ \frac{-1}{4} \end{bmatrix} = e^{3t} \begin{bmatrix} \frac{t}{4} \\ \frac{-1}{4} \end{bmatrix}
$$

$$
\Phi(t) = e^{3t} \begin{bmatrix} 1 & t \\ 0 & \frac{-1}{4} \end{bmatrix} \to \Phi^{-1}(0) = -4 \begin{bmatrix} \frac{-1}{4} & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -4 \end{bmatrix}
$$

$$
e^{At} = \Phi(t)\Phi^{-1}(0) = e^{3t} \begin{bmatrix} 1 & t \\ 0 & \frac{-1}{4} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -4 \end{bmatrix} = e^{3t} \begin{bmatrix} 1 & -4t \\ 0 & 1 \end{bmatrix}
$$

Then by (6) we get

$$
X(t) = e^{3t} \begin{bmatrix} 1 & -4t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + e^{3t} \begin{bmatrix} 1 & -4t \\ 0 & 1 \end{bmatrix} \int_0^t e^{3s} \begin{bmatrix} 1 & -4s \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} ds
$$

= $e^{3t} \begin{bmatrix} -4t \\ 1 \end{bmatrix} + e^{3t} \begin{bmatrix} 1 & -4t \\ 0 & 1 \end{bmatrix} \int_0^t \begin{bmatrix} e^{3s} \\ 0 \end{bmatrix} ds$

$$
= e^{3t} \begin{bmatrix} -4t + \frac{1}{3} [e^{3t} - 1] \\ 1 \end{bmatrix}
$$

Homework

1. Solve the initial-value problem
$$
\dot{X} = \begin{bmatrix} 2 & -5 \\ 1 & -2 \end{bmatrix} X + \begin{bmatrix} \sin t \\ \tan t \end{bmatrix}
$$
, $X(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ 2. Solve the initial-value problem $\dot{X} = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix} X + \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^t$, $X(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

3.13 Solving systems by Laplace transforms

$$
\dot{X}(t) = AX(t) + H(t), \quad X(0) = X_0 \quad (1)
$$
\n
$$
\mathbf{X}(s) = \begin{bmatrix} X_1(s) \\ \vdots \\ X_n(s) \end{bmatrix} = L\{\mathbf{x}(t)\} = \begin{bmatrix} \int_0^\infty e^{-st} x_1(t) dt \\ \vdots \\ \int_0^\infty e^{-st} x_n(t) dt \end{bmatrix} \quad (2)
$$
\n
$$
\mathbf{F}(s) = \begin{pmatrix} F_1(s) \\ \vdots \\ F_n(s) \end{pmatrix} = L\{\mathbf{f}(t)\} = \begin{pmatrix} \int_0^\infty e^{-st} f_1(t) dt \\ \vdots \\ \int_0^\infty e^{-st} f_n(t) dt \end{pmatrix} \quad (3)
$$

Taking Laplace transforms of both sides of (1) gives

$$
\mathcal{L}\{\dot{X}(t)\} = \mathcal{L}\{AX(t) + H\} = A\mathcal{L}\{X(t)\} + \mathcal{L}\{H\} \rightarrow
$$
\n
$$
\begin{bmatrix}\n\mathcal{L}\{\dot{x}_1(t)\} \\
\vdots \\
\mathcal{L}\{\dot{x}_n(t)\}\n\end{bmatrix} = A \begin{bmatrix}\n\mathcal{L}\{x_1(t)\} \\
\vdots \\
\mathcal{L}\{x_n(t)\}\n\end{bmatrix} + \begin{bmatrix}\n\mathcal{L}\{h_1(t)\} \\
\vdots \\
\mathcal{L}\{h_n(t)\}\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\ns\mathcal{L}\{x_1(t)\} - x_1(0) \\
\vdots \\
\mathcal{L}\{x_n(t)\} - x_n(0)\n\end{bmatrix} = A \begin{bmatrix}\n\mathcal{L}\{x_1(t)\} \\
\vdots \\
\mathcal{L}\{x_n(t)\}\n\end{bmatrix} + \begin{bmatrix}\n\mathcal{L}\{h_1(t)\} \\
\vdots \\
\mathcal{L}\{h_n(t)\}\n\end{bmatrix} \qquad (4)
$$

