Method of Partial Fractions (f(x)/g(x)) Proper

1. Let x - r be a linear factor of g(x). Suppose that $(x - r)^m$ is the highest power of x - r that divides g(x). Then, to this factor, assign the sum of the m partial fractions:

$$\frac{A_1}{(x-r)} + \frac{A_2}{(x-r)^2} + \cdots + \frac{A_m}{(x-r)^m}.$$

Do this for each distinct linear factor of g(x).

2. Let $x^2 + px + q$ be an irreducible quadratic factor of g(x) so that $x^2 + px + q$ has no real roots. Suppose that $(x^2 + px + q)^n$ is the highest power of this factor that divides g(x). Then, to this factor, assign the sum of the n partial fractions:

$$\frac{B_1x + C_1}{(x^2 + px + q)} + \frac{B_2x + C_2}{(x^2 + px + q)^2} + \dots + \frac{B_nx + C_n}{(x^2 + px + q)^n}.$$

Do this for each distinct quadratic factor of g(x).

- 3. Set the original fraction f(x)/g(x) equal to the sum of all these partial fractions. Clear the resulting equation of fractions and arrange the terms in decreasing powers of x.
- **4.** Equate the coefficients of corresponding powers of x and solve the resulting equations for the undetermined coefficients.

EXAMPLE 1 Use partial fractions to evaluate

$$\int \frac{x^2 + 4x + 1}{(x - 1)(x + 1)(x + 3)} dx.$$

Solution The partial fraction decomposition has the form

$$\frac{x^2 + 4x + 1}{(x - 1)(x + 1)(x + 3)} = \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{C}{x + 3}.$$

To find the values of the undetermined coefficients A, B, and C, we clear fractions and get

$$x^{2} + 4x + 1 = A(x + 1)(x + 3) + B(x - 1)(x + 3) + C(x - 1)(x + 1)$$

$$= A(x^{2} + 4x + 3) + B(x^{2} + 2x - 3) + C(x^{2} - 1)$$

$$= (A + B + C)x^{2} + (4A + 2B)x + (3A - 3B - C).$$

The polynomials on both sides of the above equation are identical, so we equate coefficients of like powers of x, obtaining

Coefficient of
$$x^2$$
: $A + B + C = 1$

Coefficient of
$$x^1$$
: $4A + 2B = 4$

Coefficient of
$$x^0$$
: $3A - 3B - C = 1$

$$\int \frac{x^2 + 4x + 1}{(x - 1)(x + 1)(x + 3)} dx = \int \left[\frac{3}{4} \frac{1}{x - 1} + \frac{1}{2} \frac{1}{x + 1} - \frac{1}{4} \frac{1}{x + 3} \right] dx$$

$$= \frac{3}{4} \ln|x - 1| + \frac{1}{2} \ln|x + 1| - \frac{1}{4} \ln|x + 3| + K,$$

EXAMPLE 2 Use partial fractions to evaluate

$$\int \frac{6x+7}{(x+2)^2} dx.$$

Solution First we express the integrand as a sum of partial fractions with undetermine coefficients.

$$\frac{6x + 7}{(x + 2)^2} = \frac{A}{x + 2} + \frac{B}{(x + 2)^2}$$

$$6x + 7 = A(x + 2) + B$$
Multiply both sides by $(x + 2)^2$.
$$= Ax + (2A + B)$$

Equating coefficients of corresponding powers of x gives

$$A = 6$$
 and $2A + B = 12 + B = 7$, or $A = 6$ and $B = -5$.

Therefore,

$$\int \frac{6x+7}{(x+2)^2} dx = \int \left(\frac{6}{x+2} - \frac{5}{(x+2)^2}\right) dx$$

$$= 6 \int \frac{dx}{x+2} - 5 \int (x+2)^{-2} dx$$

$$= 6 \ln|x+2| + 5(x+2)^{-1} + C.$$

EXAMPLE 3 Use partial fractions to evaluate

$$\int \frac{2x^3 - 4x^2 - x - 3}{x^2 - 2x - 3} dx.$$

Solution First we divide the denominator into the numerator to get a polynomial plus a proper fraction.

$$\begin{array}{r}
 2x \\
 x^2 - 2x - 3 \overline{\smash)2x^3 - 4x^2 - x - 3} \\
 \underline{2x^3 - 4x^2 - 6x} \\
 5x - 3
 \end{array}$$

Then we write the improper fraction as a polynomial plus a proper fraction.

$$\frac{2x^3 - 4x^2 - x - 3}{x^2 - 2x - 3} = 2x + \frac{5x - 3}{x^2 - 2x - 3}$$

We found the partial fraction decomposition of the fraction on the right in the opening example, so

$$\int \frac{2x^3 - 4x^2 - x - 3}{x^2 - 2x - 3} dx = \int 2x \, dx + \int \frac{5x - 3}{x^2 - 2x - 3} dx$$
$$= \int 2x \, dx + \int \frac{2}{x + 1} \, dx + \int \frac{3}{x - 3} \, dx$$
$$= x^2 + 2 \ln|x + 1| + 3 \ln|x - 3| + C.$$

