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Chapter One 

Topological Spaces 

1.1 Topological space 

1.1.1 Definition:- 

     Let X be a non empty set .A class 𝜏 of subsets of X is a topology on X iff 𝜏 

satisfies the following axioms 

1) X and ∅ are members of 𝜏. 

2) The intersection of any finite number of members of 𝜏 is a member of 𝜏. 

3) The union of any family of members of τ is again in τ. 

    The pair (𝑋, 𝜏)  is called a topological space and the members of τ are called τ- 

open sets or simply open sets. 

1.1.2 Example:- 

   If X is any set, then the collection  {𝑋, ∅} of subsets of X also forms a topology on 

X. This topology is called the trivial (indiscrete) topology on X. 

1.1.3 Example:- 
    If X is any set, then the family of all subsets of X forms a topology on X. This 

topology is called the discrete topology on X. 

     Notice that the discrete topology contains the maximum possible number of open 

sets since, relative to the discrete topology, every subset of X is open. 

1.1.4 Example:- 
     Let τ be a class of all open sets of a metric space (X, d) then τ is a topology on X 

,called the usual topology on X. 

1.1.5 Example:- 
     Let τ be a class of all subsets of X whose complements are finite together with 

the empty set ∅. This class τ is a topology on X which is called the co-finite topology.     

1.1.6 Example:- 

     Consider the following classes of subsets of 𝑋 = {𝑎,𝑏,𝑐}  

         𝜏1 = {𝑋,∅,{𝑎},{𝑏},{𝑎,𝑏}}       

         𝜏2 = {X,∅,{a},{b}} 

         𝜏3 = {X,∅,{a,c},{b,c}} 

           Observe that 𝜏1is a topology on X  since it satisfies the necessary three 

axioms. But 𝜏2is not a topology on X since the unions {𝑎} ∪ {𝑏} = {a,b} of two 

members of  𝜏2 does not belongs to 𝜏2 ,i.e does not satisfy the axiom 3. Also 𝜏3 is 

not a topology on X since the intersection {a,c}∩{b,c}={c} of two sets in 𝜏3does not 

belongs to 𝜏3,i.e 𝜏3 does not satisfy the axiom 2. 
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1.1.7 Example:- 

     Let τ be a class of all subsets of N consisting of ∅ ,X and all subsets of ℕ of the 

form 𝐸𝑛 ={1,2,…,n}with 𝑛 ∈ ℕ then the class τ is a topology on X. 

1.1.8 Theorem:- 

     Let {𝜏𝑖: 𝑖 ∈ 𝐼} be a collection of topologies on a set X. Then the intersection ⋂ 𝜏𝑖𝑖  

is also a topology on X. 

      Note that the union of two topologies for X need not be a topology on X, for 

example 𝜏1 = {X,∅,{a}} , 𝜏2 = {𝑋,∅,{b}} is two topologies on 𝑋 = {a,b,c} but the 

union 𝜏1 ∪ 𝜏2is not a topology on X. 

1.1.9 Definition:- 

      Let X be a non-empty set and 𝜏1and 𝜏2 be two topologies on X. If 𝜏1 ⊂ 𝜏2 then 

𝜏2 is said to be finer than 𝜏1,and 𝜏1is said to be the courser than 𝜏2. 

1.1.10 Example:- 
      Let X be a non-empty set then the discrete topology is finer of all topologies on 

X and the indiscrete topology is courser of all topologies on X. 

        Notice that the class {𝑇𝑖} of all topologies on X i partially ordered by class 

inclusion : 

                                           𝜏1 ≲ 𝜏2    𝑓𝑜𝑟   𝜏1 ⊆ 𝜏2. 

       And we say that two topologies on X are not comparable if neither is coarser 

than the other. 

Exercises:- 

1. Let τ be a topology on a set X consisting of four sets ,i.e. 𝜏 = {A,∅,B,C}, where A 

and B are non-empty disjoint proper subsets of X .What conditions must A and B 

satisfy? 

2. Determine all of the possible topologies on  𝑋 = {a,b,c} . 

3. List all topologies on 𝑋 = {𝑎,b,c} which consist of exactly four members. 

4. Show that the class τ of all subsets of X whose complements are finite together 

with the empty set ∅ is a topology on X. 

5. Let X be a set and assume 𝑝𝜖𝑋.Show that the collection 𝜏 consisting of ∅,𝑋, and 

all subsets of X containing p, is a topology on X. This topology is called the 

particular point topology on X. 

6. Let X be a set and assume 𝑝𝜖𝑋.Show that the collection 𝜏 consisting of ∅,X, and 

all subsets of X that exclude p, is a topology on X. This topology is called the 

excluded point topology on X. 

