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Chapter Five 

 Separation Axioms 

5.1  𝑻𝟎 - Space 

5.1.1 Definition: 

      A topological space (X,τ) is called 𝑻𝟎 – Space iff it satisfies the following 

axiom of Kolomogorov: 

[𝑻𝟎] If x and y are two distinct points of X, then there exists an open set which 

contains one of them but not the other, ∀x , y ∈X, x ≠ y ,  ∃G ∈ τ, s. t. x∈ G , y ∉ G. 

 

 

 

 

 

 

5.1.2 Example: 

      Let 𝑋 = {a,b}, 𝜏 = {{𝑋,∅,{𝑎}} then (X,τ) is 𝑇0 – Space ,since a , b ∈ X , a ≠ b ,  

∃{𝑎}∈ τ, s. t. x∈ {𝑎} , y ∉ {𝑎} . 
5.1.3 Example: 

      Let 𝑋 = {a,b,c}, 𝜏 = {{𝑋,∅,{𝑎,𝑏}} then (X,τ) is not 𝑇0 – Space ,since a , b ∈ X , 

a ≠ b , every open set contain a contain b. 

5.1.4 Theorem: 

      𝑻𝟎 – Space is a hereditary property. 

Proof: 

    Let (𝑌,𝜏𝑌) be a subspace of a 𝑇0 – Space(𝑋,𝜏).  

We want to prove that (𝑌,𝜏𝑌)  is  𝑇0 – Space. 

    Let x, y  ∈ 𝑌, x  ≠  y. Since 𝑌 ⊂ 𝑋 then x, y ∈ 𝑋  

but X is 𝑇0 – Space then ∃G ∈ τ, s.t. x ∈G, y ∉ G. 

Let 𝐺∗ = 𝐺 ∩ 𝑌 then x ∈  𝐺∗(since x ∈ G , x ∈ Y )  
But  y  ∉  𝐺∗(since  y  ∉  G ,  y ∈ Y) , so (𝑌,𝜏𝑌)  is 

𝑇0 – Space. □ 

Exercise: 

      Prove that 𝑇0 – Space is a topological property. 

 

𝑻𝟎 – Space 

● x G ● y 

(𝒀,𝝉𝒀)   
●y 

● x 
𝑮∗ = 𝑮 ∩ 𝒀 

G 

𝑻𝟎 – Space 
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5.1.5 Theorem: 

      A topological space (𝑿,𝝉) is called 𝑻𝟎 – Space iff the closures of distinct 

points are distinct. 

Proof: 

     ⟹ 

      Suppose that x  ≠  y implies that {x}̅̅ ̅̅   ≠ { 𝑦}̅̅ ̅̅ ̅ and that x and y are distinct points 

of X. Since the sets {x}̅̅ ̅̅  and { 𝑦}̅̅ ̅̅ ̅ are not equal, there must exist some point 𝑧 ∈X 

which is contained in one of them but not the other.  

      Suppose that 𝑧 ∈ {x}̅̅ ̅̅  but 𝑧 ∉ {y}̅̅ ̅̅ . If we had 𝑥 ∈ {y}̅̅ ̅̅ , then we would have 

{x}̅̅ ̅̅   ⊆ { 𝑦}̅̅ ̅̅ ̅̅̅ ̅̅ ̅ = { 𝑦}̅̅ ̅̅ ̅ and so 𝑧 ∈ {x}̅̅ ̅̅ ⊆ { 𝑦}̅̅ ̅̅ ̅, which is a contradiction. Hence 𝑥 ∉ {y}̅̅ ̅̅ and 

so {y}̅̅ ̅̅
c
 is an open set containing x but not y. 

     ⟸ 

      Let us suppose that X is a 𝑇0 – Space, and that x and y are two distinct points 

of  X. By [𝑇0] , there exists an open set G containing one of them but not the other.  

      Suppose that x ∈G but y ∉ G. Clearly, 𝐺𝑐 is a closed set containing y but not x. 

From the definition of { 𝑦}̅̅ ̅̅ ̅  as the intersection of all closed sets containing {y} we 

see that 𝑦 ∈ { 𝑦}̅̅ ̅̅ ̅ , but 𝑥 ∉ { 𝑦}̅̅ ̅̅ ̅ because of 𝐺𝑐. Hence, {x}̅̅ ̅̅   ≠ { 𝑦}̅̅ ̅̅ ̅. □ 
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5.2  𝑻𝟏 - Space 

5.2.1 Definition: 

      A topological space (X,τ) is called 𝑻𝟏 – Space iff it satisfies the following 

axiom of Fréchet: 

[𝑻𝟏] If 𝑥 and y are two distinct points of X, then there exists two open sets one 

containing  x  not  y, and  the  other  containing  y  but  not  x, i.e. ∀x  , y ∈ X, x ≠ y , 

  ∃𝐺𝑥 , 𝐺𝑦∈ τ, s. t. x∈ 𝐺𝑥 , y ∉ 𝐺𝑥 and y∈ 𝐺𝑦 , x ∉ 𝐺𝑦. 

                       

 

 

 

 

5.2.2 Example: 

      Let 𝑋 = {a,b}, 𝜏 = {{𝑋, ∅ , {𝑎} , {𝑏}} then (X,τ) is 𝑇1 – Space ,since a , b ∈ X , 

 a ≠ b , ∃{𝑎} , {𝑏}∈ τ, s. t.  a∈{𝑎} ,b ∉ {𝑎} and b∈ {𝑏} , a ∉ {𝑏}.  
5.2.3 Remark: 

      Every 𝑇1 – Space is obviously a 𝑇0 – Space, the converse is not true as the 

following example: 

5.2.4 Example: 

       Let 𝑋 = {a,b}, 𝜏 = {{𝑋,∅,{𝑎}} then (X,τ) is 𝑇0 – Space not 𝑇1 – Space, since 

X is the only open set contain  a and b.  

5.2.5 Theorem: 

       𝑻𝟏 – Space is a topological property. 

Proof: 

       Let 𝑓: (X,τ) ⟶ (X∗,τ∗)  be A homeo- 

 morphism  from a 𝑇1 – Space (X,τ) to the 

 topological space (X∗,τ∗),we want to show 

 that (X∗,τ∗) is 𝑇1 – Space . 

       Let 𝑥∗,𝑦∗ ∈ 𝑋∗, 𝑥∗ ≠ 𝑦∗.Since 𝑓 is onto 

then ∃𝑥,y∈X, s. t.  𝑓(𝑥) = 𝑥∗,𝑓(𝑦) = 𝑦∗. Since 𝑓 is 1-1 and 𝑥∗ ≠ 𝑦∗then x ≠ y. Since 

(X,τ) is 𝑇1 – Space then ∃𝐺𝑥 , 𝐺𝑦∈ τ, s. t.  x∈ 𝐺𝑥 , y ∉ 𝐺𝑥 and y∈ 𝐺𝑦 , x ∉ 𝐺𝑦, 

so 𝑥∗ ∈ 𝑓(𝐺𝑥),y
* ∉ 𝑓(𝐺𝑥) and 𝑦

∗ ∈ 𝑓(𝐺𝑦),𝑥
∗ ∉ 𝑓(𝐺𝑦). Since 𝑓 is open function 

then 𝑓(𝐺𝑥),𝑓(𝐺𝑦) ∈ 𝜏
∗, 𝑥∗ ∈ 𝑓(𝐺𝑥),𝑦

∗ ∈ 𝑓(𝐺𝑦). So (X∗,τ∗) is 𝑇1 – Space. □ 

● 𝒙 
● y 

𝑮𝒙 𝑮𝒚 

𝑻𝟏 – Space 
(𝐗,𝛕) 

(𝐗,𝛕) 

𝒙 

𝑮𝒙 

𝒚 

𝑮𝒚 

(𝐗∗,𝛕∗) 

𝒙∗ 

𝒇(𝑮𝒙) 

 𝒚∗ 

𝒇(𝑮𝒚) 

𝒇 
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Exercise: 

      Prove that 𝑇1 – Space is a hereditary property. 

5.2.6 Theorem: 

      A topological space (𝑿,𝝉) is called 𝑻𝟏 – Space iff every singleton is closed. 

Proof: 

     ⟹ 

       If 𝑥 and y are distinct points of a space X in which subsets consisting of exactly 

one point are closed, then {x}𝑐 is an open set containing y but not x, while {𝑦}𝑐 is 

an open set containing 𝑥  but not y. Thus (X,τ) is a 𝑇1 – Space. 

      ⟸ 

       Suppose that (X,τ) is a 𝑇1 – Space, and that 𝑥 is a point of X. By [𝑻𝟏]  if y ≠ x, 

there exists an open set 𝐺𝑦 containing y but not 𝑥, that is, y∈ 𝐺𝑦 ⊆ {x}
𝑐 . But then 

{x}
𝑐 = ⋃{𝐺𝑦: y ≠ x} and so {x}

𝑐𝑖s the union of open sets, and hence is itself open. 

Thus{x}is a closed set for every x ∈ X.□ 

5.2.7 Example: 

        Let 𝑋 = ℕ the set of positive integers, and let 𝜏 be the family consisting of 

∅ , 𝑋 and  all subsets of the form {1 , 2 , … , n} then (ℕ,τ) is not a 𝑇1 –  Space,  since 

 ∀𝑛 ∈ ℕ,{𝑛} is not a closed set (Note that (ℕ,τ) is a 𝑇0 – Space). 

5.2.8 Example: 

        Let 𝑋 = ℝ the set of real numbers, and let 𝜏 be the family consisting of ∅ and 

all subsets of ℝ  whose complement is finite then (ℝ,τ) is  a  𝑇1 – Space, since 

∀𝑝 ∈ ℝ,{𝑝} is a closed set. 

5.2.9 Theorem: 

        In a 𝑻𝟏 –  Space (𝑿,𝝉), a point x is a limit point of a set E iff every open set 

containing x contains an infinite number of distinct points of E. 

Proof: 

       ⟹ 

        The sufficiency of the condition is obvious, since if G is an open set containing 

𝑥 and 𝐺 ∩ 𝐸 contains an infinite number of distinct points of E, i.e. 𝐺 ∩ 𝐸/{𝑥} ≠ ∅. 

So that 𝑥 ∈ 𝑑(𝐸). 

        ⟸ 

      To prove the necessity, suppose there were an open set G containing 𝑥 for which 

 𝐺 ∩ 𝐸 was finite. If  we  let 𝐺 ∩ 𝐸/{𝑥} = ⋃ {𝑥𝑖}
𝑛
𝑖=1 , then  each  set {𝑥𝑖}  would  be  
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closed by the above theorem, and the finite union ⋃ {𝑥𝑖}
𝑛
𝑖=1  would also be a closed  

set. But then (⋃ {𝑥𝑖}
𝑛
𝑖=1 )𝑐 ∩ 𝐺 would be an open set containing 𝑥 with 

((⋃ {𝑥𝑖}
𝑛
𝑖=1 )𝑐 ∩ 𝐺) ∩ 𝐸/{𝑥} = ((⋃ {𝑥𝑖}

𝑛
𝑖=1 )𝑐 ∩ ⋃ {𝑥𝑖}

𝑛
𝑖=1 ) = ∅.Thus 𝑥 would not 

be a limit point of 𝐸.□ 

5.2.10 Corollary: 

       The finite subset of  𝑻𝟏 – Space (𝑿,𝝉) has no limit point. 

