
Chapter Two 

 Creating New Topological Spaces 

2.1 The Subspace Topology 

          Let  (𝑋, 𝜏) be   a topological   space, A  be   a  proper   subset   of   X.  Let  

𝜏∗ = {𝐺∗ = 𝐺 ∩ 𝐴: 𝐺 ∈ 𝜏} ,i.e. 𝐺∗ ∈ 𝜏∗ ⇔ ∃𝐺 ∈ 𝜏 ,𝐺∗ = 𝐺 ∩ 𝐴 . The following 

theorem shows that 𝜏∗ is a topology on A called the Relative Topology ( or Induced 

Topology) and (𝐴, 𝜏∗) is called the Subspace Topology of topological space (𝑋, 𝜏). 

2.1.1 Theorem: 

            Let  (𝑋, 𝜏) be   a topological   space A  be   a  proper   subset   of   X.  Then  

𝜏∗ = {𝐺∗ = 𝐺 ∩ 𝐴: 𝐺 ∈ 𝜏} is a topology on A. 

Proof: 

1)  ∅ = ∅ ∩ 𝐴 ⇒  ∅ ∈ 𝜏∗ 

     A = 𝑋 ∩ 𝐴 ⇒  𝐴 ∈ 𝜏∗ . 

2) Let 𝐺1
∗,𝐺2

∗ ∈ 𝜏∗ then ∃𝐺1,𝐺2 ∈ 𝜏 s. t.  𝐺1
∗ =  𝐺1 ∩ 𝐴,𝐺2

∗= 𝐺2 ∩ 𝐴 then 

      𝐺1
∗∩𝐺2

∗ = (𝐺1 ∩ 𝐴) ∩ (𝐺2 ∩ 𝐴) = (𝐺1 ∩ 𝐺2) ∩ 𝐴 ∈ 𝜏∗  since (𝐺1 ∩ 𝐺2) ∈ 𝜏. 

3) Let {𝐺𝑖
∗: 𝑖 ∈ 𝐼} ⊆ 𝜏∗then ∃𝐺𝑖 ∈ 𝜏 s. t.  𝐺𝑖

∗ =  𝐺𝑖 ∩ 𝐴, ∀i∈ I. So  

       ⋃ 𝐺𝑖
∗ = ⋃ (𝐺𝑖 ∩ 𝐴) = ⋃ 𝐺𝑖𝑖 ∩ 𝐴 ∈ 𝜏∗ , since ⋃ 𝐺𝑖𝑖 ∈𝑖𝑖 𝜏. 

      So 𝜏∗is a topology on A.□ 

2.1.2 Example: 

     Let  (𝑋, 𝜏) be   a topological   space where 𝑋 = {𝑎,b,c,d,e} , τ={X,∅,{a},{c,d}, 

{a,c,d},{b,c,d,e}} .Find 𝜏𝐴,𝜏𝐵 ,𝜏𝐶 ,𝐴 = {a,d},B={a,b,c},𝐶 = {𝑎}. 

Solution: 

𝑋 ∩ 𝐴 = 𝐴 ,∅ ∩ 𝐴 = ∅ ,{a}∩A={a} ,{c,d}∩A={d} ,{a,c,d}∩A=A ,{b,c,d,e}∩A={d} 

So 𝜏𝐴 = {𝐴,∅,{a},{d}} . Similar  𝜏𝐵 = {𝐵,∅,{a},{c},{a,c},{b,c}}, 𝜏𝐶 = {𝐶,∅}. 
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2.1.3 Remark: 

     In example 2.1.2 , 𝜏𝐴 is the discrete topology on A , 𝜏𝐶 is the indiscrete 

topology on C but τ is not discrete or  indiscrete topology on X. Also we can find 

{d}∈𝜏𝐴 but {d}∉𝜏. 

2.1.4 Example: 

     The subspace of discrete topology (indiscrete topology) is also a discrete 

topology (indiscrete topology). 

2.1.5 Example: 

      Let  (𝑋, 𝜏) be   a co-finite topology  and let 𝐴 ≠ ∅ be a subset of X the 𝜏𝐴 is  

the discrete topology. 

Solution: 

      Let 𝑝 be any point in A then the set 𝑋\{𝐴\{𝑝}} is open in X and their intersect 

with A is {𝑝} i.e. 𝐴 ∩ (𝑋\{𝐴\{𝑝}}) = {𝑝} is open in A .Since 𝑝 be any point in A 

then the subspace topology on A is the discrete topology. 

2.1.6 Example: 

      Let  (ℝ, 𝐷) be the usual topology on  ℝ  then the subspace topology (ℕ,𝐷ℕ) 

is the discrete topology. 