Example 1. Solve the initial-value problem

$$
\dot{\pmb{X}} = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix} \pmb{X} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t, \ \pmb{X}(0) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.
$$

Solution. Taking Laplace transforms of both sides of the differential equation gives [$sL\{x_1(t)\}$ – $sL\{x_2(t)\}$ – $\Big] = \Big(\frac{1}{4}\Big)$ $\mathbf{1}$ $\left| \right|$ $\mathcal{L}{x_1(t)}$ $\mathcal{L}\lbrace x_2(t)\rbrace$ $+$ $\mathbf{1}$ \overline{S} $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\mathbf{1}$ /

or

$$
(s-1)L{x1(t)} - 4L{x2(t)} = 2 + \frac{1}{s-1} \quad (s-1)X1(s) - 4X2(s) = 2 + \frac{1}{s-1}
$$

$$
-L{x1(t)} + (s-1)L{x2(t)} = 1 + \frac{1}{s-1} \quad -X1(s) + (s-1)X2(s) = 1 + \frac{1}{s-1}.
$$

$$
((s-1)^2 - 4)L{x_1(t)} = 2(s-1) + 5 + \frac{4}{s-1}
$$

$$
((s-1)^2 - 4)L{x_1(t)} = \frac{2s-2}{(s-3)(s+1)(s-1)} + \frac{5s-1}{(s-1)(s-1)}
$$

The solution of these equations is

$$
\mathcal{L}{x_1(t)} = \frac{2}{s-3} + \frac{1}{s^2-1}, \ \mathcal{L}{x_2(t)} = \frac{1}{s-3} + \frac{s}{(s-1)(s+1)(s-3)}
$$

Now,

$$
\frac{2}{s-3} = 2\mathcal{L}\{e^{3t}\}, \qquad \frac{1}{s^2 - 1} = \mathcal{L}\{\sinh t\} = \mathcal{L}\left\{\frac{e^t - e^{-t}}{2}\right\}
$$

$$
\mathcal{L}\{x_1(t)\} = 2\mathcal{L}\{e^{3t}\} + \mathcal{L}\left\{\frac{e^t - e^{-t}}{2}\right\} = \mathcal{L}\left\{2e^{3t} + \frac{e^t - e^{-t}}{2}\right\}
$$

$$
x_1(t) = 2e^{3t} + \frac{e^t - e^{-t}}{2}
$$

$$
\frac{s}{(s-1)(s+1)(s-3)} = \frac{A}{s-1} + \frac{B}{s+1} + \frac{C}{s-3}
$$

$$
s = A(s^2 + 2s - 3) + B(s^2 - 4s + 3) + C(s^2 - 1)
$$

$$
A + B + C = 0, 2A - 4B = 1, -3A + 3B - C = 0
$$

$$
A = -\frac{1}{4}, B = -\frac{1}{8}, C = \frac{3}{8},
$$

$$
\mathcal{L}\{x_2(t)\} = \mathcal{L}\{e^{3t}\} - \frac{1}{4}\mathcal{L}\{e^t\} - \frac{1}{8}\mathcal{L}\{e^{-t}\} + \frac{3}{8}\mathcal{L}\{e^{3t}\}
$$

$$
x_2(t) = \frac{11}{8}e^{3t} - \frac{1}{4}e^t - \frac{1}{8}e^{-t}
$$

Homework

1.
$$
\dot{\mathbf{x}} = \begin{pmatrix} 1 & -1 \\ 5 & -3 \end{pmatrix} \mathbf{x}, \ \mathbf{x}(0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}
$$

\n2. $\dot{x} = \begin{pmatrix} 3 & -2 \\ 2 & -2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} t \\ 3e^t \end{pmatrix}, \ \mathbf{x}(0) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$
\n3. $\dot{\mathbf{x}} = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 2 \\ -1 \end{pmatrix} e^t, \ \mathbf{x}(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
\n4. $\dot{x} = \begin{pmatrix} 2 & -5 \\ 1 & -2 \end{pmatrix} x + \begin{pmatrix} \sin t \\ \tan t \end{pmatrix}, \ x(0) = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$

الفصل الدراسي الثاني

Theory of Differential Equations

Chapter 2; Qualitative theory of differential equations 2.1 Introduction

$$
y'(t) = f(t, y(t))
$$
 (DE)
\n
$$
\dot{X}(t) = F(t, X(t)) \dots \dots \dots \dots \quad (1)
$$
\n
$$
y'(t) = f(y(t))
$$
 (ADE)
\n
$$
\dot{X}(t) = F(X(t)) \dots \dots \dots \quad (1')
$$

An Equation is autonomous if f do not depend explicitly on t, like (ADE) or $(1')$ While equation (DE) $\&$ (1) are nonautonomous.

