Chapter Five

Separation Axioms
5.1 T, - Space

5.1.1 Definition:

A topological space (X,t) is called T, — Space iff it satisfies the following
axiom of Kolomogorov:
[To] If x and y are two distinct points of X, then there exists an open set which
contains one of them but not the other, Vx, y €X, x#y, 3GET,s. t.xEG,y € G.

5.1.2 Example:
Let X = {a,b}, T = {{X,0,{a}} then (X,T) is T, — Space ,sincea,beX,a#b,
I{a}e 1, s.t. xe{a}, y ¢ {a}.
5.1.3 Example:
Let X = {a,b,c}, 7 = {{X,0.{a,b}} then (X,T) is not T, — Space ,sincea,b € X,
a # b, every open set contain a contain b.
5.1.4 Theorem:
T, — Space is a hereditary property.
Proof:
Let (Y,7y) be a subspace of a T, — Space(X,7).
We want to prove that (Y,zy) is T, — Space.
Letx,y €Y, x # y.SinceY c Xthenx, y € X
but X is Ty — Space then 3G € 1, s.t. x €G, y € G.
LetG*=GnNnYthenxe G*(sincexeE G,x€EY)
But y € G*(since y € G, yeY),so(Y,ty) is
T, — Space. O
Exercise:
Prove that T, — Space is a topological property.
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5.1.5 Theorem:

A topological space (X,t) is called Ty — Space iff the closures of distinct
points are distinct.
Proof:

—"

Suppose that x # y implies that {x} # {y} and that x and y are distinct points }
of X. Since the sets {x} and { y} are not equal, there must exist some point z €X §
which is contained in one of them but not the other.

Suppose that z € {x} but z ¢ {y}. If we had x € {y}, then we would have
x} €{y}={y}andsoz e {xjc [}, which is a contradiction. Hence x & {y}and
SO @C IS an open set containing x but not y.

—

Let us suppose that X is a T, — Space, and that x and y are two distinct points
of X. By [T,], there exists an open set G containing one of them but not the other.

Suppose that x €G but y € G. Clearly, G€ is a closed set containing y but not x.
From the definition of { y} as the intersection of all closed sets containing {y} we
see that y € { v}, but x & { y} because of G¢. Hence, {x} #{y}. O




5.2 T4 - Space

5.2.1 Definition:
A topological space (X,t) is called T — Space iff it satisfies the following
axiom of Fréchet:
[T,] If x and y are two distinct points of X, then there exists two open sets one
containing x not y, and the other containing y but not x,i.e.Vx ,yEX x#y,
3Gy, GyET, 8. 1. XE Gy, y & Gy and yE G, , x € G,y,.

5.2.2 Example:

Let X = {a,b}, T = {{X, 0, {a}, {b}} then (X,T) is T; — Space ,sincea,b € X,
a#b,3{a}, {b}e1,s.t. a€{a},b & {a} and be {b},a & {b}.
5.2.3 Remark:

Every T; — Space is obviously a T, — Space, the converse is not true as the
following example:
5.2.4 Example:

Let X = {a,b}, T = {{X,0.,{a}} then (X,T) is T, — Space not T; — Space, since
X is the only open set contain a and b.
5.2.5 Theorem:

T, — Space is a topological property.
Proof:

Let f: (X,T) — (X*,t") be A homeo-

morphism from a T; — Space (X,T) to the @ @

topological space (X*,t*),we want to show
that (X*,t*) is T; — Space .

Let x*,y* € X*, x* #y*.Since f is onto
then IxyeX s.t. f(x) = x*f(y) =y*. Since f is 1-1 and x* # y*then x # y. Since
(X,1) is T; — Space then 3G, , G E1,s.t. XE G,y & G, and yE€ G, , x & G,
sox* € f(Gy)y & f(Gy)andy* € f(G,).x* & f(G,). Since f is open function
then £(G,).f(G,) € T, x* € f(G,),y" € f(G,). So (X*,t%) is Ty — Space. O
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Exercise:

Prove that T; — Space is a hereditary property.
5.2.6 Theorem:

A topological space (X,t) is called T; — Space iff every singleton is closed.
Proof:

——

If x and y are distinct points of a space X in which subsets consisting of exactly
one point are closed, then {x} is an open set containing y but not x, while {y}¢ is
an open set containing x but noty. Thus (X,t) is a T; — Space.

—

Suppose that (X,t) is a T; — Space, and that x is a point of X. By [T4] if y #x,
there exists an open set G,, containing y but not x, that is, y€ G,, € {x}° . But then
{x}¢ = U{G,:y #x} and so {x}is the union of open sets, and hence is itself open.
Thus{x}is a closed set for every x € X.o
5.2.7 Example:

Let X = N the set of positive integers, and let T be the family consisting of
@, X and all subsets of the form {1, 2, ..., n} then (N,t) isnota T; — Space, since
vn € N,{n} is not a closed set (Note that (N,t) is a T, — Space).

5.2.8 Example:

Let X = R the set of real numbers, and let 7 be the family consisting of @ and
all subsets of R whose complement is finite then (R,t) is a T; — Space, since
Vp € R{p} is a closed set.

5.2.9 Theorem:

Ina T, — Space (X,t), a point x is a limit point of a set E iff every open set
containing x contains an infinite number of distinct points of E.
Proof:

—)

The sufficiency of the condition is obvious, since if G is an open set containing
x and G N E contains an infinite number of distinct points of E, i.e. ¢ n E/{x} # @.
So that x € d(F).

—

To prove the necessity, suppose there were an open set G containing x for which
G N E was finite. If we let G N E/{x} = U}L,{x;}, then each set {x;} would be
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closed by the above theorem, and the finite union Ui~ ,{x;} would also be a closed
set. But then (UiZ,{x;})D°N G would be an open set containing x with
(Ui D n6) nE/{x} = ((U1{x; )¢ n UL {x;}) = ©.Thus x would not
be a limit point of E.o
5.2.10 Corollary:

The finite subset of T, — Space (X,t) has no limit point.
Proof:

Suppose A be a finite subset of X. If A has a limit point x € X (i.e. x € d(F))
then by theorem 5.2.9 every open set G containing x contains infinite number of A
but A is finite set and this contradiction, so A has no limit points. o
5.2.11 Remark:

Countably compact spaces are more useful in T; — Spaces, since we may then
characterize them in a way that is exactly analogous to that for compact spaces.
The following theorem, in fact, explains why we chose the name "countably
compact.”