 Solution: 

      Let 𝑛 ∈ ℕ  then (𝑛 −
1

2
,𝑛 +

1

2
)  is an open interval contain n and ℕ ∩ (𝑛 −

1

2
,𝑛 +

1

2
)  ={n}.So every {n} contain a natural number in the subspace (ℕ,𝐷ℕ) 

,so every subset of ℕ is an open set i.e. 𝐷ℕ is the discrete topology. 

2.1.7 Example: 

      Let  (ℝ, 𝐷) be the usual topology on  ℝ  then the subspace topology (ℤ,𝐷ℤ) is 

the discrete topology. 
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2.1.8 Example: 

      In ℝ3, let C be the circle of radius 1 in the xy-plane with center at the point 

(2,0,0).Consider the subspace of ℝ3swept out as C is rotated about the z-axis the 

resulting space is called the torus and denoted by T which is a subspace of ℝ3. 

                                     
2.1.9 Theorem: 

     Let (𝐴,𝜏𝐴) be a subspace of (𝑋, 𝜏) then the subset 𝐸 of 𝐴 is closed in (𝐴,𝜏𝐴) iff 

there exist a closed set 𝐹 in (𝑋, 𝜏) such that 𝐸 = 𝐹 ∩ 𝐴. 

Proof: 

⇒ 

     Let 𝐸 be a closed in (𝐴,𝜏𝐴) the 𝐸𝑐  is an open set in (𝐴,𝜏𝐴) .By definition of 

subspace ∃𝐺 ∈ 𝜏 𝑠.t. 𝐸𝑐 = 𝐴 ∩ 𝐺 = 𝐴\𝐸  . So 

                       𝐸 = 𝐴\𝐸𝑐 = 𝐴\(𝐴 ∩ 𝐺) = 𝐴 ∩ (𝐴 ∩ 𝐺)𝑐 = 𝐴 ∩ 𝐺𝑐. 

 Put 𝐸𝑐 = 𝐹 which is the closed set we want to find. 

⇐ 

     Assume there exist a closed set 𝐹 in (𝑋, 𝜏) such that 𝐸 = 𝐹 ∩ 𝐴 we want to 

prove that 𝐸 is closed in (𝐴,𝜏𝐴) i.e. 𝐸𝑐 is an open set in (𝐴,𝜏𝐴) 

   𝐸𝑐 = 𝐴\𝐸 = 𝐴\(𝐴 ∩ 𝐹) = 𝐴 ∩ (𝐴 ∩ 𝐹)𝑐 = 𝐴 ∩ (𝐴𝑐 ∪ 𝐹𝑐) = (𝐴 ∩ 𝐴𝑐) ∪ (𝐴 ∩ 𝐹𝑐) = 𝐴 ∩ 𝐹𝑐. 

So 𝐸𝑐 is an open set in (𝐴,𝜏𝐴).□ 

2.1.10 Corollary: 

      If A is a non-empty open (closed) subset of  (𝑋, 𝜏) then the subset 𝐵 of 𝐴 is 

open (closed) in (𝐴,𝜏𝐴) iff 𝐵  an open set 𝐹 in (𝑋, 𝜏). 

2.1.11 Theorem: 

      Let (𝑌,𝜏𝑌) be a subspace of (𝑋, 𝜏). If ℬ = {𝐵𝑖}𝑖∈𝐼 is a base for (𝑋, 𝜏) then 

ℬ∗ = {𝐵𝑖 ∩ 𝑌}𝑖∈𝐼 is a base for (𝑌,𝜏𝑌). 
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Proof: 
                                        

 

 

            

     Assume ℬ = {𝐵𝑖}𝑖∈𝐼 is a base for (𝑋, 𝜏) then ∀𝑈 ∈ 𝜏, y ∈U⇒∃B∈ℬ,y ∈B⊆U. 

From definition of subspace the family {𝐵𝑖 ∩ 𝑌}𝑖∈𝐼 is open in (𝑌,𝜏𝑌).If y ∈Y then  

y ∈B∩Y⊆U∩Y where U∩Y∈𝜏𝑌 then {𝐵𝑖 ∩ 𝑌}𝑖∈𝐼 is a base for (𝑌,𝜏𝑌).□ 

2.1.12 Example: 

      Let the circle 𝑆1 ⊆ ℝ2 with the usual topology. Since the class of open balls 

form a basis for the usual topology on ℝ2then their intersection with 𝑆1 are class 

of open intervals in the circle consisting of all points between two angles in the 

circle .This class form a base for the usual topology on 𝑆1. 