7. Let 𝜏 consist of ∅,R, and all intervals (-∞,p) for 𝑝𝜖ℝ .Prove that 𝜏 is a topology 

on ℝ. 
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8. Let 𝑓: 𝑋 → 𝑌 be a function fromm a non – empty set X into a topological space 

(𝑌,𝜏𝑌) and let 𝜏𝑋𝜏 be the class of intervals of open subsets of Y,i.e. 𝜏𝑋 =
{𝑓−1(𝐺): 𝐺𝜖𝜏𝑌}.Show that 𝜏𝑋is a topology on X. 

9. Let τ be a class of all subsets of N consisting of ∅ and all subsets of ℕ of the form 

𝐸𝑛 ={n,n+1,n+2,…}with 𝑛 ∈ ℕ. 

a) Show that τ is a topology on N. 

b) List the open sets containing the positive integer 6. 

1.2 limit points 

1.2.1 Definition:- 

   Let A be a subset of a topological space (𝑋,𝜏).A point 𝑝𝜖𝑋 is an accumulation 

point or a limit point of A if every open set G containing p contains a point of A 

different from p, i.e.  

                           𝐺 𝑜𝑝𝑒𝑛  , 𝑝𝜖𝐺  → 𝐴 ∩ (𝐺/{𝑝}) ≠ ∅. 
The set of accumulation points of A, denoted by d(A) (or A`). 

      Notice that a limit point p of a set A may or may n ot lie in the set A. Notice 

also that in every topology, the point p is not a limit point of the set {x}. 

1.2.2 Example:- 

      Consider 𝐴 ⊂ ℝ with the usual topology on ℝ then : 

a) d(𝐴 = {1

𝑛
𝜖ℝ: 𝑛𝜖ℤ+}) = {0}. 

b) 𝑑([a,b])=d((a,b])=d([a,b))=d((a,b))=[a,b]. 

c) 𝑑(ℚ) = ℝ. 

d) 𝑑(ℤ) = ∅. 

1.2.3 Example:- 

     Let 𝑋 = {𝑎,b,c,d,e}  and 𝜏 = {∅,{a},{b,d},{a,b,d},{b,c,d,e}, X} then 

                    𝑑({a,b,c})={c,d,e},  d({b,c,d}) = {b,c,d,e} 

1.2.4 Theorem:- 

      If 𝐴,𝐵 and 𝐸 are subsets of the topological space (𝑋, 𝜏), then the derived set has 

the following properties: 

a) 𝑑(∅) = ∅. 
b) If 𝐴 ⊆ 𝐵 then 𝑑(𝐴) ⊆ 𝑑(𝐵). 

c) If 𝑥 ∈ 𝑑(𝐸), then 𝑥 ∈ 𝑑(𝐸\{𝑥}). 

d) 𝑑(𝐴 ∪ 𝐵) = 𝑑(𝐴) ∪ 𝑑(𝐵). 

       Note that 𝑑(𝐴 ∩ 𝐵) ≠ 𝑑(𝐴) ∩ 𝑑(𝐵), for example let 𝑋 = {𝑎,b,c} and let 𝐴 =
{a,c},B={b,c} ,define the topology 𝜏 on X by 𝜏 = {𝑋,∅,{b},{a,b} then 𝑑(𝐴 ∩ 𝐵) =

𝑑({𝑐}) = ∅ ≠ 𝑑(𝐴) ∩ 𝑑(𝐵) = {𝑐} ∩ {a,c} = {𝑐}. 
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Exercises: - 

1.  Let A be a subset of a topological space (𝑋, 𝜏) .When will a point   𝑝 ∈ 𝑋 not be 

a limit point of A? 

2.  Let A be any subset of a discrete topological space X. Show that 𝑑(𝐴) = ∅. 

3.  Consider the topological space (ℝ, 𝜏), where 𝜏 consists of of ∅,ℝ, and all open 

intervals 𝐸𝑝 = (𝑎,∞),𝑎 ∈ ℝ. Find the derived set of  

a) The interval (4,10];   b) ℤ the set of integers. 

4.  Determine the set of limit points of [0,1] in the complement topology on ℝ. 

5.  Let 𝜏be the topology on ℕ which consists of ∅ and all subsets of ℕ of the form 

𝐸𝑛 ={n,n+1,n+2,…}were 𝑛 ∈ ℕ. 

a) Find the limit points of the set 𝐴 = {4,13,28,37}. 

b) Determine those subsets E of ℕ for which 𝑑(𝐸) = ℕ. 

6. Let 𝜏1and 𝜏2 be topologies on X such that 𝜏1 ⊂ 𝜏2 and let A be any subset of X. 

Show that every 𝜏2- limit point of A is also a 𝜏1- limit point of A. 

1.3 Closed Sets 

1.3.1 Definition:- 

     Let (𝑋, 𝜏) be a topological space. A subset A of X is closed set if it contains all 

its limit points, i.e. 𝑑(𝐴) ⊆ 𝐴. 

1.3.2 Example:- 

     Let 𝑋={a,b,c,d} and 𝜏 = {∅,{a},{b,c},{a,b,c},X} then 𝐴 = {a,d} is a closed set 

since 𝑑(𝐴) = {𝑑} ⊆ 𝐴 = {𝑎,𝑑}.   