5.2.12 Theorem:

A T, - Space (X,t) is countably compact iff every countable open covering
of X is reducible to a finite subcover.
Proof:

="

Suppose {G,, }.,en IS a countable open covering of the countably compact space
X which has no finite subcover. This means that Ui~ G; does not contain X for any
n € N. If we let F,, = (UL, G;)¢, then each E, is a nonempty closed set contained
in the preceding one. From each E, let us choose a point x,, , and let E=U,,en{xn}.
The set E cannot be finite because there would then be some point in an infinite
number, and hence all of the sets F, , and this would contradict the fact that the
family {G, },,enis @ covering of X. Since E must be infinite, we may use the
countable compactness of X to obtain a limit point x of E.

By theorem 5.2.9, every open set containing x contains an infinite number of
points of E. and so x must be a limit point of each of the sets E,, = U;>,{x;}. For
each n, however, E,, is contained in the closed set F, , and so x must belong to
E, for every n € N . This again contradicts the fact that the family {G,,},ey 1S @
covering of X. Hence the condition is necessary.

—
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Now let us suppose that E is an infinite subset of X and that E has no limit
points. Since E is infinite, we may choose an infinite sequence of distinct points x,,
from E. The set A=U,,en{x,} has no limit points since it is a subset of E, and so, in
particular, each point x,, is not a limit point of A. This means that for every n € N
there exists an open set G,, containing x,, such that A n G,,/{x,} = @ . From the
definition of A we see that A N G,, = {x,,} for every n € N. Since A has no limit
points, it is a closed set, and hence A€ is open. The collection A¢ U {G,, },,cy IS then
a countable open covering of X which has no finite subcover, since the set G,, is
needed to cover the point x,, for every n € N . Thus, the condition is sufficient. o
5.2.13 Corollary:

A T, -Space (X,t) iscountably compact iff every countable family of closed
sets having the finite intersection property has a nonempty intersection.

5.2.14 Example:

Every finite T; — Space has the discrete topology.
Solution:

Let (X,T) be afinite T; — Space, so every subset of X is finite, i.e. equal a union
of finite numbers of singleton and therefore closed. Hence every subset of X is also
open, i.e. X is a discrete topology.

5.2.15 Remark:

Although countable compactness is a topological property, we noted from
remark 4.1.32 that it may not be preserved by continuous mappings. With the aid
of one-to-oneness, we may show that it is preserved by continuous mappings of T,
— Spaces .

5.2.16 Theorem:

If f is a continuous mapping of the T; — Space (X,t) into the topological
space (X*,t"), then f maps every countably compact subset of X onto a countably
compact subset of X*.

Proof:

Suppose E is a countably compact subset of X and {G;; },,ex IS a countable open
covering of f(E). We need only show that there is a finite subcovering of f(E),
since we noted above that the condition of theorem 5.2.12 is always sufficient.
Since f is continuous, {f~1(G;)}.en is a countable open covering of E. In the
induced topology, {E N f~1(G;)},.en is a countable open covering of the countably
compact T; — Space E. By theorem 5.2.12, there exists some finite subcovering




{En f‘l(G;‘;i)}f_l, and clearly the family {G;‘;l.}f_lis the desired finite subcovering
of f(E). O
5.2.17 Example:

Let (X,t) be aT; —Space and let B, be a local base at p € X. Show that if g € X
distinct from p then some member of B does not contain gq.
Solution:

Since p # q and X satisfies [T;],3 an open set G < X consisting p but not q.
Now B, is a local base at p, so G is contain of some B € B,, and Balso does not
contain q.
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5.3 T, - Space

5.3.1 Definition:

A topological space (X,t) is called T, — Space or Hausdorff space iff it
satisfies the following axiom of Hausdorff:
[T,] If x and y are two distinct points of X, then there exists two disjoint open sets
one containing x and the other containing y .Vx ,y €X x#y, 3G, , GyE T,

s. t. X€ Gy and y€ G,, ,G,NG, = .

5.3.2 Example:

Let X = {a,b}, T = {{X.0.{a},{b}} then (X,T) is T, — Space, a,beX,a # b,3{a},{b}eT
and {a}n{b}=0, s. t. a€{a}, be{b}.
5.3.3 Remark:

From definition of T, — Space we get

= =
T, —Space T, —Space T, —Space
& &

5.3.4 Example:

Let (X,t) be the co-finite topology then (X,t) is T; — Space not T, — Space.
Solution:

If G,H € T then G¢,HCare finite sets. If HNG = @ then G € H¢nd this is
contradiction ,since H¢is finite set and G is infinite set. Then HNG # @.So (X,7) is
not T, — Space.

5.3.5 Theorem:

T, — Space is a topological property.
Proof:

Let f: (X,T) — (X*,t") be A homeo-
morphism from a T, — Space (X,t) to the
topological space (X*,t*),we want to show
that (X*,t*) is T, — Space .
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Letx*,y* € X*, x* #y™*.Since f isonto then 3x,yeX, s.t. f(x) = x*,f(y) = y*.
Since f is 1-1 and x* #y*then x#y. Since (X,t) is T, — Space then 3G, ,
GyE 1,G,NG, = D ,s.t. xE G, yE Gy, . Since f is open function then
f(Gy).f(Gy) € T*. Since f is 1-1 and G,NG, = @ then f(G,)Nf(G,) = @.Since
X€ G, , yE Gy then x* € f(G,),y* € f(G,). So (X*,t*) is T, — Space.o
5.3.6 Theorem:

T, — Space is a hereditary property.

Proof:
Let (Y,ty) be a subspace of a T, — Space(X,7).
We want to prove that (Y,ty) is T, — Space.
Letx,y €Y, x # p.Sincey c X thenx, y € X but
Xis T, — Space then 3 G, , G,E 1, G,NG), = D, s. t.
X€ G, , YE G,.By definition of subspace let G; = G, nY, G; = G, nY are 7, — open
sets. Furthermore x € Gy(since x€G,, x€Y), y & Gy(since y ¢G,, yeY) and
and G, NG, = @then(G, NY)N (G, NY ) = (GNG)NY =0nY =050 (Y,Ty) is
T, — Space. o
5.3.7 Remark:

Compact sets are more useful in T, — Spaces since we may prove a part of the
Heine-Borel Theorem which does not hold in general topological spaces.

5.3.8 Theorem:

Every compact subset E of a Hausdorff space X is closed.