                                     

2.1.13 Example: 

      If S is a surface in ℝ3 then the collection of open patches in S obtained by 

intersecting open balls in ℝ3with S is a basis for the standard topology on S. 
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2.1.14 Remark: 

      The following theorem gives the relation between the limit and interior points 

and the closure of sets in subspaces and spaces .we denote 𝑑(𝐴),𝐴°,�̅� for limit 

,interior ,closure for a set A in subspace. 

2.1.15 Theorem: 

     Let (𝑌,𝜏𝑌) be a subspace of (𝑋, 𝜏). If 𝐴 ⊆ 𝑌 then : 

1) 𝑑(𝐴𝑌) = 𝑑(𝐴) ∩ 𝑌. 

2) 𝐴∘ = 𝐴𝑌
∘ ∩ 𝑌∘  ,    𝐴∘ ∩ 𝑌 = 𝐴𝑌

∘ . 

3) 𝐴𝑌
̅̅̅̅ = �̅� ∩ 𝑌. 

Proof: 

1) Assume 𝑥 ∈ 𝑑(𝐴𝑌) then ∀𝑈 ∈ 𝜏𝑌 ,𝑥 ∈ 𝑈 ,U∩A≠∅ then ∃𝑊 ∈ 𝜏,𝑥 ∈

𝑈 ,U=W∩Y. So for any 𝑊 ∈ 𝜏 s.t. 𝑥 ∈ 𝑊 we find W∩Y≠∅ therefore we get 

(W∩Y)∩A=W∩A≠∅ i.e. 𝑥 ∈ 𝑑(𝐴) ,SO 

                              𝑑(𝐴𝑌) ⊆ 𝑑(𝐴)                                  …….               (1) 

Let 𝑥 ∈ 𝑑(𝐴) then ∀𝑈 ∈ 𝜏,𝑥 ∈ 𝑈 ,U∩A≠∅.Its  clear that W=U∩Y ∈ 𝜏𝑌 is an 

open set in (𝑌,𝜏𝑌),SO 𝑊 ∩ 𝐴 = (𝑈 ∩ 𝑌) ∩ 𝐴 = 𝑌 ∩ (𝑈 ∩ 𝐴 ≠ ∅ i.e. 𝑥 ∈ 𝑑(𝐴𝑌) 

                          𝑑(𝐴) ⊆  𝑑(𝐴𝑌)                                ……..               (2) 

    From (1) and (2) we get 𝑑(𝐴𝑌) = 𝑑(𝐴) ∩ 𝑌. 

2) Let 𝑝 ∈ 𝐴°them ∃𝐻 ∈ 𝜏 s.t.  p ∈H⊆A⊆Y ,so 𝑝 ∈ 𝑌 ∩ 𝐴 ⊆ 𝐴, p∈𝑌∘ ⇒ 𝑝 ∈ 𝐴𝑌
∘  , 

𝑝 ∈ 𝑌°  ⇒ 𝑝 ∈ 𝑌° ∩ 𝐴𝑌
∘  ,so 

                                  𝐴∘ ⊆ 𝐴𝑌
∘ ∩ 𝑌∘                                 ………            (1)   

           Let   𝑥 ∈ 𝑌° ∩ 𝐴𝑌
∘ ⇒ ∃𝐻1,𝐻2 ∈ 𝜏   s.t. 𝑥 ∈ 𝐻2 ⊆ 𝑌, 𝑥 ∈ 𝑌 ∩ 𝐻1 ⊆ 𝐴 , SO 

           𝑥 ∈ 𝐻1 ∩ 𝐻2 ⊆ 𝐴 ⇒  𝑥 ∈ 𝐴°,so 

                                   𝐴𝑌
∘ ∩ 𝑌∘ ⊆ 𝐴∘                              ………               (2) 

               From (1) and (2) we get 𝐴∘ = 𝐴𝑌
∘ ∩ 𝑌∘. 

3) 𝑑(𝐴𝑌)̅̅ ̅̅ ̅̅ ̅̅ = 𝑑(𝐴𝑌) ∪ 𝐴 = (𝑑(𝐴) ∩ 𝑌) ∪ 𝐴 , 𝐴 ⊆ 𝑌 

                        = (𝑑(𝐴) ∩ 𝑌) ∪ (𝐴 ∩ 𝑌) = (𝑑(𝐴) ∩ 𝐴) ∪ 𝑌 = �̅� ∩ 𝑌.□ 
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2.1.16 Example: 

       Show that if 𝑑(𝐴) = ∅ in a topological space (𝑋, 𝜏) then 𝜏𝐴 is the discrete 

topology. 

Solution: 

     In order to prove that 𝜏𝐴 is the discrete topology we shall show that every 

subset of A is closed. 

If 𝐵 ⊆ 𝐴 then 𝑑(𝐵) ⊆ 𝑑(𝐴) ,so 𝑑(𝐵) ⊆ ∅ (since 𝑑(𝐴) = ∅),so B is a closed set in 

X and then B is closed in A ( since 𝐵 = 𝐵 ∩ 𝐴). 