Proof: 

       Suppose 𝐴 be a finite subset of  𝑋. If 𝐴 has a limit point 𝑥 ∈ 𝑋 (i.e. 𝑥 ∈ 𝑑(𝐸)) 

then by theorem 5.2.9 every open set G containing 𝑥 contains infinite number of 𝐴  

but A is finite set and this contradiction, so 𝐴 has no limit points. □ 

5.2.11 Remark: 

      Countably compact spaces are more useful in  𝑇1 – Spaces, since we may then 

characterize them in a way that is exactly analogous to that for compact spaces. 

The following theorem, in fact, explains why we chose the name "countably 

compact.'' 

5.2.12 Theorem: 

      A  𝑻𝟏 – Space  (𝑿,𝝉) is countably compact iff every countable open covering 

of X is reducible to a finite subcover. 

Proof: 

      ⟹ 

      Suppose {𝐺𝑛}𝑛∈ℕ is a countable open covering of the countably compact space 

X which has no finite subcover. This means that ⋃ 𝐺𝑖
𝑛
𝑖=1  does not contain X for any 

𝑛 ∈ ℕ. If we let 𝐹𝑛 = (⋃ 𝐺𝑖
𝑛
𝑖=1 )𝑐, then each 𝐹𝑛 is a nonempty closed set contained 

in the preceding one. From each 𝐹𝑛 let us choose a point 𝑥𝑛 , and let E=⋃ {𝑥𝑛}𝑛∈ℕ . 

The set E cannot be finite because there would then be some point in an infinite 

number, and hence all of the sets 𝐹𝑛 , and this would contradict the fact that the 

family {𝐺𝑛}𝑛∈ℕ is a covering of X. Since E must be infinite, we may use the 

countable compactness of X to obtain a limit point 𝑥 of E. 

      By theorem 5.2.9, every open set containing 𝑥 contains an infinite number of 

points of E. and so 𝑥 must be a limit point of each of the sets 𝐸𝑛 = ⋃ {𝑥𝑖}𝑖>𝑛 . For 

each n, however, 𝐸𝑛 is contained in the closed set 𝐹𝑛 , and so 𝑥 must belong to 

𝐹𝑛 for every 𝑛 ∈ ℕ . This again contradicts the fact that the family {𝐺𝑛}𝑛∈ℕ  is a 

covering of X. Hence the condition is necessary. 

        ⟸ 
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       Now let us suppose that E is an infinite subset of X and that E has no limit 

points. Since E is infinite, we may choose an infinite sequence of distinct points 𝑥𝑛 

from E. The set A=⋃ {𝑥𝑛}𝑛∈ℕ  has no limit points since it is a subset of E, and so, in 

particular, each point 𝑥𝑛 is not a limit point of A. This means that for every 𝑛 ∈ ℕ 

there exists an open set 𝐺𝑛 containing 𝑥𝑛 such that 𝐴 ∩ 𝐺𝑛/{𝑥𝑛} = ∅ . From the 

definition of A we see that 𝐴 ∩ 𝐺𝑛 = {𝑥𝑛} for every 𝑛 ∈ ℕ. Since A has no limit 

points, it is a closed set, and hence 𝐴𝑐 is open. The collection 𝐴𝑐 ∪ {𝐺𝑛}𝑛∈ℕ is then 

a countable open covering of X which has no finite subcover, since the set 𝐺𝑛 is 

needed to cover the point 𝑥𝑛 for every 𝑛 ∈ ℕ . Thus, the condition is sufficient. □ 

5.2.13 Corollary: 

       A  𝑻𝟏 – Space  (𝑿,𝝉) is countably compact iff every countable family of closed 

sets having the finite intersection property has a nonempty intersection. 

5.2.14 Example: 

       Every finite  𝑇1 – Space  has the discrete topology. 

Solution: 

       Let (X,τ) be a finite  𝑇1 – Space, so every subset of X is finite, i.e. equal a union 

of finite numbers of singleton and therefore closed. Hence every subset of X is also 

open, i.e. X is a discrete topology. 

5.2.15 Remark: 

        Although countable compactness is a topological property, we noted from 

remark 4.1.32 that it may not be preserved by continuous mappings. With the aid 

of one-to-oneness, we may show that it is preserved by continuous mappings of  T1 

– Spaces  . 

5.2.16 Theorem: 

       If 𝒇 is a continuous mapping of the  𝑻𝟏 – Space  (𝑿,𝝉)  into the topological 

space (𝑿∗,𝝉∗), then f maps every countably compact subset of X onto a countably 

compact subset of 𝑿∗. 

Proof: 

        Suppose E is a countably compact subset of X and {𝐺𝑛
∗}𝑛∈ℕ is a countable open 

covering of 𝑓(𝐸). We need only show that there is a finite subcovering of 𝑓(𝐸), 
since we noted above that the condition of theorem 5.2.12 is always sufficient. 

Since f is continuous, {𝑓−1(𝐺𝑛
∗)}𝑛∈ℕ is a countable open covering of E. In the 

induced topology, {𝐸 ∩ 𝑓−1(𝐺𝑛
∗)}𝑛∈ℕ is a countable open covering of the countably 

compact  𝑇1 – Space E. By theorem 5.2.12, there exists some finite subcovering 
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{𝐸 ∩ 𝑓−1(𝐺𝑛𝑖
∗ )}

𝑖=1

𝑘
, and clearly the family {𝐺𝑛𝑖

∗ }
𝑖=1

𝑘
is the desired finite subcovering 

of 𝑓(𝐸). □ 

5.2.17 Example: 

      Let (X,τ) be a 𝑇1 – Space and let ℬ𝑝 be a local base at 𝑝 ∈ 𝑋. Show that if 𝑞 ∈ 𝑋 

distinct from 𝑝 then some member of ℬ does not contain 𝑞. 

Solution: 

      Since 𝑝 ≠ 𝑞 and X satisfies [𝑇1],∃ an open set 𝐺 ⊂ 𝑋 consisting 𝑝 but not 𝑞. 

Now ℬ𝑝 is a local base at 𝑝, so 𝐺 is contain of some 𝐵 ∈ ℬ𝑝 and 𝐵also does not 

contain 𝑞. 
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5.3  𝑻𝟐 - Space 

5.3.1 Definition: 

      A topological space (X,τ) is called 𝑻𝟐 – Space or Hausdorff space iff it 

satisfies the following axiom of Hausdorff: 

[𝑻𝟐] If 𝑥 and y are two distinct points of X, then there exists two disjoint open sets 

one containing  x  and  the  other  containing  y  . ∀x  , y ∈ X, x ≠ y ,  ∃𝐺𝑥 , 𝐺𝑦∈ τ,  

s. t. x∈ 𝐺𝑥  and y∈ 𝐺𝑦 ,𝐺𝑥∩𝐺𝑦 = ∅. 

                    

 

 

 

  

5.3.2 Example: 

       Let 𝑋 = {a,b}, 𝜏 = {{𝑋,∅,{𝑎},{𝑏}} then (X,τ) is 𝑇2 – Space, 𝑎,b∈X,a ≠ 𝑏,∃{a},{b}∈τ 

 and {a}∩{b}=∅, s. t.  a∈{a} , b∈{b}.  

5.3.3 Remark: 

       From definition of 𝑇2 – Space we get 

          

 

 

 

5.3.4 Example: 

        Let (X,τ) be the co-finite topology then (X,τ) is 𝑇1 – Space not 𝑇2 – Space. 

Solution: 

         If 𝐺,𝐻 ∈ 𝜏 then 𝐺𝑐 ,𝐻𝑐are finite sets. If 𝐻∩𝐺 = ∅ then 𝐺 ⊆ 𝐻𝑐and this is 

contradiction ,since 𝐻𝑐is finite set and 𝐺 is infinite set. Then 𝐻∩𝐺 ≠ ∅.So (X,τ) is 

not 𝑇2 – Space.  

5.3.5 Theorem: 

       𝑻𝟐 – Space is a topological property.  

Proof: 

       Let 𝑓: (X,τ) ⟶ (X∗,τ∗)  be  A homeo- 

 morphism   from a 𝑇2 – Space (X,τ) to the 

 topological space (X∗,τ∗),we want to show 

 that (X∗,τ∗) is 𝑇2 – Space . 

● x 
𝑮𝒙 

● y 𝑮𝒚 

𝑻𝟐 – Space 

                         ⇒                             ⇒ 

𝑻𝟐 – Space               𝑻𝟏 – Space            𝑻𝟎 – Space 

                         ⇍                             ⇍ 

(𝐗,𝛕) 

𝒙 

𝑮𝒙 

𝒚 

𝑮𝒚 

(𝐗∗,𝛕∗) 

𝒙∗ 

𝒇(𝑮𝒙) 

 𝒚∗ 

𝒇(𝑮𝒚) 

𝒇 
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       Let 𝑥∗,𝑦∗ ∈ 𝑋∗, 𝑥∗ ≠ 𝑦∗.Since 𝑓 is onto then ∃𝑥,y∈X, s.t.  𝑓(𝑥) = 𝑥∗,𝑓(𝑦) = 𝑦∗. 

Since 𝑓 is 1-1 and 𝑥∗ ≠ 𝑦∗then x ≠ y. Since (X,τ) is 𝑇2 – Space then ∃𝐺𝑥 , 

𝐺𝑦∈ τ,𝐺𝑥∩𝐺𝑦 = ∅ , s. t.  x∈ 𝐺𝑥 , y∈ 𝐺𝑦 . Since 𝑓 is open function then 

𝑓(𝐺𝑥),𝑓(𝐺𝑦) ∈ 𝜏
∗. Since 𝑓 is 1-1 and 𝐺𝑥∩𝐺𝑦 = ∅ then 𝑓(𝐺𝑥)∩𝑓(𝐺𝑦) = ∅.Since 

x∈ 𝐺𝑥 , y∈ 𝐺𝑦 then 𝑥∗ ∈ 𝑓(𝐺𝑥),𝑦
∗ ∈ 𝑓(𝐺𝑦). So (X∗,τ∗) is 𝑇2 – Space.□ 

5.3.6 Theorem: 

        𝑻𝟐 – Space is a hereditary property.  

Proof: 

        Let (𝑌,𝜏𝑌) be a subspace of a 𝑇2 – Space(𝑋,𝜏).  
We want to prove that (𝑌,𝜏𝑌)  is  𝑇2 – Space. 

    Let x, y  ∈ 𝑌, x  ≠  y.Since 𝑌 ⊂ 𝑋 then x, y ∈ 𝑋 but 

X is 𝑇2 – Space then ∃ 𝐺𝑥 , 𝐺𝑦∈ τ, 𝐺𝑥∩𝐺𝑦 = ∅ , s. t.  

 x∈ 𝐺𝑥 , y∈ 𝐺𝑦.By definition of subspace let 𝐺𝑥
∗ = 𝐺𝑥 ∩ 𝑌, 𝐺𝑦

∗ = 𝐺𝑦 ∩ 𝑌 are 𝜏𝑌 – open 

sets. Furthermore x ∈ 𝐺𝑥
∗(since x ∈ 𝐺𝑥 , x ∈ Y ), y  ∉ 𝐺𝑦

∗(since y  ∉ 𝐺𝑦 ,  y ∈ Y) and 

and 𝐺𝑥∩𝐺𝑦 = ∅ then(𝐺𝑥 ∩ 𝑌) ∩ (𝐺𝑦 ∩ 𝑌 ) = (𝐺𝑥∩𝐺𝑦) ∩ 𝑌 = ∅ ∩ 𝑌 = ∅.So (𝑌,𝜏𝑌) is  

 𝑇2 – Space. □ 

5.3.7 Remark: 

       Compact sets are more useful in 𝑇2 – Spaces since we may prove a part of the 

Heine-Borel Theorem which does not hold in general topological spaces. 