1.3.3 Theorem:-  
     If 𝑥 ∉ 𝐴 , where A  is a closed subset of a topological space (𝑋, 𝜏) then there 

exists an open set G such that 𝑥 ∈ 𝐺 ⊆ 𝐴𝑐. 

1.3.4 Corollary:- 
     Let (𝑋, 𝜏) be a topological space. A subset A of X is closed set iff its complement 

𝐴𝑐 is open. 

1.3.5 Example:- 

     Let 𝑋 = {a,b,c,d,𝑒} and 𝜏 = {∅,{a},{b,c},{a,b,c},{b,c,d,e},𝑋} then 

1) ∅,{a},{b,c},{a,b,c},{b,c,d,e},X are open sets.  

2)  𝑋,{b,c,d,e},{a,d,e},{d,e},{a},∅  are closed sets. 

3)  ∅,X,{a},{b,c,d,e} are both open and closed sets. 

4)  {b,c},{a,b,c} are open not closed sets. 

5)  {d,e},{a,d,e} are closed not open sets. 

6)  {e},{c},{d},{c,d} are not open and closed sets. 
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1.3.6 Example:- 
     In a discrete topology all subsets are both open and closed. 

1.3.7 Corollary:- 
      Let ℱ be a family of closed subsets in a topological space (𝑋, 𝜏) then it has 

the following property: 

a)  The intersection of any  number of members of  ℱ is a member of  ℱ ( 𝑋 ∈ ℱ).  

b)  The  union of any  finite number of  members  of  ℱ is a member of ℱ (∅ ∈ ℱ). 

    Note that if A is a closed set then 𝑑(𝐴) is also a closed set ( since A is closed then 

𝑑(𝐴) ⊆ 𝐴, i.e.  𝑑(𝑑(𝐴)) ⊆ 𝑑(𝐴) ,so 𝑑(𝐴) is a closed set) but the converse is not true 

for example in the usual topology (ℝ,u) the set (𝑎,𝑏) is an open set but  𝑑(a,b)=[a,b] 
is a closed set. 

1.4 The Closure of Sets 

1.4.1 Definition:- 

      Let A be a subset of a topological space (𝑋, 𝜏) the closure of A ,denote by �̅�  is  

the intersection of all closed subsets of  X  containing A , i.e.                           

                                �̅� = ⋂ 𝐹𝑖𝑖  ,  A⊆Fi,Fi is closed set.      

     Notice that �̅� is closed set since its equals to intersection of closed sets ( corollary 

1.3.7 part a ) . Also �̅� is the smallest closed set containing A, i.e. if F is any closed 

set contain A then ⊆ �̅� ⊆ 𝐹 . 

1.4.2 Example:- 

     From example 1.3.5 we have {b,c}̅̅ ̅̅ ̅̅ ={b,c,d,e} ⋂ X={b,c,d,e} 

, {𝑑, 𝑒}̅̅ ̅̅ ̅̅ ̅ = {d,e}∩{a,d,e}∩X={d,e} and {𝑎,𝑏}̅̅ ̅̅ ̅̅ ̅ = 𝑋. 

1.4.3 Exmaple:- 

     Let A be a subset of the cofinite topological space (𝑋, 𝜏) then 

                     �̅� = {
𝐴 𝑖𝑓 𝐴 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒   
𝑋 𝑖𝑓 𝐴 𝑖𝑠 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒

 

     Notice that the following theorem define the closure sets in terms of its limit 

points 

1.4.4 Theorem:- 

     Let A be a subset of a topological space (𝑋, 𝜏) the closure of A is the union of A 

and its set of limit points, i.e. 

                                              �̅� = 𝐴𝑈𝑑(𝐴). 

1.4.5 Example:- 

     Let (ℝ,𝜏) be the usual topology then (a,b)̅̅ ̅̅ ̅̅ =[a,b)̅̅ ̅̅ ̅̅ =(a,b]̅̅ ̅̅ ̅̅ =[a,b]̅̅ ̅̅ ̅̅ =[a,b].        

1.4.6 Example:- 

     Let (ℝ,𝜏) be the usual topology then 
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a) If  𝐴 = {1,1
2
,1
3
, … } ⊂ ℝ then 

       �̅� = 𝐴 ∪ 𝑑(𝐴) = {1,1
2
,1
3
,…}∪{0}={1,1

2
,1
3
,…,0}.    

b) If ℚ ⊂ ℝ the set of rational numbers then 

                 ℚ̅ = ℚ ∪ 𝒅(ℚ) = ℚ ∪ ℝ = ℝ. 

1.4.7 Theorem (Closure Axioms):- 

    If A and B are subsets of a topological space (𝑋, 𝜏)  then 

a) ∅̅ = ∅ , �̅� = 𝑋. 

b) 𝐴 ⊆ �̅�. 

c) 𝐴 = �̅� iff A is closed. 

d) �̅̅� = �̅�. 

e) (𝐴 ∪ 𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = �̅� ∪ �̅�. 