(𝐴𝑈𝐵) ∩ (𝐶 ∪ 𝐵) = (𝐴𝑈𝐶) ∩ 𝐵 
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2.2 The Product Topology 

     Given two topological spaces X and Y ,we would like to generate a natural 

topology on the product 𝑋 × 𝑌. Our first inclination might be to take as the 

topology on 𝑋 ×  𝑌 the collection 𝒞 of sets of the form 𝑈 ×  𝑉 where 𝑈 is open in 

𝑋 and 𝑉 is open in 𝑌. But 𝒞 is not a topology since the union of two sets 𝑈1  ×  𝑉1 

and 𝑈2  ×  𝑉2 need not be in the form 𝑈 ×  𝑉 for some 𝑈 ⊂  𝑋 and 𝑉 ⊂  𝑌. 

However, if we use 𝒞 as a basis, rather than as the whole topology, we can proceed. 

                                           
2.2.1 Definition: 

        Let (𝑋,𝜏𝑋)  and (𝑌,𝜏𝑌)  be topological spaces and 𝑋 ×  𝑌 be their product. 

The product topology on 𝑋 ×  𝑌 is the topology generated by the basis 

                       ℬ = {𝑈 ×  𝑉 ∶  𝑈 is open in 𝑋 and 𝑉 is open in 𝑌}. 

2.2.2 Remark: 

     We shall verify that ℬ actually is a basis for a topology on the product, 𝑋 × 𝑌. 

2.2.3 Theorem: 

     The collection ℬ = {𝑈 ×  𝑉 ∶  𝑈 is open in 𝑋 and 𝑉 is open in 𝑌} is a basis 

for a topology on 𝑋 ×  𝑌. 

Proof: 

1- Every point (𝑥, 𝑦) is in 𝑋 ×  𝑌, and 𝑋 ×  𝑌 𝜖 ℬ. Therefore, the first condition 

for a basis is satisfied. 

2- Assume that (𝑥, 𝑦) is in the intersection of two elements of ℬ. That is, 

(𝑥, 𝑦)𝜖(𝑈1 × 𝑉1) ∩ (𝑈2 × 𝑉2)  where 𝑈1 and 𝑈2 are open sets in X, and 𝑉1 and 
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𝑉2 are open sets in Y. Let 𝑈3 = 𝑈1  ∩  𝑈2 and 𝑉3 = 𝑉1  ∩  𝑉2. Then 𝑈3 is open 

in X, and 𝑉3 is open in Y, and therefore 𝑈3  ×  𝑉3 𝜖 ℬ. Also,                                                      

      𝑈3  ×  𝑉3 = (𝑈1  ∩  𝑈2) × (𝑉1  ∩  𝑉2) = (𝑈1  ×  𝑉1) ∩ (𝑈2  ×  𝑉2)              

and thus (𝑥, 𝑦)𝜖𝑈3 × 𝑉3 ⊂ (𝑈1 × 𝑉1) ∩ (𝑈2 × 𝑉2)  . It follows that the second 

condition for a basis is satisfied. 

 Therefore ℬ is a basis for a topology on 𝑋 ×  𝑌.□ 

2.2.4 Example: 

       Let 𝑋 = {𝑎, 𝑏, 𝑐} and 𝑌 = {1, 2} with topologies 

{ø,{𝑏},{𝑐},{𝑎,𝑏},{𝑏,𝑐}, 𝑋} and {ø, {1}, 𝑌},respectively.  

 A basis for the  product  topology  on  𝑋 ×  𝑌.  Each 

 nonempty open set in the product topology on 𝑋 × 𝑌 

 is a union of the basis  elements. 

2.2.5 Remark: 

       As with open sets, products of closed sets are closed sets in the product 

topology. But here too, this does not account for all of the closed sets because there 

are closed sets in the product topology that cannot be expressed as a product of 

closed sets. For instance, the set {(𝑎, 2), (𝑐, 1), (𝑐, 2)} is a closed set in the product 

topology in Example 2.2.4, but it is not a product of closed sets. 

2.2.6 Remark: 

        In Definition 2.2.1, the basis B that we use to define the product topology is 

relatively large since we obtain it by pairing up every open set U in X with every 

open set V in Y. Fortunately, as the next theorem indicates, we can find a smaller 

basis for the product topology by using bases for the topologies on 𝑋 and 𝑌, rather 

than using the whole topologies themselves. 