5.3.8 Theorem: 

       Every compact subset 𝑬 of a Hausdorff space X is closed. 

Proof: 

       Let 𝑥 be a fixed point in 𝐸𝑐. By [𝑇2], for each point 𝑦 ∈ 𝐸,there exist two 

disjoint open sets 𝐺𝑥 and 𝐺𝑦 such that x∈ 𝐺𝑥 and y∈ 𝐺𝑦.The family of sets {𝐺𝑦: 𝑦 ∈ 𝐸} 

is an open covering of E. Since E is compact, there must be some finite subcovering  

{𝐺𝑦𝑖}𝑖=1
𝑛

. Let {𝐺𝑦𝑖}𝑖=1
𝑛

be the corresponding open sets containing x, and let 𝐺 =

⋂ 𝐺𝑥𝑖
𝑛
𝑖=1 .Then G is an open set containing x since it is the intersection of a finite 

number of open sets containing x. Furthermore, we see that 𝐺 = ⋂ 𝐺𝑥𝑖
𝑛
𝑖=1 ⊆

⋂ 𝐺𝑦𝑖
𝑐 = (⋃ 𝐺𝑦𝑖

𝑛
𝑖=1 )

𝑐
⊆ 𝐸𝑐𝑛

𝑖=1  . Thus each point in 𝐸𝑐 is contained in an open set 

which is itself contained in 𝐸𝑐.Hence 𝐸𝑐 is an open set, and so 𝐸 must be closed.□ 

5.3.9 Corollary: 

        If f is a one-to-one continuous mapping of the compact topological space 

(𝑿,𝝉) onto the 𝑻𝟐 – Space (𝑿∗,𝝉∗), then f is also open, and so f is a 

homeomorphism. 

(𝒀,𝝉𝒀)   

● x 

𝑮𝒙
∗ = 𝑮𝒙 ∩ 𝒀 

𝑮𝒙 

𝑻𝟐 – Space 

  

●y 
𝑮𝒚
∗ = 𝑮𝒚 ∩ 𝒀 

𝑮𝒚 
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Proof: 

       Let G be open in X, so that 𝐺𝑐 is closed. By theorem 3.5.6, 𝐺𝑐is compact. By 

theorem 4.1.23 𝑓(𝐺𝑐) is compact. By theorem 5.3.8, 𝑓(𝐺𝑐) is closed. Thus 

(𝑓(𝐺𝑐))
𝑐
is open. Since f is one-to-one and onto, (𝑓(𝐺𝑐))

𝑐
= 𝑓(𝐺) which is open.□ 

5.3.10 Theorem: 

       Every metric space is 𝑻𝟐 – Space   ) Hausdorff space(. 

Proof: 

       Let   𝑎,𝑏 ∈ 𝑋 be  distinct points 𝑑(𝑎,𝑏) = 𝜀 > 0. Consider the open spheres 

𝐺 = 𝐵1
3
𝜀
(𝑎) and 𝐻 = 𝐵1

3
𝜀
(𝑏) centered at  𝑎  and 𝑏 respectively. 

      We claim that 𝐺 ∩ 𝐻 = ∅ if not then ∃𝑥 ∈ 𝐺 ∩ 𝐻 s.t. 𝑑(𝑎,𝑥) = 1

3
𝜀 and 𝑑(𝑥,𝑏) = 1

3
𝜀 

hence by Triangle Inequality, 𝑑(𝑎,𝑏) ≤ 𝑑(𝑎,𝑥) +  𝑑(𝑥,𝑏) < 1

3
𝜀 +1

3
𝜀 = 2

3
𝜀 but this 

is contradicts the fact that 𝑑(𝑎,𝑏) = 𝜀. Hence 𝐺 and 𝐻 are disjoint, i.e. 𝑎  and 𝑏 

belong respectively to the disjoint open spheres 𝐺 and 𝐻. So X is Hausdorff 

space. □ 

5.3.11 Remark: 

       The following theorem shows in 𝑇2 – Space we can separate a point from 

compact set by using open sets. 

5.3.12 Theorem: 

      In 𝑻𝟐 – Space we can separate any point and compact subset not contain the 

point by disjoint open sets. 

Proof: 

      Let (X,τ) be a 𝑇2 – Space ,F compact subset of X ,𝑥 ∈ 𝑋and 𝑥 ∉ 𝐹.Let 𝑦 ∈ 𝐹 then 

𝑦 ≠ 𝑥. Since (X,τ) is 𝑇2 – Space then ∃𝐺𝑥 , 𝐻𝑦∈ τ, s. t. x∈ 𝐺𝑥  and y∈ 𝐻𝑦 ,𝐺𝑥∩𝐻𝑦 = ∅. 

      The family {𝐻𝑦: 𝑦 ∈ 𝐹} is an open cover for F. Since F is compact then there 

exist {𝐻𝑦𝑖}𝑖=1
𝑛

finite subcover for F corresponding {𝐺𝑖}𝑖=1
𝑛 family of finite open sets 

contain 𝑥.Let 𝐻 = ⋃ 𝐻𝑦𝑖
𝑛
𝑖=1 ,𝐺 = ⋂ 𝐺𝑖

𝑛
𝑖=1 , i.e. 𝑥 ∈ 𝐺,𝐹 ⊆ 𝐻 and 𝐺∩𝐻 = ∅.□ 

5.3.13 Remark: 

       Since the notion of a convergent sequence of real numbers plays such a basic 

role in the study of the real number system, we might expect that the equivalent 

notion for topological spaces would be as primitive a concept as the closure. 

Although convergence has been used as the primitive notion for abstract spaces, 
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we will see below that some of the natural properties fail to hold in more general 

spaces than Hausdorff spaces. 

5.3.14 Definition: 

       Let (X,τ) be a topological space and let 〈𝑥𝑛〉 be a sequence in X. We say that 

〈𝑥𝑛〉 converge in X if  ∃𝑥 ∈ 𝑋 ( denote by 𝑥𝑛 → 𝑥 ) such that  

            for every open set 𝐺 contain 𝑥 , ∃𝑘 ∈ ℕ, s.t. 𝑥𝑛 ∈ 𝐺, ∀𝑛 > 𝑘. 

5.3.15 Example: 

      Let 〈𝑎1,a2, … 〉 be a sequence of points in an indiscrete topological space (X,τ). 

Since X is only open set containing any point 𝑏 ∈ 𝑋 and X contains every term of 

the sequence 〈𝑎𝑛〉, so the sequence 〈𝑎1,a2,…〉 converge to every point of 𝑏 ∈ 𝑋. 

 

5.3.16 Example: 

       Let 〈𝑎1,a2,… 〉 be a sequence of points in a discrete topological space 

(X,τ).Since ∀𝑏 ∈ 𝑋 the singleton set {𝑏} is an open set contain 𝑏 , so if 𝑎𝑛 → 𝑏 

then the set {𝑏} must contain almost all of the terms of the sequence. In other words 

the sequence 〈𝑎𝑛〉 converges to a point 𝑏 ∈ 𝑋 iff the sequence is of the form 

〈a1,a2,…,an0 ,b,b,b,…〉. 

5.3.17 Example: 

        Let 𝜏 be the topology on an infinite set X which consists of ∅ and the 

complements of countable sets . A sequence 〈𝑎1,a2,…〉 in X converges to 𝑏 ∈ 𝑋 iff 

the sequence is also of the form 〈a1,a2,…,an0
,b,b,b,…〉, i.e. the set A consisting of 

the terms of 〈𝑎𝑛〉 different from b is finite .Now A is countable and so 𝐴𝑐 is an open 

set containing  b. Hence if 𝑎𝑛 → 𝑏 then 𝐴𝑐 contains all except a finite number of 

the terms of the sequence  ,so A is finite  

5.3.18 Remark: 

        It is the failure of limits of sequences to be unique that makes this concept 

unsatisfactory in general topological spaces. The following example  shows that a 

𝑇0 – Space in which limits of sequences need not be unique. 

5.3.19 Example: 

       Let 𝑋 =  ℕ, and let 𝜏 be the family consisting of ∅, X, and all subsets of the 

form {𝑛,n+1,n+2,…} then (ℕ,𝜏) is 𝑇0 – 𝑆𝑝𝑎𝑐𝑒 not 𝑇2 – 𝑆𝑝𝑎𝑐𝑒 ,(since if 𝑛1,𝑛2 ∈ ℕ. 

𝑛1 ≠ 𝑛2 with 𝑛2 < 𝑛1then there exists {𝑛1,𝑛1+1,… } contain 𝑛1not 𝑛2 if 𝑛1 < 𝑛2 

then there exists {𝑛2,𝑛2+1,… } contain 𝑛2not 𝑛1) but the sequence < 𝑎𝑛 = 𝑛 > for 

which converges to every point of that space, i.e. < 𝑛 > converge to ,2,3,… . 
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5.3.20 Remark: 

       The following theorem shows that this anomalous behavior cannot occur in a 

Hausdorff space. 

5.3.21 Theorem: 

       In a Hausdorff space, a convergent sequence has a unique limit. 

Proof: 

      Suppose a sequence 〈𝑥𝑛〉 converged to two distinct  

points 𝑥 and 𝑥∗ in a Hausdorff space X. By  [𝑇2],  there  

exist  two disjoint open  sets 𝐺 and 𝐺∗ such  that 𝑥 ∈ 𝐺  

and 𝑥∗ ∈ 𝐺∗. Since 𝑥𝑛 → 𝑥, there exists an integer k such 

that 𝑥𝑛 ∈  𝐺 whenever 𝑛 > 𝑘 . Since 𝑥𝑛 → 𝑥∗ there exists an integer 𝑘∗ such that 

𝑥𝑛 ∈  𝐺
∗ whenever 𝑛 > 𝑘∗. If m is any integer greater than both k and 𝑘∗ , then 𝑥𝑚 

must be in both 𝐺 and 𝐺∗,which contradicts the fact that 𝐺 and 𝐺∗are disjoint.□ 

5.3.22 Remark: 

1. The converse of theorem 5.3.21 is not true. An example of a non-Hausdorff space 

    in which every convergent sequence has not unique limit was given in example  

    5.3.19 .   

2. A relationship between the limit points of sets and the limit points of sequences 

    of points is given in the following theorem. 

5.3.23 Theorem: 

     If 〈𝒙𝒏〉 is a sequence of distinct points of a subset 𝑬 of a topological space 

(𝑿,𝝉)  which converges to a point 𝒙 ∈ 𝑿 then 𝒙 is a limit point of the set E. 

Proof: 

     If 𝑥 belongs to an open set 𝐺,then  there exists  an  integer k  

such that 𝑥𝑛 ∈  𝐺 for all 𝑛 > 𝑘. Since the points 𝑥𝑛 are distinct, 

at most one of them equals 𝑥 and so 𝐸 ∩ 𝐺/{𝑥} ≠ ∅.□ 

5.3.24 Remark: 

     The converse of theorem 5.3.23 is not true, even in a Hausdorff space .as the 

following example  

5.3.25 Example: 

      Let 𝑋 = {𝑎,b,c} ,𝜏={∅,{a,b},{c},𝑋}. Let 𝑥1=a.x2=b,xn=c, ∀n≥3, i.e. 〈xn〉 = 〈a,b,c,c,…〉. 