Definition 1. (Equilibrium points) of (1).

A points c_i are said to be equilibrium (critical; fixed; accumulation) points of equation autonomous equation if $f(c_i) = 0$.

Example 1. Find the equilibrium points of $y' = 3y^2$

$$
3y^2 - 2y - 5 = 0 \rightarrow (3y - 5)(y + 1) = 0 \rightarrow y = \frac{5}{3} = c_1, y = -1 = c_2.
$$

Example 2. 1. Find the equilibrium points of $y' = e^y$, $y' = y^2$ $e^y > 0 \neq 0$, $y^2 + 1 > 0 \neq 0$ so there is no critical point in these equations. 2. $y' = \sin y$, $y' = y^2 - e^y$

For the system the critical points are (c_1, c_2)

Example 3 Find the equilibrium points of
$$
\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x^2 - 4y^2 \\ y^2 - 2x + 2y + 5 \end{bmatrix}
$$
,
\n $x^2 - 4y^2 = 0 \rightarrow x = 2y$ & $x = -2y$
\nIf $x = 2y \rightarrow y^2 - 4y + 2y + 5 = 0 \rightarrow y^2 - 2y + 5 = 0 \rightarrow y = \frac{2 \pm \sqrt{4 - 20}}{2} = 1 \pm 2i$
\nignore
\nIf $x = -2y \rightarrow y^2 + 6y + 5 = 0 \rightarrow (y + 5)(y + 1) = 0 \rightarrow y = -5, x = 10, y = -1, x = 2 \rightarrow (10, -5), (2, -1) \text{ or } \begin{bmatrix} 10 \\ -7 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

 $\overline{}$ $\overline{}$ Example 4 Find the equilibrium points of \vert x' $\begin{bmatrix} x \\ y' \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix}$ $(x-1)(y-1)$ $(x + 1)(y + 1)$ I

Home work

1.
$$
\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x - x^2 - 2xy \\ 2y - 2y^2 - 3xy \end{bmatrix}
$$
,

2.
$$
\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} ax - bxy \\ -cx + dxy \\ z + x^2 + y^2 \end{bmatrix},
$$

2.2. Stability of linear systems

$$
\dot{X}(t) = F(X(t)) \dots \dots \dots \dots \quad (1')
$$

Definition 1. The solution $X = \varphi(t)$ of (1') is stable if every solution $\psi(t)$ of (1') which starts sufficiently close to $\varphi(t)$ at $t = 0$ must remain close to $\varphi(t)$ for all future time t. The solution $\varphi(t)$ is unstable if there exists at least one solution $\psi(t)$ of (1') which starts near $\varphi(t)$ at $t = 0$ but which does not remain close to $\varphi(t)$ for all future time. More precisely, the solution $\varphi(t)$ is stable if for every $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon)$ such that $|\varphi_i(t) - \psi_i(t)| < \varepsilon$ if $|\varphi_i(0) - \psi_i(0)| < \delta(\varepsilon)$, $i = 1, 2, ..., n$. for every solution $\psi(t)$ of (1').

 $\dot{X}(t) = A X (2)$

Theorem 1. (a) Every solution $X = \varphi(t)$ of (1') is stable if all the eigenvalues of A have negative real part.

(b) Every solution $X = \varphi(t)$ of (2) is unstable if at least one eigenvalue of A has positive real part.

(c) Suppose that all the eigenvalues of A which are purely imaginary then every solution $X = \varphi(t)$ of (1') is stable

Definition 2. Let $X =$ \mathcal{X} \vdots \mathcal{X}] be a vector with n components. The numbers

 x_1, x_2, \dots, x_n may be real or complex. We define the length of *X*, denoted by $||X||$ as $||X|| = \max\{x_1, x_2, \cdots, x_n\}.$

For example, if $X = |$ $\mathbf{1}$ \overline{c} $\overline{}$

then $||X|| = 3$ and if $X =$ $\mathbf{1}$ \overline{c} $\overline{}$ | then $||X|| = 5$.

