1.9 Trigonometric Functions

Angles

Angles are measured in degrees or radians. One radian is the angle subtended at the centre of a circle by an arc that is equal in length to the radius of the circle, that is, θ = s / r,

where $\boldsymbol{\theta}$ is the subtended angle in radians, s is arc length, and r is radius.

Let the circle is a unit circle having radius r = 1, one complete revolution of the unit circle is 360 degree has arc length $2r*\pi$ = 2π radians, so we have

 π radians = 180°

1 radian =
$$\frac{180}{\pi}$$
 (\approx 57.3) degrees or 1 degree = $\frac{\pi}{180}$ (\approx 0.017) radians.

Degrees -180 -135 -90 -45 0 30 45 60 90 120 135 150 180 270 360
$$\theta$$
 (radians) $-\pi$ $\frac{-3\pi}{4}$ $\frac{-\pi}{2}$ $\frac{-\pi}{4}$ 0 $\frac{\pi}{6}$ $\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$ $\frac{2\pi}{3}$ $\frac{3\pi}{4}$ $\frac{5\pi}{6}$ π $\frac{3\pi}{2}$ 2π

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 $\cot \theta = \frac{1}{\tan \theta}$
 $\sec \theta = \frac{1}{\cos \theta}$ $\csc \theta = \frac{1}{\sin \theta}$

$$\sin \theta = \frac{\text{opp}}{\text{hyp}}$$
 $\csc \theta = \frac{\text{hyp}}{\text{opp}}$
 $\cos \theta = \frac{\text{adj}}{\text{hyp}}$ $\sec \theta = \frac{\text{hyp}}{\text{adj}}$
 $\tan \theta = \frac{\text{opp}}{\text{adj}}$ $\cot \theta = \frac{\text{adj}}{\text{opp}}$

$$\tan(x + \pi) = \tan x$$

$$\cot(x + \pi) = \cot x$$

$$\sin(x + 2\pi) = \sin x$$

$$\cos(x + 2\pi) = \cos x$$

$$\sec(x + 2\pi) = \sec x$$

$$\csc(x + 2\pi) = \sec x$$

$$\csc(x + 2\pi) = \csc x$$

$$\cot(-x) = -\cot x$$

$$\cot(-x) = -\cot x$$

$$\cot(-x) = -\cot x$$

Domain: $-\infty < x < \infty$

Range: $-1 \le y \le 1$

Period: 2π

 $= \sec x$

Domain: $-\infty < x < \infty$

Range: $-1 \le y \le 1$

Period: 2π

Range: $-\infty$ Period: π

Domain: $x \neq 0, \pm \pi, \pm 2\pi, \dots$

Range: $y \le -1$ or $y \ge 1$

Period: 2π

Domain: $x \neq 0, \pm \pi, \pm 2\pi, \dots$

Range: $-\infty < y < \infty$

Period: π

(f)

$$\cos^2\theta + \sin^2\theta = 1.$$

Domain: $x \neq \pm \frac{\pi}{2}$, $\pm \frac{3\pi}{2}$

Range: $y \le -1$ or $y \ge 1$

Period: 2π

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

$$\sin(A + B) = \sin A \cos B + \cos A \sin B$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$\sin 2\theta = 2\sin\theta\cos\theta$$

$$\cos^2\theta = \frac{1 + \cos 2\theta}{2}$$

$$\sin^2\theta = \frac{1 - \cos 2\theta}{2}$$

1.10 Exponential Functions

The function of the form is the exponential function.

A function of the form $f(x) = a^x$, a > 0, $a \ne 1$ is called an exponential function with base a. Its domain is the set of all real numbers. For an exponential function f we have $\frac{f(x+1)}{f(x)} = a.$

For integer and rational exponents, the value of an exponential function $f(x) = a^x$ is obtained arithmetically as follows. If x = n is a positive integer, the number a^n is given by multiplying a by itself n times:

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n \text{ factors}}$$

If x = 0, then $a^0 = 1$, and if x = -n for some positive integer n, then

$$a^{-n} = \frac{1}{a^n} = \left(\frac{1}{a}\right)^n.$$

If x = 1/n for some positive integer n, then

$$a^{1/n} = \sqrt[n]{a}$$

which is the positive number that when multiplied by itself n times gives a. If x = p/q is any rational number, then

$$a^{p/q} = \sqrt[q]{a^p} = (\sqrt[q]{a})^p.$$

Rules for Exponents:

If a > 0 and b > 0, the following rules hold true for all real numbers x and y.

$$\mathbf{1.} \ a^{x} \cdot a^{y} = a^{x+y}$$

$$2. \ \frac{a^x}{a^y} = a^{x-y}$$

3.
$$(a^x)^y = (a^y)^x = a^{xy}$$
 4. $a^x \cdot b^x = (ab)^x$

4.
$$a^{x} \cdot b^{x} = (ab)^{x}$$

$$5. \ \frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x$$

The graph of an exponential function depends on the value of a.

Points on the graph: (-1, 1/a), (0,1), (1, a)