It’s clear 𝑥𝑛 → 𝑐 but 𝑐 ∉ 𝑑({a,b,c}) since 𝑐 ∈ {𝑐} ∈ 𝜏, {a,b,c} ∩ {c}/{c} = ∅. Also 

𝑎,𝑏 ∈ 𝑑({a,b,c}) but 𝑥𝑛 ↛ 𝑎 and 𝑥𝑛 ↛ 𝑏, since 𝑎,𝑏 ∈ {a,b,c} and 𝑥𝑛 ∉ {a,b},∀𝑛 ≥ 3. 

𝑻𝟐 – Space 

𝒙∗ 

𝑮∗ 

𝒙 

𝑮 

𝒙𝒏 

(𝐗,𝛕) 

𝑮 
● 𝒙 

𝑬 

𝒙𝒏 
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5.3.26 Remark: 

     A relationship between continuity of functions and convergent sequences of 

points is given in the following theorem. 

5.3.27 Theorem: 

     If 𝒇 is a continuous mapping of the topological space (𝑿,𝝉) into the 

topological space (𝑿∗,𝝉∗) and 〈xn〉 is a sequence of points of X which converges 

to the point 𝒙 ∈ 𝑿 then the sequence 〈f(x
n
)〉converges to the point f( 𝒙) ∈ 𝑿∗. 

Proof: 

      If f( 𝑥) belongs to the open set 𝐺∗ in 𝑋∗,then 𝑓−1(𝐺∗) is an open set in X 

containing x since f is continuous. There must then exist an integer k such that 𝑥𝑛 ∈

𝑓−1(𝐺∗)  whenever 𝑛 > 𝑘. Thus we have 𝑓(𝑥𝑛) ∈ 𝐺
∗whenever 𝑛 > 𝑘, and so 

𝑓(𝑥𝑛) → 𝑓(𝑥).□ 

5.3.28 Remark: 

      The converse of theorem is also not true, even in a Hausdorff space. That is, a 

mapping f for which 𝑥𝑛 → 𝑥 implies 𝑓(𝑥𝑛) → 𝑓(𝑥) may not be continuous as the 

following example: 

5.3.29 Example: 

      Let ℝ be the set of real numbers and 𝜏 = {∅} ∪ {𝐺 ⊆ 𝑋: 𝐺𝑐 is countable}.Let 

𝑋∗ = [0,1],𝜏∗ = {𝐺 ∩ [0,1]: 𝐺 ∈ 𝜏} be the relative topology and let 𝑓: (ℝ,τ) ⟶ (X∗,τ∗) 

be a function defined by  

                                             𝑓(𝑥) = {
x x∈[0,1]

0 x∉[0,1]
. 

      Then 𝑓 is not continuous since (0,1) ∈ 𝜏∗but 𝑓−1((0,1))=(0,1) ∉ 𝜏,where 

ℝ/(0,1) is not countable. If 𝑥𝑛 → 𝑥 in X and iff 𝑥𝑛 = 𝑥 , ∀𝑛 ∈ 𝑘 , 𝑘  is positive 

integers iff 𝑓(𝑥𝑛) = 𝑓(𝑥) , ∀𝑛 ∈ 𝑘 iff  𝑓(𝑥𝑛) → 𝑓(𝑥) .  

5.3.30 Remark: 

      The failure of the converses of the preceding three theorems 5.3.21,5.3.23 and 

5.3.27 to hold shows that the notion of limit for sequences of points is not 

completely satisfactory, even if the space satisfies the axiom [𝑇2].The Axioms of 

Countability we will introduce another axiom for the open sets of a topological 

space with which we may prove these converses. 
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5.4  Axioms of Countability 

 

5.4.1 Definition: 

      A topological space (𝑋,𝜏) is a first axiom space iff it satisfies the following 

first axiom of countability: 

[𝑪𝑰] For every point 𝑥 ∈ 𝑋, there exists a countable family {𝐵𝑛(𝑥)} of open sets  

        containing 𝑥 such that whenever 𝑥 belongs to an open set G, 𝐵𝑛(𝑥) ⊆ 𝐺for  

        some n. 

5.4.2 Example: 

      Let (𝑋,𝑑) be a metric space and 𝑝 ∈ 𝑋then the countable class of open balls 

{B1(p),B1
2

(p),…} with center 𝑝 is a local base at 𝑝.Hence every metric space 

satisfies the first axiom of countability. 

5.4.3 Example: 

      Let (ℝ,𝜏) be the usual topology and 𝑝 ∈ ℝ then the countable class of open sets  

{Bn(p) = (𝑝 − 1

𝑛
,𝑝 + 1

𝑛
): 𝑛 ∈ ℕ}  is a local base at 𝑝.Hence the usual topology 

satisfies the first axiom of countability. 

5.4.4 Example: 

       Let (𝑋,𝜏) be any discrete topology. The singleton set {p} is open and is 

contained in every open set G containing 𝑝 ∈ 𝑋.Hence every discrete space 

satisfies [𝑪𝑰] .  

5.4.5 Example: 

        Let (ℝ,𝜏) be the co-finite topology dose not satisfy the first axiom of 

countability. 

Solution: 

       Suppose that (ℝ,𝜏) satisfy [𝐶𝐼] then 1 ∈ ℝ possesses a countable open local 

base ℬ1 = {𝐵𝑛: 𝑛 ∈ ℕ}.Since each 𝐵𝑛 is open then 𝐵𝑛
𝑐  is closed and hence is finite 

, the set 𝐴 =∪ {𝐵𝑛
𝑐: 𝑛 ∈ ℕ} is the countable union of finite sets and is therefore 

countable. But ℝ is not countable then there exists a point 𝑝 ∈ ℝ different from 1 

which does not belong to 𝐴 ,i.e. 𝑝 ∈ 𝐴𝑐 = (∪ {𝐵𝑛
𝑐: 𝑛 ∈ ℕ})𝑐 =∩ {𝐵𝑛

𝑐𝑐: 𝑛 ∈ ℕ} =∩

{𝐵𝑛: 𝑛 ∈ ℕ}, hence 𝑝 ∈ 𝐵𝑛,∀𝑛 ∈ ℕ.On the other hand {𝑝}𝑐 is open set since it is the 

complement of a finite set, and  {𝑝}𝑐contains 1 since 𝑝 is different from 1. Since 

ℬ1is a local base there exists a member 𝐵𝑛0 ∈ ℬ1 such that 𝐵𝑛0 ⊂ {𝑝}
𝑐.Hence 𝑝 ∉

𝐵𝑛0 .But this is contradicts the statement that 𝑝 ∈ 𝐵𝑛,∀𝑛 ∈ ℕ. So  
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(ℝ,𝜏) does not satisfy the first axiom of countability. 

5.4.6 Remark: 

        If (𝑋,𝜏) is a topological space satisfy [𝐶𝐼],i.e. for every 𝑥 ∈ 𝑋 ∃{𝐵𝑛(𝑥)} 

countable base at 𝑥 then we arranged the base in decreasing order as following  

               

𝐵1
∗(𝑥) = 𝐵1(𝑥)                      

𝐵2
∗(𝑥) = 𝐵1

∗(𝑥) ∩ 𝐵2(𝑥)     

𝐵3
∗(𝑥) = 𝐵2

∗(𝑥) ∩ 𝐵3(𝑥)     
⋮                                     

𝐵𝑛
∗(𝑥) = 𝐵𝑛−1

∗ (𝑥) ∩ 𝐵𝑛(𝑥).

       

       We get  {𝐵𝑛
∗(𝑥)}  a countable base s.t. 𝐵𝑛

∗(𝑥) =∩ { 𝐵𝑘(𝑥): 𝑘 ≤ 𝑛}.Also we can 

arrange the base as increasing order by replace the intersection with union.   

Exercise: 

      Prove that [𝐶𝐼] is a hereditary property. 

5.4.7 Theorem: 

      [𝑪𝑰] is a topological property. 

Proof: 

      Let 𝑓: (X,τ) ⟶ (X∗,τ∗)  be A homeomorphism  from a topological space (X,τ) 

which satisfy [𝐶𝐼] to the topological space (X∗,τ∗),we want to show that (X∗,τ∗) 

satisfy [𝐶𝐼]. 

      Let 𝑥∗ ∈ 𝑋∗.Since f is onto ∃𝑥 ∈ 𝑋, s.t. 𝑓(𝑥) = 𝑥∗.Since X satisfy [𝐶𝐼] then 

∃{𝐵𝑛(𝑥)} countable base at 𝑥 ,so the family {𝑓(𝐵𝑛(𝑥))} is a base since  f is open 

function and countable since f is one to one ,so (X∗,τ∗) satisfy [𝐶𝐼].□ 

5.4.8 Remark: 

       In the next three important theorems, we will show the converse of theorems 

5.3.21,5.3.23 and 5.3.27 is true in spaces which satisfy the first axiom of 

countability.       

5.4.9 Theorem: 

       A topological space (𝑿,𝝉) satisfying the first axiom of countability is a 

Hausdorff space iff every convergent sequence has a unique limit. 

Proof: 

     ⟹ 

      In theorem 5.3.21 in 𝑇2 –Space every  convergent sequence has a  unique limit. 

      ⟸ 

     Assume that every  convergent sequence has a  unique limit, we want to prove 
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 that (𝑋,𝜏)  is 𝑇2 –Space. 

       If not ∃𝑥,𝑦 ∈ 𝑋. 𝑥 ≠ 𝑦 such that every open set containing 𝑥 has a nonempty 

intersection with every open set containing y. Since X satisfy [𝐶𝐼] then ∃{𝐵𝑛(𝑥)} 

 and {𝐵𝑛(𝑦)} are monotone decreasing countable open bases at 𝑥 and y respectively 

with , 𝐵𝑛(𝑥) ∩ 𝐵𝑛(𝑦) ≠ ∅ ,∀𝑛 , so we choose a point 𝑥𝑛 ∈ 𝐵𝑛(𝑥) ∩ 𝐵𝑛(𝑦) ,∀𝑛 . 
If 𝐺𝑥   and 𝐺𝑦 are arbitrary open sets containing 𝑥 and y respectively, there must 

exist some integer 𝑘 such that 𝐵𝑛(𝑥) ⊆ 𝐺𝑥 and 𝐵𝑛(𝑦) ⊆ 𝐺𝑦 for all 𝑛 > 𝑘  by the 

definition of a monotone decreasing base. Hence 𝑥𝑛 → 𝑥 and 𝑥𝑛 → 𝑦 , so that we 

have a convergent sequence without a unique limit and this is contradiction .so  

(𝑋,𝜏)  is 𝑇2 –Space.□ 

5.4.10 Theorem: 

       If 𝒙 is a point and 𝑬 a subset of a 𝑻𝟏 –Space (𝑿,𝝉)satisfying the first axiom 

of countability , then 𝒙 is a limit point of 𝑬 iff there exists a sequence of distinct 

points in 𝑬 converging to x. 

Proof: 

     ⟹ 

     In theorem 5.3.23 we proved the limit point of convergent sequence in E is a 

limit point of E.  

      ⟸ 

     Let (𝑋,𝜏) is 𝑇1 –Space and satisfy [𝐶𝐼] .Let E be a subset of X and 𝑥 ∈ 𝑋 s.t. 