    Notice that (𝐴 ∩ 𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≠ �̅� ∩ �̅� as the following example: 

1.4.8 Example:- 

     Let 𝑋 = {𝑎,b,c,d,𝑒} ,𝜏 = {∅,X,{a},{a,b}}. If 𝐴 = {a,c}, 𝐵 = {𝑏,c} then 𝐴 ∩ 𝐵 =

{𝑐}, ,A̅=X,B̅=B,A∩B̅̅ ̅̅ ̅̅ ̅={𝑐} ,So 𝐴 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅ = {𝑐} ≠ �̅� ∩ �̅� = 𝑋 ∩ 𝐵 = 𝐵 = {𝑏,𝑐}    

1.4.9 Example:- 

    If E is a subset of a topological space (𝑋, 𝜏),and if 𝑑(𝐹) ⊆ 𝐸 ⊆ 𝐹 for some 

subset 𝐹 ⊆ 𝑋,show that E is a closed set. 

1.4.10 Definition:- 

      A subset A of a topological space (𝑋, 𝜏) is called dense in X if �̅� = 𝑋. 

1.4.11 Example:- 
     Let (𝑋, 𝜏) be the indiscrete topology. If ∅ ≠ 𝐴 ⊆ 𝑋 then A is dense in X , i.e.  

�̅� = 𝑋 ( since X  the only closed set contain A). 

1.4.12 Example:- 
     In discrete topology (𝑋, 𝜏) every proper subset of X is not dense in X  ,i.e. 

 ∀𝐴 ⊂ 𝑋,�̅� = 𝐴. 

1.4.13 Example:- 
      In  topological space (ℝ, 𝜏) where 𝜏 = {ℝ,∅,Ea=(a,∞): 𝑎 ∈ ℝ} the sets 𝐴 =
{2,4,6,…}, B={1,3,5, … } are dense in ℝ while the set 𝐶 = {−2,-4,-6,…} is not dense 

in ℝ. 

1.4.14 Example:- 
   The set of rational numbers ℚ ⊂ ℝ in the usual topology (ℝ,𝜏) is dense in ℝ. 

Exercises: - 

1. Consider the following topology on  𝑋 = {𝑎,b,c,d,e} ,𝜏 = {𝑋,∅,{a},{𝑎,𝑏},{a,c,d}     

,{a,b,c,d},{a,b,e}} 

a) List the closed subsets of X. 
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b) Determine the closure of the sets {𝑎},{𝑏} and {𝑐}. 

c) Which sets in b) are dense in X. 

2. Let 𝜏 be the topology on ℕ which consists of ∅ and all subsets of ℕ of the form 

𝐸𝑛 ={n,n+1,n+2,…}were 𝑛 ∈ ℕ. 

a) Determine the closed subsets of (ℕ,𝜏). 

b) Determine the closure of the sets {7,24,47,85} and {3,6,9,12,…}. 

c) Determine those subsets of ℕ which are dense in ℕ. 

3. Let 𝜏 be the topological ℝ consists of of ∅,ℝ, and all open infinite intervals 𝐸𝑝 =

(a,∞),𝑎 ∈ ℝ. 

a) Determine the closed subsets of (ℝ,𝜏). 

b) Determine the closure of the sets [3,7),{7,24,47,85},{3,6,9,12,…}. 

4. Prove: If F is a closed contain any set A, then �̅� ⊂ 𝐹. 

5. If 𝐴 ∩ 𝐵 ≠ ∅ prove that �̅� ∩ �̅� = 𝐴 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅. 

6. If F is a closed set ,prove that ∀𝐴 ⊆ 𝑋; 𝐹 ∩ 𝐴̅̅ ̅̅ ̅̅ ̅ ⊆ 𝐹 ∩ �̅�. 

7. If U is an open set, prove that ∀𝐴 ⊆ 𝑋; 𝑈 ∩ �̅� ⊆ 𝑈 ∩ 𝐴̅̅ ̅̅ ̅̅ ̅̅ . 

8. If U is an open set and A is dense in X ,prove that 𝑈 ⊆ 𝑈 ∩ 𝐴̅̅ ̅̅ ̅̅ ̅̅ . 

9. Prove that, A is dense in X iff 𝐴𝑐 ∩ (𝐴′)𝑐 = ∅. 

10. Show that every non-finite subset of an infinite cofinite spae X is dense in X. 

 

1.5 The Interior,Exterior and Boundary points of a Set 

1.5.1 Definition:- 

      Let A be a subset of a topological space (𝑋, 𝜏) the interior of A ,denote by 𝐴∘ 

is  the union of all open subsets of  X  contained in A , i.e.                           

                                𝐴∘  = ⋃ 𝐺𝑖𝑖  ,  𝐺𝑖 ⊆ 𝐴 ,𝐺𝑖 is an open set.      