Proof:

Let x be a fixed point in E€. By [T,], for each point y € E there exist two
disjoint open sets G, and G,, such that xe G, and ye G,. The family of sets {G,:y € E}
Is an open covering of E. Since E is compact, there must be some finite subcovering

{Gyi}?zl. Let {Gyi}?zlbe the corresponding open sets containing x, and let G =
i=1 Gx,.Then G is an open set containing x since it is the intersection of a finite

number of open sets containing x. Furthermore, we see that G = N, Gy, S
n

PGy = (UL, Gyi)c € E° . Thus each point in E€ is contained in an open set
which is itself contained in E€.Hence E° is an open set, and so E must be closed.o
5.3.9 Corollary:

If f is a one-to-one continuous mapping of the compact topological space
(X,T) onto the T, — Space (X*, ), then f is also open, and so f is a
homeomorphism.
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Proof:

Let G be open in X, so that G¢ is closed. By theorem 3.5.6, G¢is compact. By
theorem 4.1.23 f(G¢)is compact. By theorem 5.3.8, f(G¢) is closed. Thus
(f(GC))Cis open. Since f is one-to-one and onto, (f(GC))C = f(G) which is open.o
5.3.10 Theorem:

Every metric space is T, — Space ( Hausdorff space).

Proof:

Let a,b € X be distinct points d(a,b) = € > 0. Consider the open spheres

G = B%E(a) and H = Bég(b) centered at a and b respectively.

We claim that G n H = ¢ if not then 3x € G N H s.t. d(a.x) = ie and d(x,b) = ¢
hence by Triangle Inequality, d(a,b) < d(ax) + d(x,b) < 3& +:& = Z¢ but this
is contradicts the fact that d(a,b) = €. Hence G and H are disjoint, i.e. a and b
belong respectively to the disjoint open spheres ¢ and H. So X is Hausdorff
space. O
5.3.11 Remark:

The following theorem shows in T, — Space we can separate a point from
compact set by using open sets.

5.3.12 Theorem:

In T, — Space we can separate any point and compact subset not contain the
point by disjoint open sets.
Proof:

Let (X,1) beaT, — Space ,F compact subset of X ,x € Xand x ¢ F.Lety € F then
y # x. Since (X,t) is T, — Space then 3G, , H,€ 1, s. t. x€ G, and ye H,, ,G,NH, = @.

The family {H,:y € F} is an open cover for F. Since F is compact then there

exist {Hyi}?zlfinite subcover for F corresponding {G;}=,family of finite open sets
contain x.LetH = UiL1 H,,,G = Nj=, G;,i.e.x € GF S Hand GNH = @.0
5.3.13 Remark:

Since the notion of a convergent sequence of real numbers plays such a basic
role in the study of the real number system, we might expect that the equivalent

notion for topological spaces would be as primitive a concept as the closure.
Although convergence has been used as the primitive notion for abstract spaces,
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we will see below that some of the natural properties fail to hold in more general
spaces than Hausdorff spaces.
5.3.14 Definition:

Let (X,t) be a topological space and let (x,,) be a sequence in X. We say that
(x,,) converge in X if 3x € X (denote by x,, = x ) such that

for every open set G contain x , 3k € N, s.t. x,, € G, Vn > k.

5.3.15 Example:

Let (a,,a,, ... ) be a sequence of points in an indiscrete topological space (X,t).
Since X is only open set containing any point b € X and X contains every term of
the sequence (a,,), so the sequence (a,,a,, ... ) converge to every point of b € X.

5.3.16 Example:

Let (a,,a,,..) be a sequence of points in a discrete topological space
(X,1).Since Vb € X the singleton set {b} is an open set contain b , so if a, = b
then the set {b} must contain almost all of the terms of the sequence. In other words
the sequence (a,,) converges to a point b € X iff the sequence is of the form
(al,az,...,ano,b,b,b,...).

5.3.17 Example:

Let T be the topology on an infinite set X which consists of @ and the
complements of countable sets . A sequence {(a,,a,, ... ) iIn X convergesto b € X iff
the sequence is also of the form (a; ,a,,...,a,,,b,b,b,...), i.e. the set A consisting of
the terms of (a,,) different from b is finite .Now A is countable and so A€ is an open
set containing b. Hence if a,, — b then A€ contains all except a finite number of
the terms of the sequence ,so A is finite
5.3.18 Remark:

It is the failure of limits of sequences to be unique that makes this concept
unsatisfactory in general topological spaces. The following example shows that a
T, — Space in which limits of sequences need not be unique.

5.3.19 Example:

Let X = N, and let t be the family consisting of @, X, and all subsets of the
form {n,n+1,n+42,...} then (N,7) is T, - Space not T, - Space ,(since if n;,n, € N.
n, # n, With n, < n;then there exists {n,,n,+1, ...} contain n,not n, if n; < n,
then there exists {n,,n,+1, ... } contain n,not n,) but the sequence < a,, = n > for

which converges to every point of that space, i.e. < n > converge to ,2,3,... .
34
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5.3.20 Remark:

The following theorem shows that this anomalous behavior cannot occur in a

Hausdorff space.

5.3.21 Theorem:

In a Hausdorff space, a convergent sequence has a unique limit.

Proof:

Suppose a sequence (x,,) converged to two distinct

points x and x™* in a Hausdorff space X. By [T,], there

exist two disjoint open sets G and G* such that x € G e

and x* € G*. Since x,, — x, there exists an integer k such

that x,, € G whenever n > k. Since x,, = x™ there exists

X, € G*whenevern > k*. If mis any integer greater than both k and k™ , then x,,,

must be in both G and G*,which contradicts the fact that G and G *are disjoint.c

5.3.22 Remark:

1. The converse of theorem 5.3.21 is not true. An example of a non-Hausdorff space
in which every convergent sequence has not unique limit was given in example
5.3.19.

2. A relationship between the limit points of sets and the limit points of sequences
of points is given in the following theorem.

5.3.23 Theorem:

If (x,,) is a sequence of distinct points of a subset E of a topological space

(X,7) which converges to a point x € X then x is a limit point of the set E.

Proof:

If x belongs to an open set G,then there exists an integer k
such that x,, € G for all n > k. Since the points x,, are distinct,
at most one of them equals x and so E N G /{x} # @.O
5.3.24 Remark:

The converse of theorem 5.3.23 is not true, even in a Hausdorff space .as the
following example
5.3.25 Example:

Let X = {a,b,c} ,7={@,{a,b},{c},X}. Let x,=ax,=b,x,=c, Vn=3, i.e. (x,) = (a,b,c,c,...).
It’s clear x,, = ¢ but ¢ € d({a,b,c}) since c € {c} € 1, {a,b,c} N {c}/{c} = @. Also
a,b € d({a,b,c}) but x,, » a and x,, » b, since a,b € {a,b,c} and x,, & {a,b},vn > 3.
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5.3.26 Remark:

A relationship between continuity of functions and convergent sequences of
points is given in the following theorem.
5.3.27 Theorem:

If £ is a continuous mapping of the topological space (X,r) into the
topological space (X*,7*) and (x,) is a sequence of points of X which converges
to the point x € X then the sequence (f(x_))converges to the point f( x) € X".