EXAMPLE 4 Use partial fractions to evaluate

$$\int \frac{-2x+4}{(x^2+1)(x-1)^2} dx.$$

Solution The denominator has an irreducible quadratic factor as well as a repeated linear factor, so we write

$$\frac{-2x+4}{(x^2+1)(x-1)^2} = \frac{Ax+B}{x^2+1} + \frac{C}{x-1} + \frac{D}{(x-1)^2}.$$
 (2)

Clearing the equation of fractions gives

$$-2x + 4 = (Ax + B)(x - 1)^{2} + C(x - 1)(x^{2} + 1) + D(x^{2} + 1)$$
$$= (A + C)x^{3} + (-2A + B - C + D)x^{2}$$
$$+ (A - 2B + C)x + (B - C + D).$$

Equating coefficients of like terms gives

Coefficients of x^3 : 0 = A + C

Coefficients of x^2 : 0 = -2A + B - C + D

Coefficients of x^1 : -2 = A - 2B + C

Coefficients of x^0 : 4 = B - C + D

We solve these equations simultaneously to find the values of A, B, C, and D:

$$-4 = -2A$$
, $A = 2$ Subtract fourth equation from second.
 $C = -A = -2$ From the first equation $B = (A + C + 2)/2 = 1$ From the third equation and $C = -A$ $D = 4 - B + C = 1$.

We substitute these values into Equation (2), obtaining

$$\frac{-2x+4}{(x^2+1)(x-1)^2} = \frac{2x+1}{x^2+1} - \frac{2}{x-1} + \frac{1}{(x-1)^2}.$$

Finally, using the expansion above we can integrate:

$$\int \frac{-2x+4}{(x^2+1)(x-1)^2} dx = \int \left(\frac{2x+1}{x^2+1} - \frac{2}{x-1} + \frac{1}{(x-1)^2}\right) dx$$

$$= \int \left(\frac{2x}{x^2+1} + \frac{1}{x^2+1} - \frac{2}{x-1} + \frac{1}{(x-1)^2}\right) dx$$

$$= \ln(x^2+1) + \tan^{-1}x - 2\ln|x-1| - \frac{1}{x-1} + C.$$

EXAMPLE 5 Use partial fractions to evaluate

$$\int \frac{dx}{x(x^2+1)^2} \, .$$

Solution The form of the partial fraction decomposition is

$$\frac{1}{x(x^2+1)^2} = \frac{A}{x} + \frac{Bx+C}{x^2+1} + \frac{Dx+E}{(x^2+1)^2}$$

Multiplying by $x(x^2 + 1)^2$, we have

$$1 = A(x^{2} + 1)^{2} + (Bx + C)x(x^{2} + 1) + (Dx + E)x$$

$$= A(x^{4} + 2x^{2} + 1) + B(x^{4} + x^{2}) + C(x^{3} + x) + Dx^{2} + Ex$$

$$= (A + B)x^{4} + Cx^{3} + (2A + B + D)x^{2} + (C + E)x + A$$

If we equate coefficients, we get the system

$$A + B = 0$$
, $C = 0$, $2A + B + D = 0$, $C + E = 0$, $A = 1$.

Solving this system gives A = 1, B = -1, C = 0, D = -1, and E = 0. Thus,

$$\int \frac{dx}{x(x^2+1)^2} = \int \left[\frac{1}{x} + \frac{-x}{x^2+1} + \frac{-x}{(x^2+1)^2} \right] dx$$

$$= \int \frac{dx}{x} - \int \frac{x \, dx}{x^2 + 1} - \int \frac{x \, dx}{(x^2 + 1)^2}$$

$$= \int \frac{dx}{x} - \frac{1}{2} \int \frac{du}{u} - \frac{1}{2} \int \frac{du}{u^2} \qquad u = x^2 + 1,$$

$$du = 2x \, dx$$

$$= \ln|x| - \frac{1}{2} \ln|u| + \frac{1}{2u} + K$$

$$= \ln|x| - \frac{1}{2} \ln(x^2 + 1) + \frac{1}{2(x^2 + 1)} + K$$

$$= \ln \frac{|x|}{\sqrt{x^2 + 1}} + \frac{1}{2(x^2 + 1)} + K.$$

The Heaviside "Cover-up" Method for Linear Factors

When the degree of the polynomial f(x) is less than the degree of g(x) and

$$g(x) = (x - r_1)(x - r_2) \cdots (x - r_n)$$

there is a quick way to expand f(x)/g(x) by partial fractions.