1.5.2 Example:- 

      Let 𝑋 = {a,b,c,d,e} and 𝜏 = {∅,{a},{c,d},{a,c,d},{b,c,d,e},𝑋} then {a,b,𝑒}∘ = ∅ ∪
{𝑎} = {𝑎} and{𝑎,c,𝑑}∘ = ∅ ∪ {𝑎} ∪ {𝑐,𝑑} ∪ {a,c,d}={a,c,𝑑}. 

1.5.3 Theorem:- 

      Let A be a subset of a topological space (𝑋, 𝜏) then 𝐴∘ = 𝐴
𝑐
𝑐. 

1.5.4 Theorem (Interior Axioms):- 

    If A and B are subsets of a topological space(𝑋, 𝜏)  then 

a)  𝑋∘ = 𝑋. 

b) 𝐴∘the largest open set contained in A. 

c) 𝐴∘is open iff 𝐴∘ = 𝐴. 

d) 𝐴∘ ⊆ 𝐴 

e) 𝐴∘∘ = 𝐴∘. 

f) (𝐴 ∩ 𝐵)∘ = 𝐴∘ ∩ 𝐵∘ 
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    Notice that(𝐴 ∪ 𝐵)∘ ≠ 𝐴∘ ∪ 𝐵∘ as the following example: 

1.5.5 Example:- 

      In example 1.5.2  A ∪ B = {a,b,e}∪{a,c,d}={a,b,c,d,e} then 𝐴° ∪ 𝐵° = {𝑎} ∪

{a,c,d}={a,c,d} and (𝐴 ∪ 𝐵)° = {𝑎,b,c,d,e} ,i.e. (𝐴 ∪ 𝐵)° ≠ 𝐴° ∪ 𝐵°. 
 

1.5.6 Definition:- 
      Let A be a subset of a topological space (𝑋, 𝜏) the exterior of A ,denote by 𝐴𝑒 is 

the set of all points interior to the complement, i.e. 𝐴𝑒 = 𝐴𝑐°
. 

1.5.7 Theorem (Exterior Axioms):- 

     If A and B are subsets of a topological space(𝑋, 𝜏)  then 

a)  𝑋𝑒 = ∅ , ∅𝑒 = 𝑋. 

b) 𝐴𝑒 ⊆ 𝐴𝑐 

c) 𝐴𝑒 = 𝐴𝑒𝑐𝑒
. 

d) (𝐴 ∪ 𝐵)𝑒 = 𝐴𝑒 ∩ 𝐵𝑒 

1.5.8 Definition:- 
      Let A be a subset of a topological space (𝑋, 𝜏) the boundary  of A ,denote by 

𝑏(𝐴) is the set of all points interior to neither A nor 𝐴𝑐, i.e. 𝑏(𝐴) = (𝐴° ∪ 𝐴𝑐°
)

𝑐
. 

1.5.9 Example:- 

Let 𝑋 = {a,b,c,d,e} ,𝜏 = {∅,X,{a},{c,d},{a,c,d},{b,c,d,𝑒}} and let 𝐴 = {𝑏,c,𝑑} then 

𝐴∘ = {𝑐,𝑑}, 𝐴𝑒 = {𝑎}, 𝑏(𝐴) = {𝑏,𝑒}. 

1.5.10 Example:- 

      Let A be a non-empty proper subset of an indiscrete space X. Then 𝐴∘ = ∅, 

𝐴𝑒 = ∅ , 𝑏(𝐴) = 𝑋. 

1.5.11 Example:- 

      Let A be a non-empty proper subset of discrete space X. Then 𝐴∘ = 𝐴, 𝐴𝑒 = 𝐴𝑐 

, 𝑏(𝐴) = ∅. 

-:pleExam 21.5.1 

      Let (ℝ,𝜏) be the usual topology then 

1) [a,b]°=[a,b)°=(a,b]°=(a,b)°=(a,b) , ℚ° = ∅. 

2) [a,b]e=[a,b)e=(a,b]e=(a,b)e=(-∝,a)∪(b, ∝) , ℚ𝑒 = ∅. 

3) 𝑏([a,b])=b([a,b))=b((a,b])=b((a,b))={a,𝑏} , 𝑏(ℚ) = ℝ. 

-:Example 31.5.1 

     The function f which assigns to each set its interior ,i.e. 𝑓(𝐴) = 𝐴°,does not 

commute with the function g which assigns to each set to its closure ,i.e. 𝑔(𝐴) = �̅� 

,since if we take ℚ the set of rational numbers as a subset of ℝ with the usual 

topology. Then 
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           (𝑔 ∘ 𝑓)(ℚ) = 𝑔(𝑓(ℚ)) = 𝑔(ℚ°) = 𝑔(∅) = ∅̅ = ∅. 

   (𝑓 ∘ 𝑔)(ℚ) = 𝑓(𝑔(ℚ)) = 𝑓(ℚ̅) = 𝑓(ℝ) = ℝ° = ℝ.       