Proof:

If f( x) belongs to the open set G* in X* then f~1(G*) is an open set in X
containing x since f is continuous. There must then exist an integer k such that x,, €
f~1(G*) whenever n > k. Thus we have f(x,) € G*whenever n > k, and so
f(xn) = f(x).0
5.3.28 Remark:

The converse of theorem is also not true, even in a Hausdorff space. That is, a
mapping f for which x,, = x implies f(x,) — f(x) may not be continuous as the
following example:

5.3.29 Example:

Let R be the set of real numbers and T = {@} U {G < X: G€ is countable}.Let
X*=1[0,1],=* = {G n[0,1]: G € t} be the relative topology and let f: (R,1) — (X*,T)
be a function defined by

x x€[0,1]
flx) = {o x€[0,1]°

Then f is not continuous since (0,1) € t*but f~1((0,1))=(0,1) ¢ 7,where
R/(0,1) is not countable. If x,, - x in X and iff x,, = x,Vn € k , k is positive
integers iff f(x,) = f(x),Vn e kiff f(x,) - f(x).

5.3.30 Remark:

The failure of the converses of the preceding three theorems 5.3.21,5.3.23 and
5.3.27 to hold shows that the notion of limit for sequences of points is not
completely satisfactory, even if the space satisfies the axiom [T,].The Axioms of
Countability we will introduce another axiom for the open sets of a topological
space with which we may prove these converses.
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5.4 Axioms of Countability

5.4.1 Definition:

A topological space (X,7) is a first axiom space iff it satisfies the following
first axiom of countability:

[C;] For every point x € X, there exists a countable family {B,,(x)} of open sets
containing x such that whenever x belongs to an open set G, B,,(x) < Gfor
some n.

5.4.2 Example:

Let (X,d) be a metric space and p € Xthen the countable class of open balls

{Bl(p),B%(p), ...} with center p is a local base at p.Hence every metric space

satisfies the first axiom of countability.
5.4.3 Example:

Let (R,7) be the usual topology and p € R then the countable class of open sets
{B.(p) =(p—Lp+23):neN} is a local base at p.Hence the usual topology
satisfies the first axiom of countability.

5.4.4 Example:

Let (X,7) be any discrete topology. The singleton set {p} is open and is
contained in every open set G containing p € X.Hence every discrete space
satisfies [Cy] .

5.4.5 Example:

Let (R,z) be the co-finite topology dose not satisfy the first axiom of
countability.
Solution:

Suppose that (R,7) satisfy [C;] then 1 € R possesses a countable open local
base B; = {B,,:n € N}.Since each B,, is open then BY is closed and hence is finite
, the set A =U {BS:n € N} is the countable union of finite sets and is therefore
countable. But R is not countable then there exists a point p € R different from 1
which does not belong toA ,i.e. pe A°= (U{B5:n € N} =n{B5*:n € N} =n
{B,:n € N}, hence p € B,,,vn € N.On the other hand {p}€ is open set since it is the
complement of a finite set, and {p}°contains 1 since p is different from 1. Since
B, is a local base there exists a member B, € B, such that B, c {p}c.Hence p &
By, .But this is contradicts the statement that p € B,,¥n € N. So

37




D S S g S S S S S S S T S S S N S T N S S S N S T NS S S S T N S S N S TN S S S NS S S N S S S S S NSNS S G R S

tl')
tl')
tl')
tl')
:
i
i
i
i
i
i
i
i
i
i
i
i
i
¥
i
i
¥
i
i
i
i
i
¥
i
¥
i
i
i
i
i
¥
i
i
i
i
¥
}j
}y
¥
¥
}y
i
i
}j
¥
¥
¥
¥
}y
éj
:5:
:5;)
:5;)
5
!

(R,7) does not satisfy the first axiom of countability.
5.4.6 Remark:
If (X,7) is a topological space satisfy [C;],i.e. for every x € X 3{B, (x)}
countable base at x then we arranged the base in decreasing order as following
B;(x) = By (%)
B3 (x) = B1(x) N By(x)
B3(x) = B3(x) N B3(x)

Bn(x) = Bp_1(x) N By (x).

We get {B;(x)} a countable base s.t. B;(x) =n{ B,(x):k < n}.Also we can
arrange the base as increasing order by replace the intersection with union.
Exercise:

Prove that [C;] is a hereditary property.

5.4.7 Theorem:

[C/] is a topological property.
Proof:

Let f: (X,T) — (X*,T") be A homeomorphism from a topological space (X,1)
which satisfy [C;] to the topological space (X*,t*),we want to show that (X*,t*)
satisfy [C;].

Let x* € X*.Since fisonto 3x € X, s.t. f(x) = x*.Since X satisfy [C;] then
3{B,,(x)} countable base at x ,so the family {f (B, (x))} is a base since fis open
function and countable since f is one to one ,s0 (X*,t*) satisfy [C;].O
5.4.8 Remark:

In the next three important theorems, we will show the converse of theorems
5.3.21,5.3.23 and 5.3.27 is true in spaces which satisfy the first axiom of
countability.

5.4.9 Theorem:

A topological space (X,t) satisfying the first axiom of countability is a
Hausdorff space iff every convergent sequence has a unique limit.
Proof:

—)

In theorem 5.3.21 in T, -Space every convergent sequence has a unique limit.

—

Assume that every convergent sequence has a unique limit, we want to prove
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that (X,7) is T, —Space.

If not 3x,y € X.x # y such that every open set containing x has a nonempty
intersection with every open set containing y. Since X satisfy [¢,] then 3{B,,(x)}
and {B, (y)} are monotone decreasing countable open bases at x and y respectively
with , B,(x) N B,(y) # @ ,vn, so we choose a point x,, € B,(x) N B,(y) ,Vn.
If G, and G,, are arbitrary open sets containing x and y respectively, there must
exist some integer k such that B, (x) € G, and B, (y) € G, for all n > k by the
definition of a monotone decreasing base. Hence x,, = x and x,, = y , so that we
have a convergent sequence without a unique limit and this is contradiction .so
(X,t) is T, —Space.x
5.4.10 Theorem:

If x is a point and E a subset of a T; —Space (X,t)satisfying the first axiom
of countability , then x is a limit point of E iff there exists a sequence of distinct
points in E converging to Xx.