]

Definition 3. A solution $X = \varphi(t)$ of (2.1') is asymptotically stable if it is stable, and if every solution $\psi(t)$ which starts sufficiently close to $\varphi(t)$ must approach $\psi(t)$ as t approaches infinity. In particular, an equilibrium solution $X(t) = X_0$ of (1') is asymptotically stable if every solution $\psi(t)$ of (1') which starts sufficiently close to X_0 at time $t = 0$ not only remains

close to X_0 for all future time, but ultimately approaches X_0 as t approaches infinity. **Example 1.** Determine whether each solution $X(t)$ of the system

$$
\dot{X} = \begin{bmatrix} -1 & 0 & 0 \\ -2 & -1 & 2 \\ -3 & -2 & -1 \end{bmatrix} X
$$
 is stable, asymptotically stable, or unstable.

To find the eigenvalue

$$
det\begin{bmatrix} -1 - \lambda & 0 & 0 \\ -2 & -1 - \lambda & 2 \\ -3 & -2 & -1 - \lambda \end{bmatrix} = 0 \rightarrow -(1 + \lambda)^3 - 4(1 + \lambda) = 0 \rightarrow
$$

 $-(1 + \lambda)[(1 + \lambda)^2 + 4] = 0 \rightarrow (1 + \lambda)[\lambda^2 + 2\lambda + 5] \rightarrow$ By theorem 1 the solution is asymptotically stable

Example 2. Determine whether each solution $X(t)$ of the system

$$
\dot{X} = \begin{bmatrix} 1 & 5 \\ 5 & 1 \end{bmatrix} X
$$

det $\begin{bmatrix} 1 - \lambda & 5 \\ 5 & 1 - \lambda \end{bmatrix}$ = 0 $\rightarrow \lambda^2 - 2\lambda - 24 = 0 \rightarrow \lambda = 6, \lambda = -4$

By theorem 1 the solution is unstable

Example 3. Determine whether each solution $X(t)$ of the system

$$
\dot{X} = \begin{bmatrix} 0 & -8 \\ 2 & 0 \end{bmatrix} X
$$

det $\begin{bmatrix} -\lambda & -8 \\ 2 & -\lambda \end{bmatrix} = 0 \rightarrow \lambda^2 + 16 = 0 \rightarrow \lambda = 4i, \lambda = -4i$

By theorem 1 the solution is stable

Example 4. Determine whether each solution $X(t)$ of the system

 $\dot{X} =$ \overline{c} $\boldsymbol{0}$ $\overline{}$ $\begin{bmatrix} X \\ \end{bmatrix}$ is stable, asymptotically stable, or unstable.

To find the eigenvalue

$$
det\begin{bmatrix} 2-\lambda & -3 & 0 \\ 0 & -6-\lambda & -2 \\ -6 & 0 & -3-\lambda \end{bmatrix} = 0 \rightarrow -\lambda^2(\lambda + 7) = 0 \rightarrow \lambda = 0, \lambda = 0, \lambda = -7
$$

By theorem 1 the solution is unstable Homework

1.
$$
\dot{X} = \begin{bmatrix} 1 & 1 \\ -2 & -2 \end{bmatrix} X
$$
, 2. $\dot{X} = \begin{bmatrix} -5 & 3 \\ -1 & 1 \end{bmatrix} X$, 3. $\dot{X} = \begin{bmatrix} -7 & 1 & -6 \\ 10 & -4 & 12 \\ 2 & -1 & 1 \end{bmatrix} X$,

$$
4.\dot{X} = \begin{bmatrix} 0 & 2 & 0 & 0 \\ -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & -2 & 0 \end{bmatrix} X
$$

2.3 Linear and Nonlinear System

2.3.1 Linear Changes of Variable

$$
\dot{X} = AX \Leftrightarrow \begin{bmatrix} \dot{x_1} \\ \vdots \\ \dot{x_n} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}
$$
 (2.1)

We use the linear change of variable $X = MY$ (2.2) where $X =$ \mathcal{X} \vdots \mathcal{X} $|Y =$ \mathcal{Y} \vdots \mathcal{Y} |, M is nonsingular matrix, then $\dot{X} = M\dot{Y} =$ $\dot{Y} = M^{-1}AMY \Longrightarrow I = M^{-1}AM$ $\dot{Y} = JY$ (2.3)

