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Chapter One

Topological Spaces

1.1 Topological space

1.1.1 Definition:-
Let X be a non empty set .A class 7 of subsets of X is a topology on X iff t
satisfies the following axioms
1) X and @ are members of .
2) The intersection of any finite number of members of 7 is a member of .
3) The union of any family of members of 1 is again in 7.
The pair (X, 7) is called a topological space and the members of t are called z-
open sets or simply open sets.
1.1.2 Example:-
If X is any set, then the collection {X, @} of subsets of X also forms a topology on
X. This topology is called the trivial (indiscrete) topology on X.
1.1.3 Example:-
If X is any set, then the family of all subsets of X forms a topology on X. This
topology is called the discrete topology on X.
Notice that the discrete topology contains the maximum possible number of open
sets since, relative to the discrete topology, every subset of X is open.

1.1.4 Example:-
Let T be a class of all open sets of a metric space (X, d) then t is a topology on X

,called the usual topology on X.

1.1.5 Example:-
Let T be a class of all subsets of X whose complements are finite together with
the empty set @. This class 7 is a topology on X which is called the co-finite topology.

1.1.6 Example:-
Consider the following classes of subsets of X = {a,b,c}
T, = {X'Q)r{a}r{b}'{a'b}}
T2 = {X,Q),{a},{b}}
T3 = {X,@,{H,C},{b,C}}

Observe that 7,is a topology on X since it satisfies the necessary three
axioms. But ,is not a topology on X since the unions {a} U {b} = {a,b} of two
members of 7, does not belongs to 7, ,i.e does not satisfy the axiom 3. Also 75 is
not a topology on X since the intersection {a,c}n{b,c}={c} of two sets in t;does not
belongs to t5,i.e T3 does not satisfy the axiom 2.




1.1.7 Example:-
Let T be a class of all subsets of N consisting of @ ,X and all subsets of N of the
form E,, ={1,2,...,n}with n € N then the class 7 is a topology on X.

1.1.8 Theorem:-

Let {z;:i € I} be a collection of topologies on a set X. Then the intersection N; t;
is also a topology on X.

Note that the union of two topologies for X need not be a topology on X, for
example t; = {X,0,{a}} , 7, = {X,0,{b}} is two topologies on X = {a,b,c} but the
union 7; U t,is not a topology on X.

1.1.9 Definition:-

Let X be a non-empty set and 7,and 7, be two topologies on X. If 7; c 1, then
T, 1S said to be finer than t,,and ,is said to be the courser than 7.

1.1.10 Example:-

Let X be a non-empty set then the discrete topology is finer of all topologies on
X and the indiscrete topology is courser of all topologies on X.

Notice that the class {T;} of all topologies on X i partially ordered by class
inclusion :

T, ST, for 11 CT,.
And we say that two topologies on X are not comparable if neither is coarser

than the other.

Exercises:-

1. Let t be a topology on a set X consisting of four sets ,i.e. T = {A,®,B,C}, where A
and B are non-empty disjoint proper subsets of X .What conditions must A and B
satisfy?

Determine all of the possible topologies on X = {a,b,c}.
List all topologies on X = {a,b,c} which consist of exactly four members.

. Show that the class 1 of all subsets of X whose complements are finite together
with the empty set @ is a topology on X.

. Let X be a set and assume peX.Show that the collection = consisting of @,X, and
all subsets of X containing p, is a topology on X. This topology is called the
particular point topology on X.

. Let X be a set and assume peX.Show that the collection t consisting of @,X, and
all subsets of X that exclude p, is a topology on X. This topology is called the
excluded point topology on X.

. Let 7 consist of @,R, and all intervals (-co,p) for peR .Prove that 7 is a topology
on R.




8. Let f: X — Y be a function fromm a non — empty set X into a topological space
(Y,7ry) and let Tyt be the class of intervals of open subsets of Y,.e. 7y =
{f 1(G): Gety}.Show that t4is a topology on X.
. Let t be a class of all subsets of N consisting of @ and all subsets of N of the form
E, ={nn+1,n+2,...}withn € N.
a) Show that t is a topology on N.
b) List the open sets containing the positive integer 6.

1.2 limit points

1.2.1 Definition:-

Let A be a subset of a topological space (X,7).A point peX is an accumulation
point or a limit point of A if every open set G containing p contains a point of A
different from p, i.e.

G open ,peG - An (G/{p}) + D.

The set of accumulation points of A, denoted by d(A) (or A").

Notice that a limit point p of a set A may or may n ot lie in the set A. Notice
also that in every topology, the point p is not a limit point of the set {x}.
1.2.2 Example:-

Consider A c R with the usual topology on R then :

a) d(A = ZeR:neZ*}) = {0}.

b) d([a,b])=d((a,b])=d([ab))=d((a,b))=[ab].

c) d(Q) =R.

d) d(Z) = 0.
1.2.3 Example:-

Let X = {a,b,c,d,e} and t = {@,{a},{b,d},{a,b,d},{b,c,d,e}, X} then

d({a,b,c})={c,d,e}, d({b,c,d}) = {b,c,d,e}

1.2.4 Theorem:-

If A,B and E are subsets of the topological space (X, 7), then the derived set has
the following properties:

a) d(p) = 0.

b) If A € B thend(A) € d(B).

c) Ifx € d(E), then x € d(E\{x}).

d) d(AUB) =d(A)ud(B).

Note that d(A N B) # d(4) nd(B), for example let X = {a,b,c}and let A =
{a,c},B={b,c} ,define the topology 7 on X by 7 = {X,0,{b},{a,b} then d(ANB) =
d({c}) =0 #d(A) nd(B) ={c}n{ac}={c}.