Proof:

—

In theorem 5.3.23 we proved the limit point of convergent sequence in E is a
limit point of E.

—

Let (X,7) is T; —Space and satisfy [C;] .Let E be a subset of X and x € X s.t.
x € d(E).Since X satisfy [C,] then 3{B,,(x)} a monotone decreasing countable
open base at x. Since x belongs to the open set B, (x) , the set B,,(x) N E /{x} must
be infinite by theorem 5.2.9. By induction we may choose a point x,, in this set
different from each previously chosen x,, with k < n. Clearly, x,, = x since the sets
{B,,(x)} form a monotone decreasing base at x.o
5.4.11 Theorem:

If f is a mapping of the first axiom space (X,t) into the topological space
(X*,t%) , then f is continuous at x € X iff for every sequence (x,) of points in X
converging to x we have the sequence (f{x,)) converges to the point f( x) € X".
Proof:

—)
In theorem 5.3.27 we proved if f is continuous and x,, = x then f(x,,) = f(x).
—




We want to prove that f is continuousat x € X, if notthen3c* € t*,f(x) € G*s.t.
f(G) ¢ G*ie. f(G)nG* + ¢ for any open set G containing x. Let {B,(x)} be a
monotone decreasing countable open base at x (since (X,t) satisfy [C;]).Then
F(B.(x)) N G*°) # @,vn and we may pick x;; € f(B,(x)) n 6*°. Since x;, € f(B,(x))
we may choose a point x,, € B,,(x) such that f(x,,) = x;,. We now have x,, = x
since the sets {B,(x)} form a monotone decreasing base at x. The sequence
(f (x,)) = (x;;) cannot converge to f(x), however, since x; € G*°,vn. o

5.4.12 Definition:

A topological space(X,7) is a second axiom space iff it satisfies the following

second axiom of countability:

[Cy;] There exists a countable base for the topology .

5.4.13 Remark:

1. The property [C,] is local (i.e. there exist a base at each point) but [C;,] is global

(i.e. there exist a base for every points in a space X).

2. Every topological space satisfy [C;;] satisfy [C;] but the converse is not true as
the following examples:
5.4.14 Example:

The discrete topology on any uncountable set, has no countable base (i.e. not
satisfy [C};] ) .Since each set consisting of exactly one point must belong to any
base, even though there is a countable open base at each point x obtained by letting
{B,(x)} = {x}, i.e. satisfy [C].

5.4.15 Example:

Let (R,t) be the discrete topology on R .A class B is a base for a discrete
topology iff it contains all singleton {p} subset of R, but R is non- countable ,so
the discrete topology does not satisfy [C;;] but satisfy [C;].

5.4.15 Example:

The class B of open intervals (a,b) with rational endpoints ,i.e. a,b € Q is

countable and is a base for the usual topology on the real line R.Thus (RR,t) satisfies

[Cu]-

Exercise:

Prove that [C};] is a topological property.
5.4.17 Theorem:
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Proof:

Let (Y,ty) be a subspace of a topological space (X,7) which satisfy [C;;]. W
want to prove that (Y,zy) satisfy[Cj,].

Since (X,7) satisfy[C};] then 3{B,} countable base for X then family {B,, =
B, N Y} is acountable base for Y,so (Y,zy) satisfy[C};].0
5.4.18 Remark:

The relationship between compact and countably compact sets is made clearer
by application of the following theorem due to Lindel6f. Indeed, it shows that the
two notions are equivalent in second axiom
T, — Spaces.

5.4.19 Theorem:

In a second axiom space, every open covering of a subset is reducible to a
countable subcovering.
Proof:

Suppose A is an open covering of the subset E of the second axiom space
X which has B as a countable base.

Since A is an open covering of E then E =U {G: G € A}, i.e. Vp € E, 3G, €
A such thatp € G,.

Since B is an open a countable base for X then Vp € E,3B,, € B such thatp €
B, C Gp.

Hence E =U{B,:p € E}. But {B,:p € E} c B,so it is countable ,hence
{B,:p € E} = {B,;:n € N},where N is a countable index set. For each n € N
choose one set G,, € A such that B, c G,,.Then E c {B,:n € N} € {G,:n € N}
and so {G,:n € N} is a countable subcover of A.o
5.4.20 Theorem:

In a second axiom space, we can find a countable subbase foe every base.
Proof:

Let A be a base for X. Since (X,7) satisfy[C,;;] then X has a countable base
B = {B,:n € N}.Since A is also a base for X then for eachn € N, B, =U {G,G € A,,}
with A,, © A.So A, isanopen cover of B,, and by theorem5.4.19, A,, reducible
to a countable over A, i.e. foreachn e N, B, =U {G,G € Ay} with A;, € A
and A; countable. But A" = {G,G € A,n € N} is a base for X since B is.
Furthermore A* © A, A" is countable.O
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5.4.21 Definition:

A topological space (X,1) is called a Lindelof space iff every open cover of X
is reducible to a countable subcover.
5.4.22 Remark:
1. From definition of Lindel6f we get every compact space is a Lindel6f space
(since every finite subcover is countable).

2. Every second countable space is a Lindel6f space.
5.4.23 Theorem:

The Lindel6f space is a topological property.
Proof:

Let f: (X,T) — (X*,T") be ahomeomorphism from a Lindelof space (X,T) to
the topological space (X*,t*),we want to prove that (X*,t*) is a Lindelof space.

Let {G;} be an open cover for X*. Since f is continuous then {f ~1(G;)} is an
open cover for X. Since (X,t) is a Lindelof space then there exists a countable
subcover {f1(G:)}lneny foe X, ie. X = Upenf1(G), so X* = f(X) =
fWUnen F7YHGED) = Upen ffHGE) = Upen Giy(since f is 1-1 and onto).Then
(X*,t*) is a Lindelof space.o
5.4.24 Remark:

The following example show that the Lindelof space is not a hereditary
property.
5.4.25 Example:

Let X = R the set of real number and let t = {G: G € R,0¢G or R/{1,2} € G} then
every open cover for X there exists a finite subcover for X, i.e. X is compact, so X
Is Lindelof space. Let X* = R/{0}, " the relative topology on X*. We have the
cover {{r}:r € R/{0}} is an open cover for X*but not have a countable subcover
for X*,i.e. X*is not a Lindelof space. So the Lindelof property is not a hereditary
property.