Definition 1 We say that matrix \boldsymbol{I} is similar to matrix \boldsymbol{A} if there is nonsingular matrix *M* such that $J = M^{-1}AM$ (2.4) **Example 1.** The change of variable $x_1 = y_1 + y_2$, $x_2 = y_1 - y_2$ transform the system $\dot{x}_1 = x_2$, $\dot{x}_2 = x_1$ to the system.................

$$
\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \Rightarrow M = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \Rightarrow M^{-1} = \frac{-1}{2} \begin{bmatrix} -1 & -1 \\ -1 & 1 \end{bmatrix}, \qquad A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
$$

$$
J = M^{-1}AM = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \text{ by (2.3)}
$$

$$
\dot{Y} = JY = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \Rightarrow \dot{y}_1 = y_1, \ \dot{y}_2 = -y_2
$$

Example 2. The change of variable $x_1 = y_2$, $x_2 = y_1$, $x_3 = -y_2 + y_3$ transform the system ̇ ̇ ̇ to the system……………

$$
\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}, M = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 1 \end{bmatrix}, M^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}, A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}
$$

$$
J = M^{-1}AM = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}
$$

$$
\dot{Y} = JY = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \Rightarrow \dot{y}_1 = -y_2 + y_3, \ \dot{y}_2 = y_1, \dot{y}_3 = y_1 + y_2
$$

Definition 2 We say that matrix \boldsymbol{I} is said Jordan form of \boldsymbol{A} if it is similar to matrix \boldsymbol{A} and $M = [V_1 V_2 \cdots V_n]$,

Theorem 2 Let A be a real 2×2 matrix, then there is a real, nonsingular matrix M such that $I = M^{-1}AM$ is one of the types:

(a)If *A* has distinct real eigenvalue then $J =$ λ $\begin{bmatrix} 1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$, $\lambda_1 > \lambda_2$; **(b)** If A is diagonal and has equal eigenvalue then $J =$ λ $\begin{bmatrix} 0 & 0 \\ 0 & \lambda_0 \end{bmatrix}$ **(c)** If A is nondiagonal and has equal eigenvalue then $J =$ λ $\begin{bmatrix} 0 & 1 \\ 0 & \lambda_0 \end{bmatrix}$ **(d)** If A has complex eigenvalue $\lambda = \alpha \pm i\beta$ then $J =$ α $\begin{bmatrix} \alpha & \nu \\ \beta & \alpha \end{bmatrix}$ **Example 3** Find the Jordan forms of each of the following matrices: $(a) A_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\mathbf{1}$ $(b) A_2 = \begin{bmatrix} 2 \end{bmatrix}$ $\overline{}$, (c) $A_3 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ $\mathbf{1}$ $\int_1^1 (d) A_4 = \left[\frac{1}{6} \right]$ $\boldsymbol{0}$ 1 (a) det $\begin{bmatrix} 1 \end{bmatrix}$ $\mathbf{1}$ $= 0 \Rightarrow \lambda^2 - 2\lambda - 1 = 0 \Rightarrow \lambda = 1 \pm \sqrt{2}$ $J = \begin{bmatrix} 1 + \sqrt{2} \\ 1 - \sqrt{2} \end{bmatrix}$ 0 $1-\sqrt{2}$ $\big|$, $\rightarrow \lambda_{1,2}$ are real distinct. (*b*) det $\begin{bmatrix} 2 \end{bmatrix}$ $\overline{}$ $= 0 \Rightarrow \lambda^2$ $J =$ α $\begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ $\mathbf{1}$ $\overline{}$ 3 $\big| \rightarrow \lambda_{1,2}$ are complex. (c) det $\begin{bmatrix} 3 \end{bmatrix}$ $\mathbf{1}$ $= 0 \implies \lambda^2 - 4\lambda + 4 = 0 \implies \lambda_{1,2} = 2 \implies$ is nondiagonal $J = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$ $\boldsymbol{0}$ $\big|$, $\rightarrow \lambda_{1,2}$ are equal and A nondiagonal. (*d*) $\lambda_{1,2} = -3 \rightarrow \lambda_{1,2}$ are equal, *A* is diagonal then $J = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ $\boldsymbol{0}$ 1. **Remark 1:** If A has complex eigenvalue then $M =$ α α (2.5)

Example 4. Find a matrix M which converts each of the matrices in Example 3 into their appropriate Jordan forms.