𝑥 ∈ 𝑑(𝐸).Since X satisfy [𝐶1] then ∃{𝐵𝑛(𝑥)} a monotone decreasing countable 

open base at x. Since 𝑥 belongs to the open set 𝐵𝑛(𝑥) , the set 𝐵𝑛(𝑥) ∩ 𝐸/{𝑥} must 

be infinite by theorem 5.2.9. By induction we may choose a point 𝑥𝑛 in this set 

different from each previously chosen 𝑥𝑛 with k < n. Clearly, 𝑥𝑛 → 𝑥 since the sets 

{𝐵𝑛(𝑥)} form a monotone decreasing base at 𝑥.□ 

5.4.11 Theorem: 

        If f is a mapping of the first axiom space (𝑿,𝝉) into the topological space 

(𝑿∗,𝝉∗) , then f is continuous at 𝒙 ∈ 𝑿 iff for every sequence 〈xn〉 of points in X 

converging to 𝒙 we have the sequence 〈f(x
n
)〉 converges to the point f( 𝒙) ∈ 𝑿∗. 

Proof: 

     ⟹ 

     In theorem 5.3.27 we proved if f is continuous and 𝑥𝑛 → 𝑥 then 𝑓(𝑥𝑛) → 𝑓(𝑥). 

     ⟸ 
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      We want to prove that f  is continuous at 𝑥 ∈ 𝑋, if not then ∃𝐺∗ ∈ 𝜏∗,𝑓(𝑥) ∈ 𝐺∗,s.t. 

𝑓(𝐺) ⊈ 𝐺∗,i.e. 𝑓(𝐺) ∩ 𝐺∗𝑐 ≠ ∅ for any open set 𝐺 containing x. Let  {𝐵𝑛(𝑥)} be a 

monotone decreasing countable open base at x (since (X,τ) satisfy [𝐶𝐼]).Then 

𝑓(𝐵𝑛(𝑥)) ∩ 𝐺
∗𝑐) ≠ ∅,∀𝑛 and we may pick 𝑥𝑛

∗ ∈ 𝑓(𝐵𝑛(𝑥)) ∩ 𝐺
∗𝑐. Since 𝑥𝑛

∗ ∈ 𝑓(𝐵𝑛(𝑥)) 

we may choose a point 𝑥𝑛 ∈ 𝐵𝑛(𝑥) such that 𝑓(𝑥𝑛) = 𝑥𝑛
∗ . We now have 𝑥𝑛 → 𝑥 

since the sets {𝐵𝑛(𝑥)} form a monotone decreasing base at x. The sequence 

〈𝑓(𝑥𝑛)〉 = 〈𝑥𝑛
∗ 〉  cannot converge to 𝑓(𝑥), however, since 𝑥𝑛

∗ ∈ 𝐺∗𝑐 ,∀𝑛. □ 

5.4.12 Definition: 

      A topological space(𝑋,𝜏) is a second axiom space iff it satisfies the following 

second axiom of countability: 

[𝑪𝑰𝑰] There exists a countable base for the topology 𝜏.  

5.4.13 Remark: 

1. The property  [𝐶𝐼] is local (i.e. there exist a base at each point) but [𝐶𝐼𝐼] is global 

    (i.e. there exist a base for every points in a space X). 

2. Every topological space satisfy [𝐶𝐼𝐼] satisfy  [𝐶𝐼] but the converse is not true as 

    the following examples: 

5.4.14 Example: 

     The discrete topology on any uncountable set, has no countable base (i.e. not 

satisfy [𝐶𝐼𝐼] ) .Since each set consisting of exactly one point must belong to any 

base, even though there is a countable open base at each point 𝑥 obtained by letting 

{𝐵𝑛(𝑥)} = {𝑥}, i.e. satisfy  [𝐶𝐼]. 

5.4.15 Example: 

       Let (ℝ,τ) be the discrete topology on ℝ .A class ℬ is a base for a discrete 

topology iff it contains all singleton {𝑝} subset of ℝ, but ℝ is non- countable ,so 

the discrete topology does not satisfy [𝐶𝐼𝐼] but satisfy  [𝐶𝐼]. 

5.4.15 Example: 

       The class ℬ of open intervals (𝑎,𝑏) with rational endpoints ,i.e. 𝑎,𝑏 ∈ ℚ is 

countable and is a base for the usual topology on the real line ℝ.Thus (ℝ,τ) satisfies 

[𝐶𝐼𝐼]. 

Exercise: 

        Prove that [𝐶𝐼𝐼] is a topological property. 

5.4.17 Theorem: 

      [𝑪𝑰𝑰] is a hereditary property. 
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Proof: 

       Let (𝑌,𝜏𝑌) be a subspace of a topological space (𝑋,𝜏) which satisfy [𝐶𝐼𝐼]. We 

want to prove that (𝑌,𝜏𝑌)  satisfy[𝐶𝐼𝐼]. 

       Since (𝑋,𝜏) satisfy[𝐶𝐼𝐼] then ∃{𝐵𝑛} countable base for X  then family {𝐵𝑛
∗ =

𝐵𝑛 ∩ 𝑌} is a countable base for 𝑌,so (𝑌,𝜏𝑌)  satisfy[𝐶𝐼𝐼].□ 

5.4.18 Remark: 

       The relationship between compact and countably compact sets is made clearer 

by application of the following theorem due to Lindelöf. Indeed, it shows that the 

two notions are equivalent in second axiom 

𝑇1 – Spaces. 

5.4.19 Theorem: 

       In a second axiom space, every open covering of a subset is reducible to a 

countable subcovering. 

Proof: 

      Suppose 𝒜 𝑖𝑠 𝑎𝑛 𝑜𝑝𝑒𝑛 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑒𝑡 𝐸 of the second axiom space 

X which has ℬ as a countable base.  

       Since 𝒜 is an open covering of E then 𝐸 =∪ {𝐺: 𝐺 ∈ 𝒜}, i.e. ∀𝑝 ∈ 𝐸,∃𝐺𝑝 ∈

𝒜 such that 𝑝 ∈ 𝐺𝑝. 

       Since ℬ is an open a countable base for X then ∀𝑝 ∈ 𝐸,∃𝐵𝑝 ∈ ℬ such that 𝑝 ∈

𝐵𝑝 ⊂ 𝐺𝑝. 

       Hence 𝐸 =∪ {𝐵𝑝: 𝑝 ∈ 𝐸}. But {𝐵𝑝: 𝑝 ∈ 𝐸} ⊂ ℬ,so it is countable ,hence 

{𝐵𝑝: 𝑝 ∈ 𝐸} = {𝐵𝑛: 𝑛 ∈ 𝑁},where N is a countable index set. For each 𝑛 ∈ 𝑁 

choose one set 𝐺𝑛 ∈ 𝒜 such that 𝐵𝑛 ⊂ 𝐺𝑛.Then 𝐸 ⊂ {𝐵𝑛: 𝑛 ∈ 𝑁} ⊂ {𝐺𝑛: 𝑛 ∈ 𝑁} 

and so {𝐺𝑛: 𝑛 ∈ 𝑁} is a countable subcover of 𝒜.□ 

5.4.20 Theorem: 

       In a second axiom space, we can find a countable subbase foe every base. 

Proof: 

       Let 𝒜 be a base for X. Since (𝑋,𝜏) satisfy[𝐶𝐼𝐼] then X has a countable base 

ℬ = {𝐵𝑛: 𝑛 ∈ 𝑁}.Since 𝒜 is also a base for X then for each 𝑛 ∈ ℕ, 𝐵𝑛 =∪ {𝐺,𝐺 ∈ 𝒜𝑛} 

with 𝒜𝑛 ⊂  𝒜. So 𝒜𝑛 is an open cover  of 𝐵𝑛 and by theorem 5.4.19 , 𝒜𝑛 reducible 

to a countable over 𝒜𝑛
∗ ,i.e. for each 𝑛 ∈ ℕ , 𝐵𝑛 =∪ {𝐺,𝐺 ∈ 𝒜𝑛

∗ } with 𝒜𝑛
∗ ⊂  𝒜 

and 𝒜𝑛
∗  countable. But 𝒜∗ = {𝐺,𝐺 ∈ 𝒜𝑛

∗ ,𝑛 ∈ ℕ } is a base for X since ℬ is. 

Furthermore 𝒜∗ ⊂ 𝒜, 𝒜∗ is countable.□ 
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5.4.21 Definition: 

     A topological space (X,τ) is called a Lindelöf space iff every open cover of X 

is reducible to a countable subcover. 

5.4.22 Remark: 

1. From  definition  of  Lindelöf  we  get every compact space is a Lindelöf  space  

    (since every finite subcover is countable). 

2. Every second countable space is a Lindelöf space. 

5.4.23 Theorem: 

      The Lindelöf space is a topological property. 

Proof: 

      Let 𝑓: (X,τ) ⟶ (X∗,τ∗)  be  a homeomorphism from a Lindelöf  space (X,τ) to 

the topological space (X∗,τ∗),we want to prove that (X∗,τ∗) is a Lindelöf  space. 

       Let  {𝐺𝜆
∗} be an open cover for X∗. Since f is continuous then {𝑓−1(𝐺𝜆

∗)} is an 

open cover for X. Since (X,τ) is a Lindelöf space then there exists a countable 

subcover {𝑓−1(𝐺𝑛
∗)}𝑛∈ℕ foe X, i.e. 𝑋 = ⋃ 𝑓−1(𝐺𝑛

∗)𝑛∈ℕ , so X∗ = 𝑓(𝑋) =

𝑓(⋃ 𝑓−1(𝐺𝑛
∗)𝑛∈ℕ ) = ⋃ 𝑓𝑓−1(𝐺𝑛

∗)𝑛∈ℕ = ⋃ 𝐺𝑛
∗

𝑛∈ℕ ,(since f is 1-1 and onto).Then 

(X∗,τ∗) is a Lindelöf  space.□ 

5.4.24 Remark: 

        The following example show that the Lindelöf space is not a hereditary 

property. 

5.4.25 Example: 

         Let 𝑋 = ℝ the set of real number and let τ = {𝐺: 𝐺 ⊆ ℝ,0∉G or R/{1,2} ⊆ 𝐺} then 

every open cover for X there exists a finite subcover for X, i.e. X is compact, so X 

is Lindelöf space. Let 𝑋∗ = ℝ/{0}, 𝜏∗ the relative topology on 𝑋∗. We have the 

cover {{𝑟}: 𝑟 ∈ ℝ/{0}} is an open cover for X∗but not have a countable subcover 

for X∗,i.e. X∗is not a Lindelöf space. So the Lindelöf property is not a hereditary 

property. 

5.4.26 Theorem: 

       Every topological space satisfy [𝑪𝑰𝑰] is separable.  

Proof: 

       Let (X,τ) be a topological space satisfy [𝐶𝐼𝐼] then there exists a countable base 

ℬ = {𝐵𝑛: 𝑛 ∈ ℕ} for X. Let 𝑥𝑛 ∈ 𝐵𝑛,∀𝑛 ∈ ℕ then the set 𝐷 = {𝑥𝑛: 𝑛 ∈ ℕ} ⊆ 𝑋 is 

also countable. We shall prove that D is dense. 
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●p 

𝟏

𝟑
𝜺 

●

 

𝑩𝜹𝟎(𝒂𝟎) 

𝑩𝜺(𝒑) 

𝜺 

       Let 𝑥 ∈ 𝐷𝑐 and let G be an open set contain  𝑥 then ∃𝐵𝑛 ∈ ℬ 𝑠.t. x ∈ 𝐵𝑛 ⊆ 𝐺. 

Since 𝐷 ∩ 𝐵𝑛 ≠ ∅  then 𝐷 ∩ 𝐺/{𝑥} ≠ ∅ , so  𝑥 ∈ 𝑑(𝐷), i.e. �̅� = 𝑋 so (X,τ) is 

separable.□ 

5.4.27 Remark: 

1. The converse  of  theorem 5.4.26  is  not  true  in  general , since the  lower  limit    

    topology on ℝ  is separable topological  space which does  not satisfy the second 

    axiom of countability. 