-:Example 41.5.1 

be a topological space, 𝜏 = {∅,N,An={1,2,…,𝑛} , ℕ the (ℕ,𝜏)      Let 

 set of natural numbers then  

1) {1,2,4,6}°={1,2}, {1,2,4,6}e=∅,b({1,2,4,6}={3,4,5,…} . 

2) {5,7,9,20}°=∅, {5,7,9,20}e={1,2,3,4},b(5,7,9,20})={5,6,7,…}.        

-:Example 51.5.1 

    Let A be a subset of a co-finite topological space (𝑋, 𝜏)then  

a) If A is finite then  𝐴° = ∅, 𝐴𝑒 = 𝐴𝑐, 𝑏(𝐴) = 𝐴. 

b) If A is infinite then 

     either 𝐴𝑐is finite, i.e. A is open set then 𝐴° = 𝐴, 𝐴𝑒 = ∅, 𝑏(𝐴) = 𝐴𝑐 .  

      nor A is infinite then 𝐴° = ∅, 𝐴𝑒 = ∅, 𝑏(𝐴) = 𝑋.     

1.5.16 Example:- 

      Consider the topological space (ℝ, 𝜏), where 𝜏 consists of ∅, ℝ, and all open 

intervals 𝐸𝑎 = (𝑎,∞), 𝑎 ∈ ℝ then [7,∞)
°
=(7,∞) , [7,∞)𝑒 = ∅, 𝑏([7,∞)=(-∞,7].    

-: Exercises 

1. Let A be a subset of a topological space (𝑋, 𝜏) then prove that: 

  a) 𝑏(𝐴) = �̅� ∩ 𝐴𝑐 .̅̅ ̅̅   

  b) 𝑏(𝐴) is a closed set. 

  c) 𝑏(𝐴) = 𝑏(𝐴𝑐). 

d) 𝑏(𝐴) = �̅� − 𝐴°.  

  e) �̅� = 𝑏(𝐴) ∪ 𝐴°. 

  f) 𝑏(𝐴) ∩ 𝐴° = ∅. 

  g) 𝑏(𝐴) ∩ 𝐴𝑒 = ∅. 

𝐴° ∩ 𝐴𝑒 = ∅.   h)  

   i) 𝐴° ∪ 𝐴𝑒 ∪ 𝑏(𝐴) = 𝑋.  

2. Let A be a subset of a topological space (𝑋, 𝜏),show that �̅� = 𝐴° ∪ 𝑏(𝐴).  

3. Prove that A is closed and open iff 𝑏(𝐴) = ∅. 

4. Prove that in any topological space A subset  A is closed iff 𝑏(𝐴) ⊆ 𝐴 and A 

subset  A is open iff 𝑏(𝐴) ⊆ 𝑋 − 𝐴. 

5. Give an example to show that 𝑏(𝐴 ∪ 𝐵) ≠ 𝑏(𝐴) ∪ 𝑏(𝐵) for any A and B subsets    

     of a topological space  (𝑋, 𝜏). 
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6. Let 𝜏1 and 𝜏2be topologies on X with 𝜏1coarser than 𝜏2 ,i.e. 𝜏1 ⊂ 𝜏2 and let 𝐴 ⊂

𝑋.Then 

a) The 𝜏1 −interior of A is subset of the 𝜏2- interior of A. 

b) The 𝜏2 −boundary of A is subset of the 𝜏1- boundary of A. 

 

1.6 Bases and subbases  

1.6.1 Definition:- 

    Let (X,τ) be a topological space. A class ℬ of open subsets of X, i.e. ℬ ⊂ 𝜏 ,is a 

base for the topology 𝜏 iff every open set 𝐺𝜖𝜏 is the union of members of  ℬ, 

(equivalently for any point p belonging to an open set G there exists 𝐵 ∈ ℬ with 𝑝 ∈

𝐵 ⊂ 𝐺. 

1.6.2 Example:- 

     The class of open intervals ℬ = {(a,b): a,b∈ℝ} is a base for the usual topology 

(ℝ, 𝜏).Similarly, the class of open discs form a base for the usual topology (ℝ2, 𝜏). 

1.6.3 Example:- 

     The class ℬ = {{a}: a∈X} of all singleton subsets of X is a base for the discrete 

topology 𝜏 on X. 

1.6.4 Example:- 

     Let (𝑋, 𝜏) be a topological space where 𝑋={a,b,c,d} ,𝜏={X,∅,{a,b}, {c,d}} then 

ℬ1 = {{a,b},[c,d}}, ℬ2 = {𝑋,{a,b},{c,d}} are bases for the topology 𝜏 while ℬ3 =

{X,{a,b}} is not a base for the topology 𝜏 ,since {c,d}is an open set but it is not a 

union of members of ℬ3. 