$$
M_1 = [V_1 \ V_2], V_1 = \begin{bmatrix} \sqrt{2} \\ 1 \end{bmatrix}, V_2 = \begin{bmatrix} -\sqrt{2} \\ 1 \end{bmatrix} \rightarrow M_1 = \begin{bmatrix} \sqrt{2} & -\sqrt{2} \\ 1 & 1 \end{bmatrix}
$$

\n
$$
M^{-1}AM = J \rightarrow \begin{bmatrix} \sqrt{2} & -\sqrt{2} \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{2} & -\sqrt{2} \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 + \sqrt{2} & 0 \\ 0 & 1 - \sqrt{2} \end{bmatrix}
$$

\n
$$
M_2 = \begin{bmatrix} a_{11} - \alpha & -\beta \\ a_{21} & 0 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ -2 & 0 \end{bmatrix}
$$

\n
$$
\begin{bmatrix} -1 & -1 \\ -2 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 2 & 1 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} -1 & -1 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix}
$$

\n
$$
M_3 = [V_1 \ V_2], V_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, (A - \lambda I) V_2 = V_1 \Rightarrow V_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \rightarrow M_3 = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}
$$

\n
$$
M^{-1}AM
$$

$$
= J \rightarrow \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}
$$

 $M_4 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\boldsymbol{0}$ $\boldsymbol{0}$ $\mathbf{1}$ 1

2.3 Phase Portraits for Canonical Systems in Plane:

Definition 3: A linear system $\dot{X} = AX$ is said to be simple if the matrix A is nonsingular, (i.e. $det(A) \neq 0$ and A has non-zero eigenvalues).

(a) Real, distinct eigenvalues

$$
\dot{Y} = JY \Rightarrow \begin{bmatrix} \dot{y}_1 \\ \dot{y}_2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \Rightarrow \dot{y}_1 = \lambda_1 y_1, \ \dot{y}_2 = \lambda_2 y_2, \\
y_1 = e^{\lambda_1 t}, \ y_2 = e^{\lambda_2 t}, \tag{2.6}
$$
\n
$$
\frac{\dot{y}_2}{\dot{y}_1} = \frac{dy_2}{dy_1} = \frac{\lambda_2 y_2}{\lambda_1 y_1}, \frac{dy_2}{y_2} = \frac{\lambda_2}{\lambda_1} \frac{dy_1}{y_1} \Rightarrow \ln y_2 = \frac{\lambda_2}{\lambda_1} \ln y_1 + \ln c \Rightarrow y_2 = cy_1^{\frac{\lambda_2}{\lambda_1}}(2.7)
$$

 (a) (b) Fig. 2.1. Real distinct eigenvalues of the same sign give rise to nodes: (a) unstable $(\lambda_1 > \lambda_2 > 0)$; (b) stable $(\lambda_2 < \lambda_1 < 0)$.

(b) Equal eigenvalues

If $I = A$ is diagonal, the canonical system has solutions given by Theorem 2-b with $\lambda_1 = \lambda_2 = \lambda_0$. Thus (2.7) corresponds to a special node $y_2 = cy_1$, called a star node (stable if $\lambda_0 < 0$; unstable if $\lambda_0 > 0$), in which the non-trivial trajectories are all radial straight lines (as shown in Fig. 2.3).

Fig. 2.3. Equal eigenvalues $(\lambda_1 = \lambda_2 = \lambda_0)$ give rise to star nodes (a) unstable; (b) stable; when *A* is diagonal.
(c) **Equal eigenvalues**, *A* is non-diagonal, $\lambda_1 = \lambda_2 = \lambda_0$ hence

Fig. 2.4. When A is not diagonal, equal eigenvalues indicate that the origin is an improper node: (a) unstable $(\lambda_0 > 0)$; (b) stable $(\lambda_0 < 0)$.

(d) Complex eigenvalues

$$
J = \begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix}, \lambda_{1,2} = \alpha \pm i\beta, \ \dot{y}_1 = \alpha y_1 - \beta y_2, \dot{y}_2 = \beta y_1 + \alpha y_2
$$

Using polar coordinate's $r^2 = y_1^2 + y_2^2$, $\tan \theta = \frac{y}{x}$ \mathcal{Y}

$$
\rightarrow \dot{r} = \alpha r, \qquad \dot{\theta} = \beta \qquad (2.10)
$$

$$
r(t) = r_0 e^{\alpha t}, \qquad \theta(t) = \beta t + \theta_0 \qquad (2.11)
$$

if α < 0 → spiral(focus)stable, if α > 0 → spiral unstable,

if $\alpha = 0 \rightarrow$ centre (stable)

Fig. 2.5. Complex eigenvalues give rise to (a) unstable foci $(\alpha > 0)$, (b) centres ($\alpha = 0$) and (c) stable foci ($\alpha < 0$).