2. In metric space the converse of theorem 5.4.26 is true as the following theorem: 

5.4.28 Theorem: 

       Every seperable metric space  is second countable ([𝑪𝑰𝑰]).  

Proof: 

         Since X is separable then X contain a countable dense subset A. Let  ℬ be 

a class of all open balls with centers in A  and rational radius, i.e. ℬ =

{𝐵𝛿(𝑎): 𝑎 ∈ 𝐴,𝛿 ∈ ℚ }. Note that ℬ is a countable family . 

        We claim that ℬ is a base for the topology on X ,   

i.e. for every open set  𝐺 ⊂ 𝑋  and  every  𝑝 ∈ 𝐺, 

∃𝐵𝛿(𝑎) ∈ ℬ s.t. 𝑝 ∈ 𝐵𝛿(𝑎) ⊂ 𝐺. Since 𝑝 ∈G there exists 

 an  open  ball  𝐵𝜀(𝑝)  with  center  𝑝   such  that 

 𝑝 ∈ 𝐵𝜀(𝑝) ⊂ 𝐺. Since A is dense in X, ∃𝑎0 ∈ 𝐴 such  

 that 𝑑(𝑝, 𝑎0) <
1

3
𝜀. Let 𝛿0 be a rational number such 

 that 
1

3
𝜀 < 𝛿0 <

2

3
𝜀. Then 𝑝 ∈ 𝐵𝛿0(𝑎0) ⊂ 𝐵𝜀(𝑝) ⊂ 𝐺.But 

 𝐵𝛿0(𝑎0) ∈ ℬ,and so ℬ is a countable base for the topology on X.□ 

5.4.29 Remark: 

       In the following diagram we denote by arrows the implications which hold in 

any topological space, while no other implications hold, even in a Hausdorff space. 

 

 

 

 

 

 

 separable space             [𝑪𝑰𝑰]                    Lindelöf space              Compact space 

                                          

                                            [𝑪𝑰] 
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5.5 Regular and Normal Spaces 

5.5.1 Definition: 

     A topological space X is regular iff it satisfies the following axiom of Vietoris: 

[R] If F is a closed subset of X and 𝑥 is a point of X not in F, then there  exist  two  

       disjoint open sets GF,𝐺𝑥 , one containing F and the other containing x.  

               

 

 

5.5.2 Example: 

       Let 𝑋 = {𝑎,b,𝑐},τ={∅,{a,b},{c},𝑋} then (X,τ) is regular space. 

Solution: 

      The closed sets 𝑋,{c},{a,b},∅, so if we take {c} closed set and 𝑎 ∉ {c} then 

∃{c},{a,b} ∈ 𝜏, s.t. {c} ⊂ {c} , 𝑎 ∈ {a,b}. 
5.5.3 Remark: 

1. The above example is not 𝑇2 – Space .Since 𝑎,𝑏 ∈ 𝑋. 𝑎 ≠ 𝑏 but we can’t find  

    disjoint open sets contain 𝑎  and 𝑏. 

2. The above example is not 𝑇1 – Space. Since {𝑎},{𝑏} is not closed sets. 

3.  So regular space not necessary 𝑇2 – Space and not 𝑇1 – Space. Also 𝑇2 – Space 

     is not regular as the following example: 

5.5.4 Example: 

       Let 𝑋 = ℝ the set of real numbers and let 𝑈𝑥 = {(a,b):x∈(a,b)} and let 𝑈0 =

{(-p,p)/{1
𝑛
:n∈ℕ}:p>0} the family of all open sets form a base for a topology 𝜏 on 

ℝ then (ℝ,τ) is 𝑇2 – Space , since if 𝑎,𝑏 ∈ ℝ. 𝑎 ≠ 𝑏, 𝑎,𝑏 ≠ 0 then there exists two 

open intervals one of them contain 𝑎 and the other contain 𝑏.Since every open 

interval is an element in 𝑈𝑥  and all elements in 𝑈𝑥is in τ then it satisfy [𝑇2]. 

        If 𝑏 ≠ 0,a = 0, so it’s clear if 𝑏 > 0 the interval (1
𝑏
,𝑏 + 1) is a neighborhood 

of b and (-𝑏
2
,𝑏
2
)/{1

𝑛
:n∈ℕ} is a neighborhood of a = 0, then the first interval is an 

element in 𝑈𝑥and the second interval is an element in 𝑈0and these intervals are 

disjoint then it satisfy [𝑇2]. 

         Now if F={1
𝑛
:n∈ℕ}, x=0 then 0 ∉ F and any neighborhood of F intersect with 

any neighborhood of x=0, so (ℝ,τ) is not regular. 

F 𝑮𝑭 𝑮𝒙 
●𝒙 

[R] 
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5.5.5 Remark: 

      The following theorems shows that the regularity is a topological and hereditary 

property: 

5.5.6 Theorem: 

       The regularity is a topological property. 

Proof: 

       Let 𝑓: (X,τ) ⟶ (X∗,τ∗) be a homeomorphism 

from a regular  space (X,τ)  to  the  topological 

space (X∗,τ∗), we want to  show that  (X∗,τ∗) is 

a regular space. 

       Let F∗ be a closed set in X∗, x∗ ∈ 𝑋∗,𝑥∗ ∉ 𝐹∗. 

Since 𝑓 is onto then ∃𝑥 ∈ 𝑋 𝑠.t. 𝑓(𝑥) = 𝑥∗.Since 𝑓 is continuous then 𝑓−1(𝐹∗) is 

closed X .Since 𝑓 is onto,1-1 and 𝑥∗ ∉ 𝐹∗then 𝑥 ∉ 𝑓−1(𝐹∗) , but (𝑋,𝜏) is a regular 

space then ∃𝐺,H∈τ,𝐺 ∩ 𝐻 = ∅ with 𝑥 ∈ 𝐺, 𝑓−1(𝐹∗) ⊆ 𝐻.Since 𝑓 is open 

function then 𝑓(𝑥) ∈ 𝑓(𝐺), 𝐹∗ ⊆ 𝑓(𝐻) with 𝑓(𝐺) ∩ 𝑓(𝐻) = ∅, so (X∗,τ∗) is a 

regular space.□ 

5.5.7 Theorem: 

        The regularity is a hereditary property. 

Proof: 

       Let (𝑌,𝜏𝑌) be a subspace of a regular space 

(𝑋,𝜏) topological space, we want to  prove  that 

(𝑌,𝜏𝑌) is a regular space. 

       Let F∗ be a closed set in 𝑌, x∗ ∈ 𝑌,𝑥∗ ∉ 𝐹∗then 𝐹∗ = 𝐹 ∩ 𝑌,were F is a closed 

set in X. Since x∗ ∈ 𝑌 ⊂ 𝑋 , 𝑥∗ ∉ 𝐹∗ then 𝑥∗ ∉ 𝐹. Since (𝑋,𝜏) is a regular space 

then ∃𝐺 , H ∈τ,𝐺 ∩ 𝐻 = ∅ s.t. 𝑥∗ ∈ 𝐺,𝐹 ⊆ 𝐻. Now 𝐺∗ = 𝐺 ∩ 𝑌,𝑥∗ ∈ 𝐺∗(since 

𝑥∗ ∈ 𝐺,𝑥∗ ∈ 𝑌) , 𝐻∗ = 𝐻∩𝑌,𝐹∗ ⊆ 𝐻∗(since 𝐹 ⊆ 𝐻) and 𝐺∗ ∩ 𝐻∗=( 𝐺 ∩ 𝑌) ∩

( 𝐻 ∩ 𝑌) = ( 𝐺 ∩ 𝐻) ∩ 𝑌 = ∅∩ 𝑌 = ∅.So (𝑌,𝜏𝑌) is a regular space.□ 

5.5.8 Theorem: 

       A topological space (𝑿,𝝉) is regular iff  for every point 𝒙 ∈ 𝑿 and open set 

G containing 𝒙 there exists an open set 𝑮∗ such that 𝒙∗ ∈ 𝑮∗and 𝑮∗̅̅ ̅ ⊆ 𝑮. 

Proof: 

      ⟹ 

 

𝒙 

𝑮 

𝒇−𝟏(𝑭∗) 

𝑯 

(𝐗,𝛕) 

 𝐅∗ 

𝒇(𝑯) 

𝒙∗ 

𝑓(𝐺) 

(𝐗∗,𝛕∗) 

𝒇 

𝐇∗ 𝒙∗ 
𝑮∗ 

(𝒀,𝝉𝒀) 

(𝑿,𝝉) 

G H 
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𝒙∗ 𝑮
∗ 𝑮

∗̅̅ ̅ 

𝑮 

(𝑿,𝝉) 

      Suppose (𝑋,𝜏)  is regular, and the point 𝑥 belongs 

to the open set G. Then 𝐹 = 𝑋/𝐺 is a closed set which 

does not contain x. By [R], there exist two open sets GF 

 and 𝐺𝑥  such  that F  ⊆ GF, 𝑥 ∈ 𝐺𝑥 , and 𝐺𝐹 ∩ 𝐺𝑥 = ∅. 

Since 𝐺𝑥 ⊆ 𝐺𝐹
𝑐 ,𝐺𝑥̅̅ ̅ ⊆ 𝐺𝐹

𝑐̅̅̅̅  = 𝐺𝐹
𝑐 ⊆ 𝐹𝑐 = 𝐺. Thus, 𝑥 ∈ 𝐺𝑥 

and 𝐺𝑥̅̅ ̅ ⊆ 𝐺 and 𝐺𝑥 is the desired set.  

      ⟸ 

     Now suppose the condition holds and 𝑥 is a point not in the closed set F. Then 

𝑥 belongs to the open set 𝐹𝑐, and by hypothesis there must exist an open set 𝐺∗such 

that 𝑥 ∈ 𝐺∗ and 𝐺∗̅̅ ̅ ⊆ 𝐹𝑐  . Clearly 𝐺∗ and 𝐺∗̅̅ ̅
𝑐
are disjoint open sets containing 𝑥 

and F , respectively.□ 

5.5.9 Definition: 

      A topological space (𝑋,𝜏) is 𝐓𝟑 – Space  if it regular and 𝑇1 – Space, i.e. 

𝑻𝟑 ≡ [𝑹]&[𝑻𝟏] . 

5.5.10 Remark: 

      The following theorem shows that every T3 – Space is T2 – Space but the 

converse is not true as example 5.5.4. 

5.5.11 Theorem: 

        Every 𝑻𝟑 – Space is Hausdorff space ( 𝑻𝟐 – Space). 

Proof: 

       Let (𝑋,𝜏)  be a T3 – Space, we want to prove that (𝑋,𝜏) is Hausdorff space. Let 

𝑥,y∈X, x ≠ 𝑦,since X is T1 – Space then {𝑥} is closed set and since x ≠ 𝑦 , 𝑦 ∉ {𝑥} 

then by [𝑅] , ∃𝐺,H∈τ , 𝐺 ∩ 𝐻 = ∅ and {𝑥} ⊆ 𝐺,𝑦 ∈ 𝐻. Hence 𝑥 and y belong 

respectively to disjoint open sets 𝐺 and H. 

5.5.12 Definition: 

        A topological space (𝑋,𝜏) is normal iff it satisfies the following axiom of 

Urysohn: 

[N] If 𝐹1 and 𝐹2 are  two  disjoint closed subsets of X, then there exist two disjoint  

       open sets, one containing 𝐹1 and the other containing 𝐹2 . 