5.4.26 Theorem:
Every topological space satisfy [C,] is separable.
Proof:

Let (X,t) be a topological space satisfy [C;;] then there exists a countable base
B ={B,:n € N} for X. Let x,, € B,,Vyn € Nthentheset D = {x,;n € N} € X is
also countable. We shall prove that D is dense.
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[

Let x € D€ and let G be an open set contain x then3B,, € Bs.t.x € B,, € G.
Since DNB, #® then DNG/{x}# ®,so x €d(D),ie. D=Xso (X7t) is
separable.O
5.4.27 Remark:

1. The converse of theorem 5.4.26 is not true in general , since the lower limit
topology on R is separable topological space which does not satisfy the second
axiom of countability.

2. In metric space the converse of theorem 5.4.26 is true as the following theorem:

5.4.28 Theorem:

Every seperable metric space is second countable ([Cy;]).

Proof:

Since X is separable then X contain a countable dense subset A. Let B be

a class of all open balls with centers in A and rational radius, i.e. B =

{Bs(a):a € A,6 € Q }. Note that B is a countable family .

We claim that B is a base for the topology on X,

i.e. for every openset G € X and every p € G,

3Bs(a) € B s.t. p € Bs(a) c G. Since p €G there exists

an open ball B.(p) with center p such that

p € B.(p) c G.Since Ais dense in X, 3a, € A such

that d(p, ay) < %8. Let 6, be a rational number such

thatge < 8y < ze.Thenp € Bs,(ao) € B.(p) © G.But

Bs,(a,) € B,and so B is a countable base for the topology on X.0
5.4.29 Remark:

In the following diagram we denote by arrows the implications which hold in
any topological space, while no other implications hold, even in a Hausdorff space.

separable space «——[(C;;] — Lindel6f space «<—— Compact space

!
[C1]
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5.5 Reqular and Normal Spaces

5.5.1 Definition:
A topological space X is regular iff it satisfies the following axiom of Vietoris:
[R] If Fis a closed subset of X and x is a point of X not in F, then there exist two
disjoint open sets Gg,G, , one containing F and the other containing x.

5.5.2 Example: [R]

Let X = {a,b,c},t={0,{a,b},{c},X} then (X,T) is regular space.

Solution:

The closed sets X,{c},{a,b},@, so if we take {c} closed set and a & {c} then
3{c},{a, b} € 1,5.t. {c} c {c}, a € {a b}.
5.5.3 Remark:

1. The above example is not T, — Space .Since a,b € X.a # b but we can’t find
disjoint open sets contain a and b.

2. The above example is not T; — Space. Since {a},{b} is not closed sets.

3. So regular space not necessary T, — Space and not T; — Space. Also T, — Space
is not regular as the following example:

5.5.4 Example:
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Let X = R the set of real numbers and let U, = {(a,b):xe(a,b)} and let U, =
{(-p,p)/{;:nEN}:p>0} the family of all open sets form a base for a topology 7 on

R then (R,t) is T, — Space , since if a,b € R.a # b, a,b # 0 then there exists two
open intervals one of them contain a and the other contain b.Since every open
interval is an element in U,, and all elements in U,.is in T then it satisfy [T,].

If b # 0,a = 0, s0it’s clear if b > 0 the interval (;,b + 1) is a neighborhood
of b and (-2,2)/{1:neN} is a neighborhood of a = 0, then the first interval is an
element in U,and the second interval is an element in Uyand these intervals are

disjoint then it satisfy [T5].

Now if F={Z:€N}, x=0 then 0 ¢ F and any neighborhood of F intersect with

any neighborhood of x=0, so (R,t) is not regular.
44




5.5.5 Remark:
The following theorems shows that the regularity is a topological and hereditary

property:
5.5.6 Theorem:

The regularity is a topological property.
Proof:
Let f: (X,T) — (X*,t*) be a homeomorphism

from a regular space (X,t) to the topological
space (X*,t*), we want to show that (X*,t*) is
a regular space.

Let F* be a closed set in X*, x* € X*,x* € F*
Since f is onto then 3x € X s.t. f(x) = x*.Since f is continuous then f~1(F*) is
closed X .Since f isonto,1-1and x* & F*thenx & f~1(F*),but (X,7) is aregular
space then 3IGHET,GNH =@ with x € G, f~1(F*) € HSince f is open
function then f(x) € f(G), F* < f(H) with f(G) N f(H) =0, so (X*,t°) is a
regular space.O
5.5.7 Theorem:

The regularity is a hereditary property. v q
Proof: n U

Let (Y,ty) be a subspace of a regular space
(X,7) topological space, we want to prove that
(Y,ty) is a regular space.

Let F* beaclosedsetinY,x* € Y,x* ¢ F*then F* = F n Y ,were F is a closed
setin X.Sincex*eY c X ,x* & F*then x* ¢ F. Since (X,7) is a regular space
then 3G , Het,GNH =0 st. x*€GF S H. Now G" =G NY,x* € G*(since
x*€Gx*€Y) H =HNY,F CH'(since FSH) and G*nH*=(GNnY)N
(HNY)=(GNnH)NY=0nY =@.So (Y,7y) is aregular space.o

5.5.8 Theorem:

A topological space (X,t) is regular iff for every point x € X and open set
G containing x there exists an open set G* such that x* € G*and G* € G.

Proof:

=
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Suppose (X,7) isregular, and the point x belongs
to the open set G. Then F = X/G is a closed set which
does not contain x. By [R], there exist two open sets G,
and G, such that F € Gp, x € G, ,and G N G, = @.
Since G, € GE,G, S GE = G5 € F° = G. Thus, x € G,
and G, € G and G, is the desired set.

—

Now suppose the condition holds and x is a point not in the closed set F. Then
x belongs to the open set F¢, and by hypothesis there must exist an open set G *such
that x € G* and G* € F¢ . Clearly G* and G*are disjoint open sets containing x
and F , respectively.o
5.5.9 Definition:

A topological space (X,7) is T3 — Space if it regular and T; — Space, i.e.

T; = [R]&[T4].

5.5.10 Remark:
The following theorem shows that every T; — Space is T, — Space but the
converse is not true as example 5.5.4.
5.5.11 Theorem:
Every T3 — Space is Hausdorff space ( T, — Space).
Proof:

Let (X,7) beaT; — Space, we want to prove that (X,7) is Hausdorff space. Let
x,yEX, x #+ y,since X is T; — Space then {x} is closed set and since x = y , y & {x}
then by [R], 3GHet,GNH =0and {x} S G,y € H. Hence xandy belong
respectively to disjoint open sets ¢ and H.