Example 5 Sketch the phase portrait of the system

 $y'_1 = 2y_1$, $y'_2 = -2y_2$; and $y'_1 = -2y_2$, $y'_2 = 2y_1$ (2.12) and the corresponding phase portraits in the $x_1 - x_2$ plane where $M_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\mathbf{1}$ $\bigg|, M_2 = \bigg|,2$ $\mathbf{1}$ $M_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\overline{}$ $\bigg|$, $M_4 = \bigg[\frac{1}{2} \bigg]$ 3 $M_5 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\mathbf{1}$ \vert , $= \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\overline{4}$ (2.13) $J = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$ $\boldsymbol{0}$ \vert ,

رسم صورة الطورالي Jordan canonical form

 $\lambda=2$, $\lambda=-2$: spiral unstable

Example 6 Sketch the phase portrait of the system

 $x'_1 = 2x_1 + 2x_2$, $x'_2 = 4x_1 - 2x_2$ (2.14) The eigenvalue are Then $J = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$ \overline{c}], and $M = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ 1 the phase portrait of Jordan form is

centers λ 1=2i, λ 2=-2i

And the phase portrait of system x_1, x_2 is

2.4 Phase Portraits for Canonical Systems in Plane:

Theorem 2.1 (Linearization theorem)

Let the non-linear system
$$
X' = F(X)
$$
 (2.15), $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $F = \begin{bmatrix} f_1(x_1, x_2) \\ f_2(x_1, x_2) \end{bmatrix}$
have a simple fixed point at $(c, c) = (0, 0)$. Then, in a neighborhood of the origin

have a simple fixed point at $(c_1, c_2) = (0, 0)$. Then, in a neighborhood of the origin the phase portraits of the system and its linearization are qualitatively equivalent provided the linearized system is not a center.

كيف استخرج النظام الخطي من النظام غير الخطي؟ Definition 4: Jacobian Matrix: Let a system [x'_1 $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix}$ $f_1(x_1, x_2)$ $f_2(x_1, x_2)$] then the jacobian matrix at critical point (c_1, c_2) is defined by $J_{(c_1, c_2)} = |$ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ $\overline{}$ (c_1, c_2) .

Example7 Find critical points and Jacobian matrix at each of them of the system $x'_1 = 2x_1 - x_1x_2, x'_2 = 2x_1 + x_2$ (2.15) $2x_1 - x_1x_2 = 0 \implies x_1(2 - x_2) = 0$ Either $x_1 = 0$ or $x_2 = 2$ If $x_1 = 0$ then $2x_1 + x_2 = 0 \implies x_2 = -2x_1 \implies x_2 = 0$ the first critical point (0,0). If $x_2 = 2$ then $x_2 = -2x_1 \Rightarrow x_1 = -1$, the second critical point (-1,2) $J_{(0,0)} = \begin{bmatrix} 2 \end{bmatrix}$ \overline{c} 1 $(0, 0)$ $=$ $\binom{2}{3}$ $\overline{2}$ 1

$$
J_{(-1,2)} = \begin{bmatrix} 2 - x_2 & -x_1 \\ 2 & 1 \end{bmatrix}_{(-1,2)} = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}
$$

Example 8 Sketch the phase portrait of the system (2.15) From example 7 we get the first critical point (0,0) and $J_{(0,0)} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$

 $\overline{2}$ 1 so we have the first system $x'_1 = 2x_1$, $x'_2 = 2x_1 + x_2$ that is $A_1 = \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}$ \overline{c} 1 the eigenvalue are $\lambda^2 - 3\lambda + 2 = 0 \implies (\lambda - 2)(\lambda - 1) =$

$$
\lambda_1 = 2, \lambda_2 = 1
$$

$$
J = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}, V_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, V_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, M = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}
$$