     Note that it is not necessary to include the empty set in a base for a topology, 

since ∅ = ⋃{𝐵𝜆: 𝜆 ∈ ∅} ,also it is  not every family of subsets of a set X is a base for 

a topology for X  for example let 𝑋={a,b,c} then the class ℬ={{a,b},{b,c}} is not a 

base for any topology on X ,since {a,b},{b,c} are open sets and their intersection 

{a,b}∩{b,c}={b} is also an open set but {b}is not a union of members of ℬ. 

    The following theorem gives the necessary and sufficient conditions for a family 

of subsets to be a base for a topology. 

 

-:Theorem 51.6. 

      Let ℬ  be a class of subsets of a non- empty set X. Then ℬ is a base for some 

topology on X iff it possesses the following two properties : 

1) 𝑋 =∪ {𝐵: 𝐵 ∈ ℬ}. 

2) For any B1,B2 ∈ ℬ,𝐵1 ∩ 𝐵2 is a union of members of ℬ or equivalently , if  

     𝑝 ∈ 𝐵1 ∩ 𝐵2 then ∃𝐵𝑝 ∈ ℬ such that 𝑝 ∈ 𝐵𝑝 ⊂ 𝐵1 ∩ 𝐵2. 
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1.6.6 Example:- 

      Let ℬ  be a class of open –closed intervals in the real line ℝ, i.e. 

ℬ={(a,b]:a,b∈ℝ ,a<b} then ℬ is a base for a topology 𝜏 on ℝ .This topology  𝜏 is 

called the upper limit topology on ℝ (this topology is not equals to the usual 

topology). Similarly, the class of closed – open intervals , ℬ∗={[a,b):a,b∈ℝ ,a<b} is 

a base for a topology 𝜏∗ on ℝ called lower limit topology on ℝ. 

1.6.7 Example:- 

       For each 𝑛 ∈ ℤ ,define 𝐵(𝑛) = {
{𝑛}                      𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

{𝑛 − 1,n,𝑛 + 1} 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
 .The collection 

 
The collection ℬ = {𝐵(𝑛): 𝑛 ∈ ℤ} is a basis for a topology on ℤ ,this topology is 

called the digital line topology ,also ℤ with this topology is the digital line. 

-:Definition 81.6. 

    Let (𝑋, 𝜏) be a topological space,A class Ψ of open subsets of X, i.e. Ψ ⊂ 𝜏 is a 

subbase for the topology 𝜏 on X iff finite intersection of members of Ψ form a base 

for 𝜏.    

-:Example 91.6. 

     Let 𝑋 = {a,b,c,d} ,𝜏 = {∅,X,{a},{a,c},{a,d},{a,c,d}} and let 𝑆 = {{𝑎,c},{𝑎,d}} 

so finite intersection of members of S is ℬ = {{a},{a,c},{a,d},X} which is a base 

for 𝜏 therefore, S is a subbase for 𝜏  . 

-:Example 01.6.1 

     Every open interval (a,b) in the real line ℝ is the intersection of two infinite open 

intervals (𝑎,∞) and (−∞,b) ,i.e. (a,b)=(a,∞)∩(-∞,b). But the open intervals form 

a base for the usual topology on ℝ , hence the class of all infinite open intervals ( 

𝑆 = {(𝑎,∞) , (−∞,b):a,bϵℝ} ) is a subbase for ℝ. 

1.6.11 Example:- 

     Let (𝑋,𝜏) be the discrete topology then the family 𝑆 = {{𝑎,𝑏}}: 𝑎,𝑏𝜖𝑋} 

is a subbase for the discrete topology. 

1.6.12 Example:- 

     The family S of all infinite open strips is a subbase for ℝ2. 

1.6.13 Remark:- 
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     Let S be any family of subsets of a non-empty set X. S may not be a 

base for  a topology on X. However S is always generates a topology on 

X in the following sense: 

1.6.14 Theorem:- 

     Any family S of subsets of a non-empty set X is the subbase for a 

unique topology  𝜏  on X. That is, finite intersection of members of S form 

a base for topology 𝜏 on X. 

1.6.15 Example:- 

      Let 𝑋 = {a,b,c,d} then the family S={{a,b},{b,c},{d}} is a subbase for 

a topology on X. 

1.6.16 Theorem:- 

      Let S be a class of subsets of a non – empty set X. Then the topology  

𝜏 on X generated by S is the intersection of all topologies on X which 

contain S. 

1.6.17 Definition:- 

      Let p be any arbitrary point in a topological space (𝑋,𝜏). A class ℬ𝑝 

of open sets containing p is called a local base at p iff for each open set U 

contained p , ∃𝐵𝑝 ∈ ℬ𝑝 with the property 𝑝 ∈ 𝐵𝑝 ⊂ 𝑈 . 