5.5.12 Definition:

A topological space (X,7) is normal iff it satisfies the following axiom of
Urysohn:

[N] If F; and F, are two disjoint closed subsets of X, then there exist two disjoint

open sets, one containing F; and the other containing F, .
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5.5.13 Theorem:
The normality is a topological property.
Proof:
Let f: (X,T) — (X*,7*) be a homeomorphism
from a normal space (X,t) to the topological
space (X*,t*), we want to show that (X*,t*) is
a normal space.
Let Ff, F, be adisjoint closed sets in X*.
Since f is continuous then f=1(Fy) ,f~1( F;) are closed in X. Since f is onto,1-1
andF; n F; =@ then f~Y(F) nf~1( F;) =@, Since (X,t) is normal then
AGHEeTtst. fTY(FH SG f~Y( F;)<Hand G N H = @. Since f is an open function
then F € f(G), F, € f(H)and f(G) n f(H) = 0.So (X*,t*) is a normal space.
5.5.14 Theorem:
A topological space (X,t) is normal iff for any closed set F and open set G
containing F, there exists an open set G* such that F € G*and G* € G.
Proof:
=%
Suppose (X,7) is normal and the closed set F is
contained in the open set G. Then K = X/G is
a closed set which is disjoint from F. By [N], there
exist two disjoint open sets Gr and G such that
FSGrand K € Gg.Since Gy € G5 , we have G € GE = GS € K¢ = G.Thus Gp
is the desired set.
—
Now suppose the condition holds, and let F; and F, be disjoint closed subsets of
X. Then F; iscontained in the open set F, = X/F, , and, by hypothesis, there exists
anopenset G*suchthat F; € G*and G* € F,.Clearly, G* and X /G* are the desired
disjoint open sets containing F; and F,, respectively.O
5.5.15 Definition:
A topological space (X,7) is T, — Space if it normal and T; — Space, i.e.
T, = [N]&[T4].

5.5.16 Example:
Let X = {a,b.c},t = {{a},{b},{a,b},X,@} then (X,T) is normal space.
Solution:
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Since the closed sets are {b,c},{a,c},{{c},®,X are non-empty intersection ,i.e. if
F, , F, are closed disjoint then F; = @0,F, = X, so 30,X € 7,s.t. F; € @,F, C X,
then (X,7) is normal space. Also (X,7) is not regular, since if F={a,c} is closed set
and x = b & F then every open set contain F intersect with every open set contain
x. Also (X,7) is not T, — Space.

5.5.17 Remark:

Example 5.5.16 show that the normal space need not be regular space .The
following theorem 5.5.18 show that the T, — Space is T; — Space.
5.5.18 Theorem:

Every T, — Space is T3 — Space.

Proof:

Let (X,7) be a T, — Space, let F be closed set,x € X, x & F. Since (X,7) is
T, — Space then F; = {x} is closed set. Since (X,7) is T, — Space then 3G, H €1,
FCG,F;C€H,GNH=0,i.e.x €H,F € G, so (X,7) is T; — Space.o
5.5.19 Remark:

The following theorem 5.5.20 gives a relation between normal and T, — Space.
Also theorems 5.5.20, 5.5.21 give two sufficient conditions for a topological space
to be normal.

5.5.20 Theorem:

Every compact Hausdorff space is normal.
Proof:

Let (X,7) be a compact Hausdorff space and let F, F* be two disjoint, closed
subsets of the compact Hausdorff space X. F and F* are compact since they are
closed subsets of a compact space X.

By [T2] Vx € F Vy € F*,3G,,G, €1,G,NGy, =0,st.x EG, &Yy E Gy.
For each fixed point x € F the collection {G,:y € F*} forms an open covering of
the compact set F*. There must be a finite subcovering, which we denote by
{Gy:i=1.2,.,n} Ifwelet Gy = Ui, Gy, and the finite intersection G, = N;_ GL
then G, and G are disjoint open sets containing x and F*, respectively. Now the
collection {G,:x € F} forms an open covering of the compact set F. There must
be a finite subcovering, which we denote by {G,:i =1,2,.,m}. If we let ¢ =

UiZ; Gy, and the finite intersection ¢* = N;Z; Gy, then G and G™ are two disjoint
open sets containing F and F* respectively.o
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5.5.21 Theorem:

Every regular Lindel6f space is normal.
Proof:

Let Fand F* be two disjoint closed subsets of the regular Lindelof space
(X,7). Then F and F* are Lindelof since every closed subset of a Lindel6f space is
Lindelof space. By[R],Vx € F,3G, € T,s.t.x € G, € G, S F* ©. The collection
{G,:x € F}formsan open covering of the Lindelof set F. There must be a countable
subcovering, which we denote by {G;}-,. Similarly, for each point x € F* there
must exist an open set 3G € 7, s.t. x € G; S G € F ©.The collection {G}: x € F*}
forms an open covering of the Lindelof set F*. There must be a countable
subcovering, which we denote by {G;}}L; . The reader may show that the sets G =
UnenlGn/ Uicn Gil and G* = U,en[Gii/ U;<p, G,] are disjoint open sets containing
F and F*, respectively.o
5.5.22 Remark:

Another characterization of normality relates that concept to the number of real-
valued continuous functions defined on the space.
5.5.23 Lemma (Urysohn's L emma):

A topological space (X,t) is normal iff for every two disjoint closed subsets
F, and F, of X and closed interval [a, b] of reals, there exists a continuous
mapping f: X — [a,b] such that f(F,) = {a} and f(F;) = {b}.

\

:

X0

5.5.24 Definition:
A topological space (X,7) is completely normal iff it satisfies the following
axiom of Tietze:
[CN] If A and B are two separated subsets of X, then there exist two disjoint open
sets, one containing A and the other containing B.
5.5.25 Definition:
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A topological space (X,t) is Ts — Space if it completely normal space and
also T; — Space, i.e.

T = [cg]&[Tl].
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5.5.26 Example:

Let X = {a,b,c},1={0,{a,b},{c},X} then (X,T) is completely normal.
Solution:

Since every set in t is open and closed set, so if ABertthenAnB=ANB =
AnB =¢gthen A and B are separable and A € A,BEB so (X,t) is completely
normal .Also in example 5.5.2 we show that (X,t) is regular space not T; — Space
and not T, — Space.