1

the second critical point (-1,2) and $J_{(-1,2)} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$ \overline{c} 1 so we have the second system $x'_1 = -x_2$, $x'_2 = 2x_1 + x_2$ that is $A_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ $\overline{2}$ the eigenvalue are $\lambda^2 - \lambda - 2 = 0 \implies (\lambda - 2)(\lambda + 1) =$

$$
\lambda_1 = 2, \lambda_2 = -1
$$

$$
J = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}, V_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, V_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, M = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}
$$

$$
J = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{7}}{2} \\ -\frac{\sqrt{7}}{2} & \frac{1}{2} \end{bmatrix}, \quad M = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{7}}{2} \\ 2 & 0 \end{bmatrix}
$$

The final phase portrait is

Example 9 Sketch the phase portrait of the system $x'_1 = x_2^2 - 3x_1 + 2$, $x'_2 = x_1^2$ x_2^2

To find the critical points: $x_1 = \pm x_2$ if $x_1 = x_2$ then from second equation $x_2^2 - 3x_2 + 2 = 0$ we get the critical points (2,2), (1,1), and if $x_1 = -x_2$ then from second equation $x_2^2 + 3x_2 + 2 = 0$ we get the critical points $(2, -2)$, $(1, -1)$

$$
J_{(2,2)} = \begin{bmatrix} -3 & 2x_2 \ 2x_1 & -2x_2 \end{bmatrix}_{(2,2)} = \begin{bmatrix} -3 & 4 \ 4 & -4 \end{bmatrix}
$$

\n
$$
J_{(1,1)} = \begin{bmatrix} -3 & 2x_2 \ 2x_1 & -2x_2 \end{bmatrix}_{(1,1)} = \begin{bmatrix} -3 & 2 \ 2 & -2 \end{bmatrix}
$$

\n
$$
J_{(2,-2)} = \begin{bmatrix} -3 & 2x_2 \ 2x_1 & -2x_2 \end{bmatrix}_{(2,-2)} = \begin{bmatrix} -3 & -4 \ 4 & 4 \end{bmatrix}
$$

\n
$$
J_{(1,-1)} = \begin{bmatrix} -3 & 2x_2 \ 2x_1 & -2x_2 \end{bmatrix}_{(1,-1)} = \begin{bmatrix} -3 & -2 \ 2 & 2 \end{bmatrix}
$$

\nFor $J_{(2,2)} = \begin{bmatrix} -3 & 4 \ 4 & -4 \end{bmatrix}$ the eigenvalue are $\lambda^2 + 7\lambda - 4 = 0 \Rightarrow \lambda_{1,2} = \frac{-7 \pm \sqrt{65}}{2} =$
\n
$$
\begin{bmatrix} 0.53 \ 0.53 \end{bmatrix}
$$
 saddle point.
\nFor $J_{(1,1)} = \begin{bmatrix} -3 & 2 \ 2 & -2 \end{bmatrix}$ the eigenvalue are $\lambda^2 + 5\lambda + 2 = 0 \Rightarrow \lambda_{1,2} = \frac{-5 \pm \sqrt{17}}{2} =$
\n
$$
\begin{bmatrix} -0.438 \ -4.56 \end{bmatrix}
$$
 node stable.
\n
$$
J_{(2,-2)} = \begin{bmatrix} -3 & -4 \ 4 & 4 \end{bmatrix}
$$
 the eigenvalue are $\lambda^2 - \lambda + 4 = 0 \Rightarrow \lambda_{1,2} = \frac{1 \pm \sqrt{15}i}{2}$ spiral unstable.
\n
$$
J_{(1,-1)} = \begin{bmatrix} -3 & -2 \end{bmatrix}
$$
 the eigenvalue are $\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = 1, \lambda_2 = -2$ sadd

 $J(1,-1)$ $\frac{1}{2}$ | the eigenvalue are $\lambda_1 = 1, \lambda_2 = -2$ saddle point.

Example 10 Sketch the phase portrait of the system $x'_1 = -x_2 - x_1^3$, $x'_2 = x_1 - x_2^3$ To get the critical points from the first equation: $x_2 = -x_1^3$ then from second equation $x_1 + x_1^6 = 0 \Rightarrow x_1(1 + x_1^5) = 0$ so either $x_1 = 0$ then $x_2 = 0$ we get the critical point (0,0), or $x_1^5 = -1 \implies x_1 = -1$ then $x_2 = 1$ the critical point (-1,1)