2.2.7 Theorem: 

        If ℬ𝑋 is a basis for 𝑋 and ℬ𝑌 is a basis for Y, then 

                               ℬ = {𝐶 ×  𝐷 ∶  𝐶 ∈ ℬ𝑋  and 𝐷 ∈ ℬ𝑌}   

is a basis that generates the product topology on 𝑋 ×  𝑌. 
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Proof: 

      Each set 𝐶 × 𝐷 ∈ ℬ is an open set in the product topology; therefore, by 

definition 1.6.1, it suffices to show that for every open set W in 𝑋 ×  𝑌 and every 

point (𝑥, 𝑦) ∈ 𝑊, there is a set 𝐶 ×  𝐷 ∈ ℬ such that (𝑥, 𝑦) ∈ 𝐶 × 𝐷 ⊂ 𝑊. But 

since 𝑊 is open in 𝑋, we know that there are open sets 𝑈 in 𝑋 and 𝑉 in 𝑌 such that 

(𝑥, 𝑦) ∈ 𝑈 × 𝑉 ⊂ 𝑊. So 𝑥 ∈  𝑈 and 𝑦 ∈  𝑉. Since 𝑈 is open in 𝑋, there is a basis 

element 𝐶 ∈ ℬ𝑋 such that 𝑥 ∈  𝐶 ⊂  𝑈. Similarly, since V is open in Y, there is a 

basis element 𝐷 ∈  ℬ𝑌 such that 𝑦 ∈  𝐷 ⊂  𝑉. Thus (𝑥, 𝑦) ∈ 𝐶 × 𝐷 ⊂ 𝑊. Hence, 

by definition 1.6.1, it follows that ℬ = {𝐶 ×  𝐷 ∶  𝐶 ∈ ℬ𝑋  and 𝐷 ∈ ℬ𝑌}   is a basis 

for the product topology on 𝑋 × 𝑌.□ 

2.2.8 Example: 

     Let I = [0, 1] have the slandered topology as a subspace of ℝ. 

The product  space  𝐼 × 𝐼 is called  the unit square. The  product  

topology on 𝐼 ×  𝐼 is the same as the standard topology on 𝐼 × 𝐼  

as a subspace of  ℝ3. 

2.2.9 Example: 

     Let 𝑆1 be the circle, and let I = [0, 1] 

have the standard topology.Then 𝑆1 × 𝐼 

can think of it as a circle  with  intervals 

perpendicular at each point of the circle. 

Seen this way, it is a circle's worth of intervals. Or it can be thought of as an interval 

with perpendicular circles at each point. Thus it is an interval's worth of circles. 

The resulting topological space is called the annulus. 

     The product space 𝑆1 × (0, 1) is the annulus with the inner most and outermost 

circles removed. We refer to it as the open annulus. 
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2.2.10 Example: 

       Consider the product space 𝑆1 × 𝑆1, where 𝑆1 is the circle. For each point in 

the first 𝑆1. there is a circle corresponding to the second 𝑆1.Since each 𝑆1 has a 

topology generated by open intervals in the circle, it follows by Theorem 2.2.7  that 

𝑆1 × 𝑆1 has a basis consisting of rectangular open patches. The resulting space 

resembles the torus introduced in Example 2.1.8; in fact, they are topologically 

equivalent. 

                             

2.2.11 Example: 

       Let D be the disk as a subspace of the 

plane. The product space 𝑆1 × 𝐷 is called  

the solid torus. If we think of the torus  as 

the surface  of a doughnut, then  the  solid  

torus is the whole doughnut itself. 

2.2.12 Remark: 

      Let 𝐴 and 𝐵 be subsets of topological spaces 𝑋 and 𝑌, respectively. We now 

have two natural ways to put a topology on 𝐴 ×  𝐵. On the one hand, we can view 

𝐴 ×  𝐵 as a subspace of the product 𝑋 ×  𝑌. On the other hand, we can view 𝐴 ×

 𝐵 as the product of subspaces, 𝐴 ⊂  𝑋 and 𝐵 ⊂  𝑌. The next theorem indicates 

that both approaches result in the same topology. 
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2.2.13 Theorem: 

        Let (𝑋,𝜏𝑋)  and (𝑌,𝜏𝑌) be topological spaces, and assume that 𝐴 ⊂  𝑋 and 

𝐵 ⊂  𝑌. Then the topology on 𝐴 ×  𝐵 as a subspace of the product 𝑋 ×  𝑌 is the 

same as the product topology on 𝐴 ×  𝐵, where 𝐴 has the subspace topology 

inherited from 𝑋, and 𝐵 has the subspace topology inherited from 𝑌. 

Proof:  Left as exercise. 