5.5.27 Remark:

Since disjoint closed sets are separated, then every completely normal space is
normal, and hence every Ts — Space is a T, — Space but the converse is not true.
Also the following example show that T — Space does not transfer by continuity.
5.5.28 Example:

Let X = X* = {a,b,c} and let T be the discrete topology and t*={®,{a},{b,c}, X}
and let f: (X,T) — (X*,T) be the identity function, i.e. f(x) = x, Vx € X.

Since (X,1) is the discrete topology then f is continuous function and since the
discrete topology is T; — Space and normal then (X,t) is Ts — Space. Since (X*,t*)
is not T; — Space then it’s not Ty — Space.

5.5.29 Theorem:

The completely normal space ([CN]) is topological property.
Proof:

Let f: (X,T) — (X*,t*) be a homeomorphism from a topological space (X,1)
satisfy [CN] to the topological space (X*,t*),we want to show that (X*,t*) satisfy
[CN].

Let A*,B*be a separable sets in X*. Since f is continuous and 1-1 then |
f~1(A"),f~1(B*) are separated subset of X. Since (X,t) satisfy [CN] then 3G,H € T §
,GNH =0, s.t. f~1(4%) € G,f~1(B*) < H.Since f is open ,1-1 and G,H € 7 then |
A*C f(G),B*< f(H),f(G)Nnf(H) = 3,f(G),f(H)ET",s0 (X*,T%) satisfy [CN].O
5.5.30 Theorem:

A topological space(X,t) is completely normal iff every subspace of X is
normal.

Proof:

—)

Suppose (X,t) is completely normal and let (X*,t*) be a subspace of (X,t),
we want to prove that (X*,t*) is normal space.
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Let F; and F; be disjoint (relatively) closed subsets of X*, so F; = F;,F; = F, .
Since F; and F, are closed subsets of X* then 3F;,F, closed subset of X such
that F;=F, n X*,F; =F, N X" .Now

F;nF, =FnFE, =FnX'nEF,=FnX'nX"nF,=F nF; =F nF;=0.
And similarly, F; n F5 = @. Hence F; and F, are separated subsets of X. By[CN],
there exist disjoint open sets G, and G, containing F;" and F, respectively. Then
the sets X* N G, and X* N G, are disjoint (relatively) open subsets of X* which
contain F;" and F,, respectively, so X* is normal.

—

Now let us suppose that every subspace of X is normal, and let A and B be
separated subsets of X. Consider the open set [A N B]¢ = X* as a subspace of X.
By hypothesis, X* is normal. The sets x* n Aand Xx* n B will be disjoint, relatively
closed subsets of X* and so there must exist two disjoint relatively open sets
G, and Gy containing X*n A and X* n B respectively. Since X™ is an open subset
of X, G4 and Gg are actually open subsets of X .Thus we have A € X*nA
Gsand B € X* N B C Gg, so that X is completely normal.o
5.5.31 Definition:

A topological space (X,t) is completely regular iff it satisfies the following
axiom:

[CR] If F is a closed subset of X, and x is a point of X not in F, then there exists a
continuous mapping f: X — [0,1] such that f(x) = 0 and f(F) = {1}.

5.5.32 Definition:

A topological space (X,7) is A Tichonov Space if it completely regular space and
also T; —Space, i.e.

T

1
33
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5.5.33 Theorem:

The completely regular space is a topological property.
Proof:

Let f: (X,T) — (X*,t") be ahomeomorphism from a completely regular space
(X,1) to the topological space (X*,t*), we wantto show that (X*,t*) is compeletly
regular space.

Let F* be a closed subset of Xand x € X, x € F*.Since f is continuous then
F = f~Y(F*). Since f is onto then 3x € X, s.t. f{(x)=x*.Since f is 1-1 and x* ¢
F* then x &F. Since (X,1) is completely regular then I g:X -
[0,1] ,s.t. g(x) = 0 and g(F) = {1} then the composition g o f~1 is continuous
(since g and f~! are continuous functions).So go f~1:X* - [0,1] and
(e fTHF)=g(fTFN=9F)={1}and (go ) =g(f1(x")) =
g(x) = 0. So (X*,t*) is compeletly regular space.o
5.5.34 Theorem:
The completely regular space is a hereditary property.

Proof:

Let (Y,zy) be a subspace of a regular space (X,7) topological space, we want
to prove that (Y,zy) is a regular space.

Let F* beaclosedsetinY,x* € Y.x* ¢ F*then F* = F n Y,were F is a closed
setinX.Sincex* €Y c X,x" & F*thenx™ & F. Since (X,7) iscompletely regular
space then 3 f: X - [0,1],s.t f(x) =0and f(F) ={1}. Let 3 f*Y — [0,1]
defined as f*(x) = f(x),Vx€Y,i.e. f*=f|y is continuous and satisfy f*(x) = o,
since x€Y and f*(F*) = {1}, since F* = F nY,so (Y,ty) is a regular space.O
5.5.35 Theorem:

Every completely regular space is regular.

Proof:

Let (X,7) be a completely regular space. Let F be a closed subset of Xand
x€X,x¢Fthen3 f: X — [0,1], continuous function such that f(x) = 0 and
f(F)=1{1}. Since Ris a T, — Space and [0,1] € R is also a T, — Space then
3G,Het,GNH=0and 0 € G,1€H. Since f is continuous function then
f~1(&),g71(H) are disjoint open subset of X and x € f~1(0) € f~1(G) ,F <
f71(1) € f71(6).So (X,7) is regular space.o
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5.5.36 Remark:

Theorem 5.5.35 every [CR] is [R] ,every Tichonov space is a Ts — Space, and
every T, — Space is a Tichonov space by Urysohn's Lemma. Because of these facts,
we might be inclined to call a Tichonov space a T3%-space.

Ty —Space — Tichonov space —— T;1-space
3

On the other hand, since a normal space need not be regular, it also need not be
completely regular. The following implication does hold, however
5.5.37 Theorem:

A normal space is completely regular iff it is regular.

Proof:
=
By theorem 5.5.18 a norm space is regular if it is completely regular.
—

We need to show that any normal, regular space (X,t) is completely regular.
Suppose F is a closed subset of X not containing the point x, so that x belongs to
the open set F¢. By theorem 5.5.14, there exists an open set G such that x € G and
G < F°.Since F and G are disjoint closed sets in the normal space X, by Urysohn's
Lemma there exists a continuous mapping f : X — [0,1] such that f(F) = {1} and
f(G) ={0}..Sincex € G, f(x) = 0,andso (X,7) is completely regular.o
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