The Natural Exponential Function e^x

The most important exponential function is the natural exponential function, whose base is the special number e. The number e is irrational, and its value is 2.718281828. The number e is defined as the number to which the expression $\left(1+\frac{1}{n}\right)^n$ Since e>1, the graph of the natural exponential function is as below:

Properties of exponential functions

- 1. The domain is the set of all real numbers: D = R
- 2. The range is the set of positive numbers: $R = (0, +\infty)$. (This means that a x is always positive, that is a x > 0 for all x. The equation ax = negative number has no solution)
- 3. There are no x-intercepts
- 4. The y-intercept is (0, 1)

Example:

Use shifting to graph $f(x) = 3^{-x} - 2$. Start with a basic function and use one shift at a time. This function is obtained from the graph of $y = 3^x$ by first reflecting it about y-axis (obtaining $y = 3^{-x}$) and then shifting the graph down by 2 units. Make sure to plot the three points on the graph of the basic function!

Remark: Function $y = 3^x$ has a horizontal asymptote, so remember to shift it too when performing shift up/down.

Example:

Graph
$$f(x) = 3e^{2x-1}$$
.

Basic function:
$$y = e^x$$

$$y = e^{x-1}$$
 (shift to the right by1)

$$y = 3e^{2x-1}$$
 (vertical stretch 3 times

Example: Solve $4^{x^2} = 2^x$

1.11 Inverse Functions and Logarithms

One-to-One Functions

A function f(x) is one-to-one on a domain D if $f(x1) \neq f(x2)$ whenever $x1 \neq x2$ in D.

Example:

(a) $f(x) = \sqrt{x}$ is one-to-one on any domain of nonnegative numbers because $\sqrt{x_1} \neq \sqrt{x_2}$ whenever $x_1 \neq x_2$.

(b) $g(x) = \sin x$ is not one-to-one on the interval $[0, \pi]$ because $\sin (\pi/6) = \sin (\frac{5\pi}{6})$.

(b) Not one-to-one: Graph meets one or more horizontal lines more than once.

The Horizontal Line Test for One-to-One Functions

A function y = f(x) is one-to-one if and only if its graph intersects each hori-zontal line at most once.

Inverse Functions

Since each output of a one-to-one function comes from just one input, the effect of the function can be inverted to send an output back to the input from which it came.

DEFINITION

Suppose that f is a one-to-one function on a domain D with range R. The inverse function f^{-1} is defined by

$$f^{-1}(b) = a$$
 if $f(a) = b$.

The domain of f^{-1} is R and the range of f^{-1} is D.

The symbol f^{-1} for the inverse of f is read "f inverse." The "-1" in f^{-1} is *not* an exponent; $f^{-1}(x)$ does not mean 1/f(x). Notice that the domains and ranges of f and f^{-1} are interchanged.

Example:

x		1	2	3	4	5	6	7	8	
f(x)	Т	3	4.5	7	10.5	15	20.5	27	34.5	
У		3	4.5	7	10.5	15	20.5	27	34.5	
f -1(y)	1	2	3	4	5	6	7	8	1