2.2.14 Remark: 

       The approach  used to define a product of two spaces extends to a product 

𝑋1  ×  ⋯ × 𝑋𝑛 of n topological spaces. It is straightforward to see that the collection 

ℬ = {𝑈1  ×  ⋯ × 𝑈𝑛 ∶  𝑈𝑖  open in 𝑋𝑖   for each 𝑖}  is  a basis  for a topology on 

𝑋1  ×  ⋯ × 𝑋𝑛.The resulting topology is called the product topology on 𝑋1  ×  ⋯ ×

𝑋𝑛. We have an analog to Theorem 2.2.7 for this case. Specifically, if ℬ𝑖 is a basis 

for 𝑋𝑖 for each 𝑖 =  1, ⋯  , 𝑛, then the collection 

 ℬ′ = {𝐵1  ×  ⋯ × 𝐵𝑛 ∶  𝐵𝑖 ∈ ℬ𝑖   for 𝑖 =  1, ⋯  , 𝑛} 

is a basis for 𝑋1  ×  ⋯ × 𝑋𝑛. 

2.2.15 Remark: 

      We note that the standard topology on ℝ𝑛 is the topology generated by the basis 

of open balls defined by the Euclidean distance formula on We also pointed that 

the same topology results from taking a basis made up of products of open intervals 

in ℝ It follows that the standard topology on ℝ𝑛 is the same as the product topology 

that results from taking the product of n copies of ℝ with the standard topology. 

2.2.16 Example: 

       The n-torus, 𝑇𝑛 is the topological space obtained by taking the product of n 

copies of the circle, 𝑆1. 



11 
 

2.2.17 Remark: 

      The next theorem indicates that the interior of a product is the product of the 

interiors. 

2.2.13 Theorem: 

      Let A and B be subsets of topological spaces X and Y, respectively. Then 

                                       (𝐴 ×  𝐵)∘  =  𝐴∘  ×  𝐵∘. 

Proof:  ⟹ 

       Since 𝐴∘ is an open set contained in A, and 𝐵∘ is an open set contained in B, 

it follows that 𝐴∘ ×  𝐵∘ is an open set in the product topology and is contained in 

𝐴 ×  𝐵. Thus 𝐴∘  ×  𝐵∘ ⊂ (𝐴 ×  𝐵)∘ 

           ⟸ 

      Now suppose (𝑥, 𝑦)  ∈  (𝐴 ×  𝐵)∘. We will prove that (𝑥, 𝑦)  ∈  𝐴∘  ×  𝐵∘. 

Since (𝑥, 𝑦)  ∈  (𝐴 ×  𝐵)∘, it follows that (𝑥, 𝑦) is contained in an open set 

contained in 𝐴 ×  𝐵 and therefore is also contained in a basis element contained 

in 𝐴 ×  𝐵. So there exists a 𝑈 and 𝑉 open in X and Y, respectively, such that 

(𝑥, 𝑦)  ∈  𝑈 ×  𝑉 ⊂  𝐴 ×  𝐵. Thus, x is in an open set U contained in A, and y is 

in an open set V contained in B, implying that 𝑥 ∈ 𝐴∘ and 𝑦 ∈ 𝐵∘. Therefore 

(𝑥, 𝑦)  ∈ 𝐴∘  ×  𝐵∘. It follows that (𝐴 ×  𝐵)∘  ⊂ 𝐴∘  ×  𝐵∘. 

         Since we have both 𝐴∘  ×  𝐵∘ ⊂ (𝐴 ×  𝐵)∘ and (𝐴 ×  𝐵)∘  ⊂ 𝐴∘  ×  𝐵∘ then 

(𝐴 ×  𝐵)∘  =  𝐴∘  ×  𝐵∘.□ 
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2.3 The Quotient Topology 

       The concept of a quotient topology allows us to construct a variety of 

additional topological spaces from the ones that we have already introduced. Put 

simply, we create a topological model that mimics the process of gluing together 

or collapsing parts of one or more objects. One of the most well-known examples 

is the torus, as obtained from a square sheet by gluing together the opposite 

edges.  

                      

2.3.1 Definition: 

      Let X be a topological space and A be a set (that is not necessarily a subset of 

X). Let 𝑝: 𝑋 → 𝐴 be a surjective map. Define a subset U of A to be open in A if and 

only if 𝑝−1(𝑈) is open in X. The resultant collection of open sets in A is called the 

quotient topology induced by p, and the function p is called a quotient map. The 

topological space A is called a quotient space. 

2.3.2 Theorem: 

      Let 𝑝: 𝑋 → 𝐴 be a quotient map. The quotient topology on A induced by p is a 

topology. 

Proof: 

       We verify each of the three conditions for a topology. 