         

 

 

 

 

 

1.6.18 Example:- 

      Let 𝑋 = {a,b,c,d} and 𝑇 = {𝑋,∅,{a},{a,b},{a,b,c}} then  

ℬ𝑎 = {{𝑎}}  ( or ℬ𝑎 = {{𝑎},{a,b},{a,b,c},𝑋}) , 

ℬ𝑏 = {{𝑎,b}} (or ℬ𝑏 = {{𝑎,b},{a,b,c},X}) , 

ℬ𝑐 = {{𝑎,b,c}} (or ℬ𝑐 = {{𝑎,b,c},X}) , 

ℬ𝑑 = {𝑋}. 

1.6.19 Example:- 

    Consider the topological space (ℝ, 𝜏) ,where τ is the usual topology of 

open intervals on ℝ. Consider the point 0 ∈ ℝ. The local base of 0 is the 

  

X 
U 

𝐵𝑝 
p 
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ℬ0 = {(a,b):a, b∈ℝ,a<0 < 𝑏}. Now if we take any 𝑥 ∈ ℝ then the local 

base of x is ℬ𝑥 = {(a,b):a, b∈ℝ,a<𝑥 < 𝑏}.  

1.6.20 Example:- 

     Consider the topological space (ℝ 2, 𝜏) where τ is the usual topology 

on ℝ2. Consider the point 𝑝 ∈ ℝ2. Then the class ℬ𝑝 of all open discs 

centered at  p is a local base at p. 

1.6.21 Theorem:- 

      Let ℬ be a base for a topology 𝜏 on X and let  𝑝 ∈ 𝑋,. Then the 

members of the base ℬ which contain p from a local base at the point p. 

1.6.22 Theorem:- 

      A point p in a topological space X is a limit point of 𝐴 ⊂ 𝑋 iff each 

members of some local base ℬ𝑝 at p contains a point of A different from 

p. 

1.6.23 Example:- 

      Consider the lower limit topology 𝜏 on the real line ℝ which has as a 

base the class of closed-open intervals [𝑎,𝑏) , and let 𝐴 = (0,1). Note that 

𝐺 = {1,2) is a 𝜏- open set containing 1 ∈ ℝ for which 𝐺⋂𝐴 = ∅ hence 1 

is not a limit point of A. On the other hand , 0 ∈ ℝ is a limit point of A 

since any open base set [𝑎,𝑏) containing 0 ,i.e. for which 𝑎 ≤ 0 < 𝑏 

contains points of A other than 0. 

1.6.24 Example:- 

        Every point p in a discrete topology has a finite local base. 

 

Exercises: - 

1. Let ℬ = {(a,b):a,𝑏 ∈ ℚ} be the class of open intervals in ℝ with rational 

    endpoints . Show that 

(1) ℬ is a basis for some topology on ℝ. 

(2) The topology generated by ℬis the usual Euclidean topology on ℝ. 

2. Let ℬ = {[a,b]:a,𝑏 ∈ ℝ} be the class of all closed intervals in ℝ. Can ℬ be 

a basis of some (not necessarily standard) topology on ℝ? Why or why 

not? 

3. Show that the class of closed intervals [a,b], where a and b are rational  

and a<b is not a base for a topology on the real line ℝ. 
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4. Show that the class of closed intervals [a,b],where a is rational and b 

is irrational and a<b is a base for a topology on the real line ℝ. 

5. Let ℬ,ℬ′ be two bases for X, satisfy the following conditions: 

(1) For every 𝐵 ⊂ ℬ and every 𝑥 ∈ 𝐵,there exists a 𝐵′ ∈ ℬ′s.t. 𝑥 ∈ 𝐵′ ⊂ 𝐵. 

(2) For every𝐵′ ⊂ ℬ′and every 𝑥 ∈ 𝐵′,there exists a 𝐵 ⊂ ℬs.t. 𝑥 ∈ 𝐵 ⊂ 𝐵′. 

     Show that ℬ and ℬ′generate the same topology on X. 

6. Let ℬand ℬ∗ be bases , respectively ,for topologies 𝜏 and 𝜏∗ on a set X. 

Suppose that 𝐵 ∈ ℬ is the union of members of ℬ∗ .Show that  𝜏 is 

coarser than 𝜏∗, i.e. 𝜏 ⊂ 𝜏∗. 

7. Show that the usual topology 𝜏 on the real line ℝ is coarser than the 

upper limit topology 𝜏∗ on ℝ which has as a base the class of open – 

closed intervals (𝑎,𝑏]. 
8. Determine which of the following collection of subsets of ℝ are bases: 

(1) 𝜏1 = {(𝑛,𝑛 + 2) ⊂ ℝ: 𝑛 ∈ ℤ}. 

(2) 𝜏2 = {[𝑎,𝑏) ⊂ ℝ: 𝑎 ≤ 𝑏}. 

(3) 𝜏3 = {(−𝑥,𝑥) ⊂ ℝ: 𝑥 ∈ ℝ}. 

(4) 𝜏4 = {(𝑎,𝑏) ∪ {𝑏 + 1} ⊂ ℝ: 𝑎 < 𝑏}. 

 

 

 

  

 

 

 

 

 

 
 

 

 

 