EXAMPLE 6 Find A, B, and C in the partial fraction expansion

$$\frac{x^2+1}{(x-1)(x-2)(x-3)} = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}.$$
 (3)

Solution If we multiply both sides of Equation (3) by (x - 1) to get

$$\frac{x^2+1}{(x-2)(x-3)} = A + \frac{B(x-1)}{x-2} + \frac{C(x-1)}{x-3}$$

and set x = 1, the resulting equation gives the value of A:

$$\frac{(1)^2 + 1}{(1 - 2)(1 - 3)} = A + 0 + 0,$$
$$A = 1.$$

Thus, the value of A is the number we would have obtained if we had covered the factor (x-1) in the denominator of the original fraction

$$\frac{x^2+1}{(x-1)(x-2)(x-3)}\tag{4}$$

and evaluated the rest at x = 1:

$$A = \frac{(1)^2 + 1}{(x - 1)(1 - 2)(1 - 3)} = \frac{2}{(-1)(-2)} = 1.$$

$$\uparrow \text{Cover}$$

Similarly, we find the value of B in Equation (3) by covering the factor (x - 2) in Expression (4) and evaluating the rest at x = 2:

$$B = \frac{(2)^2 + 1}{(2 - 1)(x - 2)(2 - 3)} = \frac{5}{(1)(-1)} = -5.$$

Finally, C is found by covering the (x - 3) in Expression (4) and evaluating the rest at x = 3:

$$C = \frac{(3)^2 + 1}{(3 - 1)(3 - 2)(x - 3)} = \frac{10}{(2)(1)} = 5.$$
Cover

EXAMPLE 7 Use the Heaviside Method to evaluate

$$\int \frac{x+4}{x^3+3x^2-10x} dx.$$

Solution The degree of f(x) = x + 4 is less than the degree of the cubic polynomial $g(x) = x^3 + 3x^2 - 10x$, and, with g(x) factored,

$$\frac{x+4}{x^3+3x^2-10x} = \frac{x+4}{x(x-2)(x+5)}.$$

The roots of g(x) are $r_1 = 0$, $r_2 = 2$, and $r_3 = -5$. We find

$$A_{1} = \frac{0+4}{x} (0-2)(0+5) = \frac{4}{(-2)(5)} = -\frac{2}{5}$$

$$A_{2} = \frac{2+4}{2(x-2)(2+5)} = \frac{6}{(2)(7)} = \frac{3}{7}$$

$$A_{3} = \frac{-5+4}{(-5)(-5-2)(x+5)} = \frac{-1}{(-5)(-7)} = -\frac{1}{35}.$$

Therefore,

$$\frac{x+4}{x(x-2)(x+5)} = -\frac{2}{5x} + \frac{3}{7(x-2)} - \frac{1}{35(x+5)},$$

and

$$\int \frac{x+4}{x(x-2)(x+5)} dx = -\frac{2}{5} \ln|x| + \frac{3}{7} \ln|x-2| - \frac{1}{35} \ln|x+5| + C.$$

Other Ways to Determine the Coefficients

EXAMPLE 8 Find A, B, and C in the equation

$$\frac{x-1}{(x+1)^3} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{(x+1)^3}$$

by clearing fractions, differentiating the result, and substituting x = -1.

Solution We first clear fractions:

$$x - 1 = A(x + 1)^2 + B(x + 1) + C.$$

Substituting x = -1 shows C = -2. We then differentiate both sides with respect to x, obtaining

$$1 = 2A(x+1) + B.$$

Substituting x = -1 shows B = 1. We differentiate again to get 0 = 2A, which shows A = 0. Hence,

$$\frac{x-1}{(x+1)^3} = \frac{1}{(x+1)^2} - \frac{2}{(x+1)^3}.$$

EXAMPLE 9 Find A, B, and C in the expression

$$\frac{x^2+1}{(x-1)(x-2)(x-3)} = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}$$

Solution Clear fractions to get

$$x^{2} + 1 = A(x - 2)(x - 3) + B(x - 1)(x - 3) + C(x - 1)(x - 2).$$

Then let x = 1, 2, 3 successively to find A, B, and C:

$$x = 1: (1)^{2} + 1 = A(-1)(-2) + B(0) + C(0)$$

$$2 = 2A$$

$$A = 1$$

$$x = 2: (2)^{2} + 1 = A(0) + B(1)(-1) + C(0)$$

$$5 = -B$$

$$B = -5$$

$$x = 3: (3)^{2} + 1 = A(0) + B(0) + C(2)(1)$$

$$10 = 2C$$

$$C = 5.$$

$$\frac{x^2+1}{(x-1)(x-2)(x-3)} = \frac{1}{x-1} - \frac{5}{x-2} + \frac{5}{x-3}.$$