1- The set 𝑝−1(∅) = ∅, which is open in X. The set 𝑝−1(𝐴) = 𝑋, which is open in  

     X. So ∅ and A are open in the quotient topology. 
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2- Suppose each of the sets 𝑈𝑖 , 𝑖 =  1, ⋯  , 𝑛, is open in the quotient topology on  

    A. Then 𝑝−1(⋂ 𝑈𝑖
 𝑛
𝑖 = 1 ) = ⋂ 𝑝−1(𝑈𝑖)𝑛

𝑖 = 1 , which is  a finite intersection of open  

    sets in X, and therefore is  open  in X. Hence, ⋂ 𝑈𝑖
 𝑛
𝑖 = 1   is  open  in  the quotient  

    topology,  and  it  follows that the finite intersection of open sets in the quotient  

    topology is an open set in the quotient topology. 

3- Suppose each of the sets in the collection {𝑈𝑖}𝑖∈𝐼 is open in the quotient topology 

on A. Then 𝑝−1(⋃ 𝑈𝑖𝑖 ) = ⋃ 𝑝−1(𝑈𝑖)𝑖 , which is a union of open sets in X, and 

therefore is open in X. Thus, ⋃ 𝑈𝑖𝑖  is open in the quotient topology, implying that 

the arbitrary union of open sets in the quotient topology is an open set in the 

quotient topology. 

Hence, the quotient topology is a topology on A. 

2.3.3 Example: 

     Give ℝ the standard topology, and define 𝑝: ℝ → {𝑎,𝑏,𝑐} by  

                                𝑝(x) = {

𝑎 𝑖𝑓 𝑥 < 0
𝑏 𝑖𝑓 𝑥 = 0
𝑐 𝑖𝑓 𝑥 > 0

 

The resulting quotient topology on {𝑎,𝑏,𝑐} is {{𝑎},{c},{𝑎,𝑐},{𝑎,𝑏,𝑐}}. The 

subsets {𝑎}, {𝑐}, and {𝑎,𝑐} are all open since their preimages are open in ℝ. 

But {𝑏} is not open since its preimage is {0}, which is not open in ℝ. 

           
2.3.4 Example: 

      Let ℝ have the standard topology, and define 𝑝: ℝ → ℤ by 𝑝(𝑥) = 𝑥 if x is an 

integer, and 𝑝(𝑥)  =  𝑛 if 𝑥 ∈ (𝑛 − 1, 𝑛 +  1) and n is an odd integer. So p is the 

identity on the integers, and p maps non integer values to the nearest odd integer. 

In the resulting quotient topology on ℤ, if n is an odd integer, then {𝑛} is an open 

set since 𝑝−1({𝑛})  =  (𝑛 − 1, 𝑛 +  1), an open set in ℝ. If n is an even integer, 

then {𝑛}  is not an open set since 𝑝−1({𝑛}) is not open in ℝ. In the quotient 

topology, the smallest open set containing an even integer n is the set 

{𝑛 —  1, 𝑛, 𝑛 +  1}. It follows that the quotient topology induced by p on Z is the 

digital line topology. 
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2.3.5 Remark: 

       Let (𝑋,𝜏) be a topological space. We are particularly interested in quotient 

spaces defined on partitions of X. Specifically, let 𝑋∗ be a collection of mutually 

disjoint subsets of X whose union is X, and let 𝑝: 𝑋 → 𝑋∗ be the surjective map that 

takes each point in X to the corresponding element of 𝑋∗ that contains it. Then p  

induces a quotient topology on 𝑋∗. We think of the process of going from the 

topology on X to the quotient topology on as taking each subset S in the partition 

and identifying all of the points in S with one another, thereby collapsing S to a 

single point in the quotient space. A set U of points in is open in the quotient 

topology on exactly when the union of the subsets of X, corresponding to the points 

in U, is an open subset in X. 

           
2.3.6 Example: 

     Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒) with topology {∅, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑐, 𝑑}, 𝑋}. 

With 𝐴 =  {𝑎 , 𝑏} and 𝐵 =  {𝑐 , 𝑑 , 𝑒}, let  𝑋∗  be  the  partition of  X  given by 

𝑋∗ =  {𝐴, 𝐵}. Note that 𝑋∗ is a two-point set. Since {𝑎, 𝑏} is open in X and {𝑐, 𝑑, 𝑒} 

is not, the only open sets in the quotient topology on are ∅, {𝐴}, and 𝑋∗ itself. 
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2.3.7 Example: 

      Let 𝑋 =  [0, 1], and consider the partition 𝑋∗ that is made up of the single-

point sets {𝑥}, for 0 < 𝑥 < 1, and the double-point set 𝐷 =  {0, 1}. Then, in the 

quotient topology on we think of D as a single point, as if we had glued the two 

endpoints of [0, 1] together. A subset of 𝑋∗ that does not contain D is a collection 

of single-point subsets, and it is open in 𝑋∗ exactly when the union of those single-

point sets is an open subset of (0, 1). A subset of 𝑋∗ that contains D is open in 𝑋∗ 

when the union of all the sets making up the subset is an open subset of [0, 1]. Such 

an open subset must contain 0 and 1, and therefore must contain intervals [0, a) and 

(b, 1], which are open in the subspace topology on [0, 1]. The resulting space is 

topologically equivalent to the circle, 𝑆1. 