 

 

 

 

𝑭𝟏 𝑮𝑭𝟏 𝑮𝑭𝟐 

[N]  

𝑭𝟐 
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𝑭 𝑮
∗ 𝑮

∗̅̅ ̅ 

𝑮 

(𝑿,𝝉) 

5.5.13 Theorem: 

       The normality is a topological property. 

Proof:  

       Let 𝑓: (X,τ) ⟶ (X∗,τ∗) be a homeomorphism 

from a normal  space (X,τ)  to  the  topological 

space (X∗,τ∗), we want to  show that  (X∗,τ∗) is 

a normal space.  

       Let 𝐹1
∗ ,  𝐹2

∗ be a disjoint closed  sets  in X∗. 

Since 𝑓 is continuous then 𝑓−1(𝐹1
∗) ,𝑓−1(  𝐹2

∗) are closed in X. Since 𝑓 is onto,1-1 

and 𝐹1
∗  ∩   𝐹2

∗ = ∅ then  𝑓−1(𝐹1
∗) ∩𝑓−1(  𝐹2

∗) = ∅, Since (X,τ) is normal then 

∃𝐺,𝐻 ∈ 𝜏 s.t. 𝑓−1(𝐹1
∗) ⊆ 𝐺, 𝑓−1(  𝐹2

∗) ⊆ 𝐻 and 𝐺 ∩ 𝐻 = ∅. Since 𝑓 is an open function 

then 𝐹1
∗ ⊆ 𝑓(𝐺),   𝐹2

∗ ⊆ 𝑓(𝐻) and 𝑓(𝐺) ∩ 𝑓(𝐻) = ∅.So (X∗,τ∗) is a normal space.  

5.5.14 Theorem: 

       A topological space (𝑿,𝝉) is normal iff  for any closed set F and open set G 

containing F, there exists an open set 𝑮∗ such that 𝑭 ∈ 𝑮∗and 𝑮∗̅̅ ̅ ⊆ 𝑮. 

Proof:  

      ⟹ 

      Suppose (𝑋,𝜏) is normal and the closed set F is  

contained  in  the  open  set  G.  Then  𝐾 = 𝑋/𝐺  is 

a closed set which is  disjoint  from F. By [N], there 

 exist two disjoint open sets  GF  and  GK  such  that 

F ⊆GF and 𝐾 ⊆ GK.Since GF ⊆ 𝐺𝐾
𝑐  , we have 𝐺𝐹̅̅̅̅ ⊆ 𝐺𝐾

𝑐̅̅̅̅ = 𝐺𝐾
𝑐 ⊆ 𝐾𝑐 = 𝐺.Thus GF 

is the desired set.  

      ⟸ 

     Now suppose the condition holds, and let 𝐹1 and 𝐹2 be disjoint closed subsets of 

X. Then 𝐹1  is contained in the open set 𝐹2
∗ = 𝑋/𝐹2 , and, by hypothesis, there exists 

an open set 𝐺∗ such that 𝐹1 ⊆ 𝐺∗ and 𝐺∗̅̅ ̅ ⊆ 𝐹2
∗.Clearly, 𝐺∗ and 𝑋/𝐺∗̅̅ ̅ are the desired 

disjoint open sets containing 𝐹1 and 𝐹2, respectively.□  

5.5.15 Definition: 

      A topological space (𝑋,𝜏) is 𝐓𝟒 – Space  if it normal and 𝑇1 – Space, i.e. 

𝐓𝟒 ≡ [𝑵]&[𝐓𝟏]. 

5.5.16 Example: 

      Let 𝑋 = {𝑎,𝑏. 𝑐},𝜏 = {{𝑎},{b},{a,b},X,∅} then (𝑋,𝜏) is normal space. 

Solution: 

 
𝑮 

𝒇−𝟏(  𝑭𝟐
∗)  

𝑯 

(𝐗,𝛕) 

 𝑭𝟐
∗  

𝒇(𝑯) 

𝒇(𝑮) 

(𝐗∗,𝛕∗) 

𝒇 
𝑭𝟏
∗  

𝒇−𝟏(𝑭𝟏
∗ ) 
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       Since the closed sets are {b,c},{a,c},{{c},∅,X are non-empty intersection ,i.e. if 

𝐹1 , 𝐹2 are closed disjoint then 𝐹1 = ∅,𝐹2 = 𝑋, so ∃∅,𝑋 ∈ 𝜏, s. t. 𝐹1 ⊆ ∅,𝐹2 ⊆ 𝑋, 

then (𝑋,𝜏) is normal space. Also (𝑋,𝜏) is not regular, since if  F={a,c} is closed set 

and 𝑥 = 𝑏 ∉ 𝐹 then every open set contain F intersect with every open set contain  

𝑥. Also (𝑋,𝜏) is not 𝑇2 – Space. 

5.5.17 Remark: 

       Example 5.5.16 show that the normal space need not be regular space .The 

following theorem 5.5.18 show that the T4 – Space is T3 – Space.  

5.5.18 Theorem: 

      Every 𝐓𝟒 – Space is  𝐓𝟑 – Space. 

Proof: 

       Let (𝑋,𝜏) be a 𝑇4 – Space , let F be closed set , 𝑥 ∈ 𝑋 , 𝑥 ∉ 𝐹. Since (𝑋,𝜏) is 

𝑇1 – Space then 𝐹1 = {𝑥} is  closed set. Since (𝑋,𝜏) is 𝑇4 – Space  then ∃G , H ∈τ , 

F⊆G , F1⊆H , G∩H=∅, i. e. x ∈H, F ∈ G , so (𝑋,𝜏) is T3 – Space.□ 

5.5.19 Remark: 

      The following theorem 5.5.20 gives a relation between normal and T2 – Space. 

Also theorems 5.5.20, 5.5.21 give two sufficient conditions for a topological space 

to be normal. 

5.5.20 Theorem: 

        Every compact Hausdorff space is normal. 

Proof: 

       Let (𝑋,𝜏) be a compact Hausdorff space and let 𝐹 , 𝐹∗ be two disjoint, closed 

subsets of the compact Hausdorff space X. 𝐹 and  𝐹∗ are compact since they are 

closed subsets of a compact space X. 

       By [𝑇2] ,∀𝑥 ∈ 𝐹 ,∀𝑦 ∈  𝐹∗, ∃𝐺𝑥 ,𝐺𝑦
∗ ∈ 𝜏 ,𝐺𝑥∩𝐺𝑦

∗ = ∅ , s.t. 𝑥 ∈ 𝐺𝑥  & 𝑦 ∈  𝐺𝑦
∗ . 

For each fixed point 𝑥 ∈ 𝐹 the collection {𝐺𝑦
∗: 𝑦 ∈  𝐹∗} forms an open covering of 

the compact set 𝐹∗. There must be a finite subcovering, which we denote by 

{𝐺𝑦𝑖
∗ : 𝑖 = 1,2,..,𝑛}. If we let 𝐺𝑥

∗ = ⋃ 𝐺𝑦𝑖
∗𝑛

𝑖=1  and the finite intersection 𝐺𝑥 = ⋂ 𝐺𝑥
𝑖𝑛

𝑖=1  

then 𝐺𝑥 and 𝐺𝑥
∗ are disjoint open sets containing 𝑥 and 𝐹∗, respectively. Now the 

collection {𝐺𝑥: 𝑥 ∈  𝐹} forms an open covering of the compact set F. There must 

be a finite subcovering, which we denote by {𝐺𝑥𝑖: 𝑖 = 1,2,..,𝑚}. If we let 𝐺 =

⋃ 𝐺𝑥𝑖
𝑚
𝑖=1  and the finite intersection 𝐺∗ = ⋂ 𝐺𝑥𝑖

∗𝑚
𝑖=1  then G and 𝐺∗ are two disjoint 

open sets containing 𝐹 and 𝐹∗ respectively.□ 
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5.5.21 Theorem: 

        Every regular Lindelöf space is normal. 

Proof: 

       Let 𝐹 and  𝐹∗ be two disjoint closed subsets of the regular Lindelöf space 

(𝑋,𝜏). Then 𝐹 and  𝐹∗ are Lindelöf since every closed subset of a Lindelöf space is 

Lindelöf space. By [ R ] , ∀𝑥 ∈ 𝐹,∃𝐺𝑥 ∈ 𝜏, s.t. x ∈ 𝐺𝑥 ⊆ 𝐺𝑥̅̅ ̅ ⊆ 𝐹∗ 𝑐. The collection 

{𝐺𝑥: 𝑥 ∈ 𝐹} forms an open covering of the Lindelöf set F.There must be a countable 

subcovering, which we denote by {𝐺𝑖}𝑖=1
𝑛 . Similarly, for each point 𝑥 ∈ 𝐹∗ there 

must exist an open set ∃𝐺𝑥
∗ ∈ 𝜏, s.t. x ∈ 𝐺𝑥

∗ ⊆ 𝐺𝑥
∗̅̅ ̅ ⊆ 𝐹 𝑐.The collection {𝐺𝑥

∗: 𝑥 ∈ 𝐹∗} 

forms an open covering of the Lindelöf set 𝐹∗. There must be a countable 

subcovering, which we denote by {𝐺𝑖
∗}𝑖=1
𝑛  . The reader may show that the sets 𝐺 =

⋃ [𝐺𝑛/⋃ 𝐺𝑖
∗̅̅ ̅

𝑖≤𝑛 ]𝑛∈ℕ  and 𝐺∗ = ⋃ [𝐺𝑛
∗/⋃ 𝐺�̅�𝑖≤𝑛 ]𝑛∈ℕ  are disjoint open sets containing 

𝐹 and  𝐹∗, respectively.□ 

5.5.22 Remark: 

      Another characterization of normality relates that concept to the number of real-

valued continuous functions defined on the space. 

5.5.23 Lemma (Urysohn's Lemma): 

      A topological space (𝑿,𝝉) is normal iff for every two disjoint closed subsets 

𝑭𝟏 and  𝑭𝟐 of  X and closed interval [a, b] of reals, there exists a continuous 

mapping 𝒇: 𝑿 → [𝒂,𝒃] such that 𝒇(𝑭𝟏) = {𝒂} and 𝒇(𝑭𝟐) = {𝒃}. 
         

 

 

 

 

 

5.5.24 Definition: 

      A topological space (𝑋,𝜏) is  completely normal iff it satisfies the following 

axiom of Tietze: 

[CN] If A and B are two separated subsets of X, then there exist two disjoint open 

          sets, one containing A and the other containing B. 

5.5.25 Definition: 

       A topological space (𝑋,𝜏) is 𝐓𝟓 – Space  if it completely normal space and 

also 𝑇1 – Space, i.e. 

𝐓𝟓 ≡ [𝐂𝐍]&[𝐓𝟏]. 

𝑭𝟏 

𝑭𝟐 

(𝑿,𝝉) 

𝒂 𝒃 

𝒇 

𝒇 
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5.5.26 Example: 

       Let 𝑋 = {𝑎,b,𝑐},τ={∅,{a,b},{c},𝑋} then (X,τ) is completely normal. 

Solution: 

       Since every set in τ is open and closed set, so if 𝐴,𝐵 ∈ 𝜏 then �̅� ∩ 𝐵 = 𝐴 ∩ �̅� =

𝐴 ∩ 𝐵 = ∅ then A and B are separable and 𝐴 ⊆ 𝐴,B⊆B so (X,τ) is completely 

normal .Also in example 5.5.2 we show that (X,τ) is regular space not T1 – Space 

and not T2 – Space. 