             

2.3.8 Example: 

         In the previous example 2.3.7, we glued the endpoints of an interval together 

to obtain a single point. That is an example of a more general construction that 

results in a space known as a topological graph. Specifically, a topological graph 

G is a quotient space constructed by taking a finite set of points, called the vertices 

of G, along with a finite set of mutually disjoint closed bounded intervals in ℝ. and 

gluing the endpoints of the intervals to the vertices in some fashion. The glued 

intervals are called the edges of G. 
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2.3.9 Example: 

      In Example 2.3.7 we obtained a circle by identifying endpoints of an interval 

in the real line. We describe a similar process here, using the digital line, that 

yields spaces we call digital circles. Specifically, a digital interval is a subset 

{𝑚, 𝑚 +  1, ⋯  , 𝑛 } of ℤ with the subspace topology inherited from the digital 

line topology. Let 𝐼𝑛 be the digital interval in the form { 1, 2, ⋯ .  𝑛 —  1, 𝑛}. If 

𝑛 ≥  5 is an odd integer, then the topological space 𝐶𝑛−1 resulting from 

identifying the endpoints 1 and n in 𝐼𝑛 is called a digital circle. The digital circle 

𝐶𝑛−1 is a quotient space of the digital interval 𝐼𝑛.The following Figure we 

illustrate 𝐼7 and 𝐶6 along with a basis for each. By definition, a digital circle 

contains an even number of points. 

     

 

     

2.3.10 Remark: 

     The following examples 2.3.11 and 2.3.12 gives two different quotient spaces 

defined on 𝐼 × 𝐼. 

2.3.11 Example: 

     Define a partition on 𝐼 × 𝐼 by taking subsets of the following form: 

i) 𝐴𝑥,𝑦 = {(𝑥,𝑦)} for every 𝑥 and 𝑦 such tha𝑡 0 < 𝑥 < 1 and 0 ≤ 𝑦 ≤ 1. 

ii) 𝐵𝑦 = {(0,𝑦),(1,𝑦)} for every 𝑦  such tha𝑡 0 < 𝑦 < 1 . 

      In the quotient topology, the subsets 𝐵𝑦 cause the left and right edges of the 

square to be glued. The result is a space that is topologically equivalent to the 

annulus. 

 

            

 

        

    



17 
 

2.3.12 Example: 

     Define a partition on 𝐼 × 𝐼 by taking subsets of the following form: 

i) 𝐴𝑥,𝑦 = {(𝑥,𝑦)} for every 𝑥 and 𝑦 such tha𝑡 0 < 𝑥 < 1 and 0 ≤ 𝑦 ≤ 1. 

ii) 𝐵𝑦
∗ = {(0,𝑦),(1,1-𝑦)} for every 𝑦  such tha𝑡 0 < 𝑦 < 1 . 

    Here the subsets 𝐵𝑦
∗ also cause the left and right edges of the square to be glued. 

But in order to accomplish the gluing, we need to perform a half twist so that the 

identified points on the edges can be properly brought together. The result is the 

well-known Möbius band. 

           

 

 

 

 

                                                 

2.3.13 Example: 

        Define a partition of 𝐼 × 𝐼 by taking subsets of the following form: 

i) 𝐴𝑥,𝑦 = {(𝑥,𝑦)}for every 𝑥 and 𝑦 such tha𝑡 0 < 𝑥 < 1 and 0 < 𝑦 < 1. 

ii) 𝐵𝑦 = {(0,𝑦),(1,𝑦)} for every 𝑦  such tha𝑡 0 < 𝑦 < 1. 

iii) 𝐶𝑦 = {(𝑥,0),(𝑥,1)} for every 𝑥  such tha𝑡 0 < 𝑥 < 1 . 

iv) 𝐷 = {(0,0),(0,1),(1,0),(1,1)}  . 
In the quotient topology, the two-point subsets in (ii) cause the gluing of the left 

edge of the square to the right edge, and the two-point subsets in (iii) cause the 

gluing of the top edge of the square to the bottom edge.  Furthermore, the four-

point subset causes the gluing of the four corners of the square to a single point. 

The topological space we obtain is therefore the result of taking a square and 

gluing together its opposite edges. Such a construction results in a torus. 

                               

                      

 

 