5.5.27 Remark: 

       Since disjoint closed sets are separated, then every completely normal space is 

normal, and hence every T5 – Space is a T4 – Space but the converse is not true. 

Also the following example show that T5 – Space does not transfer by continuity. 

5.5.28 Example: 

       Let 𝑋 = 𝑋∗ = {𝑎,b,c} and let τ be the discrete topology and τ∗={∅,{a},{b,c},X*} 

and let 𝑓: (X,τ) ⟶ (X∗,τ∗)  be the identity function , i.e. 𝑓(𝑥) = 𝑥, ∀𝑥 ∈ 𝑋. 

       Since (X,τ) is the discrete topology then 𝑓 is continuous function and since the 

discrete topology is T1 – Space and normal then (X,τ) is T5 – Space. Since (X∗,τ∗) 

is not T1 – Space then it’s not T5 – Space. 

5.5.29 Theorem: 

      The completely normal space ([CN]) is topological property. 

Proof: 

      Let 𝑓: (X,τ) ⟶ (X∗,τ∗)  be a homeomorphism  from a topological space (X,τ) 

satisfy [CN] to the topological space (X∗,τ∗),we want to show that (X∗,τ∗) satisfy 

[CN]. 

       Let 𝐴∗,𝐵∗be a separable sets in X∗. Since 𝑓 is continuous and 1-1 then 

𝑓−1(𝐴∗),𝑓−1(𝐵∗) are separated subset of X. Since (X,τ) satisfy [CN] then ∃𝐺,𝐻 ∈ 𝜏  

, 𝐺∩𝐻 = ∅ , s.t. 𝑓−1(𝐴∗) ⊆ 𝐺,𝑓−1(𝐵∗) ⊆ 𝐻.Since 𝑓 is open ,1-1 and 𝐺,𝐻 ∈ 𝜏 then 

𝐴∗ ⊆ 𝑓(𝐺),𝐵∗ ⊆ 𝑓(𝐻),𝑓(𝐺)∩𝑓(𝐻) = ∅,𝑓(𝐺),𝑓(𝐻)∈𝜏∗,so (X∗,τ∗) satisfy [CN].□ 

5.5.30 Theorem: 

        A topological space(𝑿,𝝉) is completely normal iff every subspace of X is 

normal. 

Proof: 

        ⟹ 

       Suppose (X,τ) is completely normal and let (X∗,τ∗) be a subspace of (X,τ), 

we want to prove that (X∗,τ∗) is normal space. 
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    Let 𝐹1
∗ and 𝐹2

∗ be disjoint (relatively) closed subsets of 𝑋∗, so 𝐹1
∗ = 𝐹1

∗̅̅ ̅,𝐹2
∗ = 𝐹2

∗ ̅̅ ̅̅ . 

Since 𝐹1
∗ and 𝐹2

∗ are closed subsets of 𝑋∗ then ∃𝐹1,𝐹2 closed subset of X such 

that 𝐹1
∗̅̅ ̅=𝐹1̅ ∩  𝑋

∗, 𝐹2
∗  ̅̅ ̅̅ = 𝐹2̅̅̅̅ ∩  𝑋

∗.Now 

  𝐹1
∗ ∩ 𝐹2 ̅̅̅̅ = 𝐹1

∗̅̅ ̅ ∩ 𝐹2 ̅̅̅̅ = 𝐹1̅ ∩  𝑋
∗ ∩ 𝐹2̅̅̅ = 𝐹1̅ ∩  𝑋

∗ ∩  𝑋∗ ∩ 𝐹2̅̅̅ = 𝐹1
∗̅̅ ̅ ∩ 𝐹2

∗ ̅̅ ̅̅ =𝐹1
∗ ∩ 𝐹2

∗ = ∅. 

And similarly, 𝐹1̅̅̅̅ ∩ 𝐹2
∗ = ∅. Hence 𝐹1

∗ and 𝐹2
∗ are separated subsets of X. By[CN], 

there exist disjoint open sets 𝐺1 and 𝐺2 containing 𝐹1
∗ and 𝐹2

∗ respectively. Then 

the sets  𝑋∗ ∩ 𝐺1 and  𝑋∗ ∩ 𝐺2 are disjoint (relatively) open subsets of  𝑋∗ which 

contain 𝐹1
∗ and 𝐹2

∗, respectively, so  𝑋∗ is normal. 

       ⟸ 

       Now let us suppose that every subspace of X is normal, and let 𝐴 and B be 

separated subsets of X. Consider the open set [�̅� ∩ �̅�]𝑐 =  𝑋∗ as a subspace of X. 

By hypothesis,  𝑋∗ is normal. The sets  𝑋∗ ∩ �̅� and  𝑋∗ ∩ �̅� will be disjoint, relatively 

closed subsets of  𝑋∗ and so there must exist two disjoint relatively open sets 

𝐺𝐴 and 𝐺𝐵 containing  𝑋∗ ∩ �̅� and  𝑋∗ ∩ �̅� respectively. Since  𝑋∗ is an open subset 

of X, 𝐺𝐴 and 𝐺𝐵 are actually open subsets of X .Thus we have 𝐴 ⊆  𝑋∗ ∩ �̅� ⊆

𝐺𝐴 and 𝐵 ⊆  𝑋∗ ∩ �̅� ⊆ 𝐺𝐵 , so that X is completely normal.□ 

5.5.31 Definition: 

        A topological space (X,τ) is completely regular iff it satisfies the following 

axiom: 

[CR] If F is a closed subset of X, and 𝑥 is a point of X not in F, then there exists a  

          continuous mapping 𝑓: 𝑋 → [0,1] such that 𝑓(𝑥) = 0 and 𝑓(𝐹) = {1}. 
 

 

 

 
 

 

5.5.32 Definition: 

A topological space (𝑋,𝜏) is A Tichonov  Space  if it completely regular space and 

also 𝑇1 – Space, i.e. 

𝐓
𝟑𝟏
𝟑
≡ [𝐂𝐑]&[𝐓𝟏]. 

 

𝑭 

(𝑿,𝝉) 

𝒇 

𝒇 

𝟎 𝟏 

𝒙 
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5.5.33 Theorem: 

          The completely regular space is a topological property. 

Proof: 

       Let 𝑓: (X,τ) ⟶ (X∗,τ∗) be a homeomorphism from a completely regular  space 

(X,τ)  to the topological space (X∗,τ∗), we want to  show that  (X∗,τ∗) is compeletly  
regular space. 

        Let 𝐹∗ be a closed subset of  𝑋and 𝑥 ∈ 𝑋 ,  𝑥 ∉ 𝐹∗.Since 𝑓 is continuous then 

𝐹 = 𝑓−1(𝐹∗). Since 𝑓 is onto then ∃𝑥 ∈ 𝑋, s.t. f(x)=𝑥∗.Since 𝑓 is 1-1  and  𝑥∗ ∉

𝐹∗ then  𝑥 ∉ 𝐹. Since  (X,τ)   is completely regular then ∃ 𝑔 ∶ 𝑋 →
[0,1] , s. t. 𝑔(𝑥) = 0 and 𝑔(𝐹) = {1} then the composition 𝑔 ∘ 𝑓−1 is continuous 

(since 𝑔 and 𝑓−1 are continuous functions).So 𝑔 ∘ 𝑓−1: X∗ → [0,1] and 

(𝑔 ∘ 𝑓−1)(𝐹∗) = 𝑔(𝑓−1(𝐹∗)) = 𝑔(𝐹) = {1} and (𝑔 ∘ 𝑓−1)(𝑥) = 𝑔(𝑓−1(𝑥∗)) =

𝑔(𝑥) = 0. So (X∗,τ∗) is compeletly  regular space.□ 

5.5.34 Theorem: 

          The completely regular space is a hereditary property. 

Proof: 

      Let (𝑌,𝜏𝑌) be a subspace of a regular space (𝑋,𝜏) topological space, we want 

to  prove  that (𝑌,𝜏𝑌) is a regular space. 

       Let F∗ be a closed set in 𝑌, x∗ ∈ 𝑌,𝑥∗ ∉ 𝐹∗then 𝐹∗ = 𝐹 ∩ 𝑌,were F is a closed 

set in X. Since x∗ ∈ 𝑌 ⊂ 𝑋 , 𝑥∗ ∉ 𝐹∗ then 𝑥∗ ∉ 𝐹. Since (𝑋,𝜏) is completely regular 

space then ∃ 𝑓 ∶ 𝑋 → [0,1] , s. t. 𝑓(𝑥) = 0 𝑎𝑛𝑑 𝑓(𝐹) = {1}. Let ∃ 𝑓∗ 𝑌 → [0,1] 
defined as 𝑓∗(𝑥) = 𝑓(𝑥),∀x∈𝑌, i. e. 𝑓∗=f|𝑌 is continuous and satisfy 𝑓∗(𝑥) = 𝑜, 

since x∈𝑌 and 𝑓∗(𝐹∗) = {1}, since 𝐹∗ = 𝐹 ∩ 𝑌,so (𝑌,𝜏𝑌) is a regular space.□ 

5.5.35 Theorem: 

       Every completely regular space is regular. 

Proof: 

       Let (𝑋,𝜏) be a completely regular  space. Let 𝐹 be a closed subset of  𝑋and 

𝑥 ∈ 𝑋 ,  𝑥 ∉ 𝐹 then ∃ 𝑓 ∶ 𝑋 → [0,1], continuous function such that 𝑓(𝑥) = 0 and  

 𝑓(𝐹) = {1}. Since ℝ is a 𝑇2 – Space and [0,1] ⊆ ℝ is also a 𝑇2 – Space  then 

∃𝐺,H∈τ , G∩H=∅ and 0 ∈ 𝐺 , 1∈H. Since 𝑓 is continuous function then 

𝑓−1(𝐺),𝑔−1(H) are disjoint open subset of X and 𝑥 ∈ 𝑓−1(0) ∈ 𝑓−1(𝐺) , 𝐹 ⊆

𝑓−1(1) ⊆ 𝑓−1(𝐺).So (𝑋,𝜏) is regular space.□ 
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5.5.36 Remark: 

       Theorem 5.5.35 every [CR] is [R] ,every Tichonov space is a 𝑇3 – Space, and 

every 𝑇4 – Space is a Tichonov space by Urysohn's Lemma. Because of these facts, 

we might be inclined to call a Tichonov space a T31
3
-space. 

   

      

     On the other hand, since a normal space need not be regular, it also need not be 

completely regular. The following implication does hold, however 

5.5.37 Theorem: 

       A normal space is completely regular iff it is regular. 

Proof:   

       ⟹ 

       By theorem 5.5.18 a norm space is regular if it is completely regular. 

       ⟸ 

      We need to show that any normal, regular space (𝑋,𝜏) is completely regular. 

Suppose F is a closed subset of X not containing the point 𝑥, so that 𝑥 belongs to 

the open set 𝐹𝑐. By theorem 5.5.14, there exists an open set G such that 𝑥 ∈  𝐺 and 

�̅� ⊆ 𝐹𝑐.Since F and �̅� are disjoint closed sets in the normal space X, by Urysohn's 

Lemma there exists a continuous mapping  𝑓 ∶ 𝑋 → [0,1] such that 𝑓(𝐹) = {1} and 

𝑓(�̅�) = {0}.. Since 𝑥 ∈  𝐺, 𝑓(𝑥) = 0, and so (𝑋,𝜏)  is completely regular.□   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑇4 – Space             Tichonov space                   T31
3
-space 
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