Exercises: -
1. Let A be a subset of a topological space (X, ) .When will a point p € X not be
a limit point of A?
. Let A be any subset of a discrete topological space X. Show that d(4) = @.
. Consider the topological space (R, 7), where 7 consists of of @,R, and all open
intervals E,, = (a,%0),a € R. Find the derived set of
a) The interval (4,10]; b) Z the set of integers.
. Determine the set of limit points of [0,1] in the complement topology on R.
. Let the the topology on N which consists of @ and all subsets of N of the form
E, ={nn+1,n+2,...}weren € N.
a) Find the limit points of the set A = {4,13,28,37}.
b) Determine those subsets E of N for which d(E) = N.
Let 7,and 7, be topologies on X such that 7, < t, and let A be any subset of X.
Show that every t,- limit point of A is also a 7, - limit point of A.

1.3 Closed Sets

1.3.1 Definition:-
Let (X, 7) be a topological space. A subset A of X is closed set if it contains all
its limit points, i.e. d(A) € A.
1.3.2 Example:-
Let X={ab,c,d}and t = {@,{a},{b,c},{a,b,c},X} then A = {a,d} is a closed set
since d(A) ={d} € A ={ad}.
1.3.3 Theorem:-
If x ¢ A, where A is a closed subset of a topological space (X, t) then there
exists an open set G such that x € G € A°.
1.3.4 Corollary:-
Let (X, 7) be a topological space. A subset A of X is closed set iff its complement
A° is open.
1.3.5 Example:-
Let X = {a,b,c,d,e}and T = {@,{a},{b,c},{a,b,c},{b,c,d,e},X} then
1) @,{a},{b,c},{a,b,c},{b,c,d,e},X are open sets.
2) X,{b,cd,e}{a,de}{d,e}{a},0 are closed sets.
3) 0,X,{a},{b,c,d,e} are both open and closed sets.
4) {b,c},{a,b,c} are open not closed sets.
5) {d,e},{a,d,e} are closed not open sets.
6) {e},{c},{d},{c,d} are not open and closed sets.




1.3.6 Example:-
In a discrete topology all subsets are both open and closed.

1.3.7 Corollary:-
Let F be a family of closed subsets in a topological space (X, t) then it has

the following property:
a) The intersection of any number of members of F is a member of F (X € F).
b) The union of any finite number of members of F is a member of F (@ € F).

Note that if A is a closed set then d(A) is also a closed set ( since A is closed then
d(A) € A,i.e. d(d(A)) € d(A) ,sod(A) isaclosed set) but the converse is not true
for example in the usual topology (R,u) the set (a,b) is an open set but d(a,b)=[a,b]
is a closed set.

1.4 The Closure of Sets

1.4.1 Definition:-

Let A be a subset of a topological space (X, ) the closure of A ,denote by A is

the intersection of all closed subsets of X containing A , i.e.
A =N;F; , ACF,F,is closed set.

Notice that A is closed set since its equals to intersection of closed sets ( corollary
1.3.7 part a) . Also A is the smallest closed set containing A, i.e. if F is any closed
set contain AthenC AC F .

1.4.2 Example:-
From example 1.3.5 we have {b,c}={b,c,d,e} N X={b,c,d,e}
,{d, e} = {d,e}n{a,d,e}nX={d,e} and {a,b} = X.
1.4.3 Exmaple:-
Let A be a subset of the cofinite topological space (X, t) then
i {A if Ais finite
X if Aisinfinite

Notice that the following theorem define the closure sets in terms of its limit
points
1.4.4 Theorem:-

Let A be a subset of a topological space (X, t) the closure of A is the union of A
and its set of limit points, i.e.

A= AUd(A).

1.4.5 Example:-

Let (R,7) be the usual topology then (a,b)=[a,b)=(a,b]=[a,b]=[a,b].
1.4.6 Example:-

Let (IR,7) be the usual topology then




a) If A={1:% ..} c Rthen

iy
A=Aud) = {11} Juf0}={1.1}..,0}.
b) If Q c R the set of rational numbers then
Q=Qud(@Q =QUR=R,
1.4.7 Theorem (Closure Axioms):-
If A and B are subsets of a topological space (X, t) then
a)p=0,X=X.
b) A € A.
c) A= Aiff Ais closed.
d) A=A
e) (AUB) =AUB.
Notice that (A N B) # A n B as the following example:
1.4.8 Example:-
Let X = {ab,c,de} 7 = {0, X {a},{ab}}. IfA ={ac}, B ={bc}thenANB =
{c}, ,A=X,B=B,ANB={c},S0ANB={c}+ANB=XNB=B={bc}
1.4.9 Example:-
If E is a subset of a topological space (X, 7),and if d(F) € E < F for some
subset F < X,show that E is a closed set.

1.4.10 Definition:-

A subset A of a topological space (X, 7) is called dense in X if A = X.
1.4.11 Example:-

Let (X, 7) be the indiscrete topology. If @ # A € X then Ais dense in X, i.e.
A = X (since X the only closed set contain A).

1.4.12 Example:-

In discrete topology (X, t) every proper subset of X is not dense in X ,i.e.

VA c XA = A.
1.4.13 Example:-

In topological space (R, ) where 7 = {R,0,E,=(a,):a € R} the sets A =
{2,4,6,..}, B={1,3,5, ... } are dense in R while the set C = {—2,-4,-6,...} is not dense
in R.

1.4.14 Example:-
The set of rational numbers Q < R in the usual topology (R,t) is dense in R.
Exercises: -
1. Consider the following topology on X = {a,b,c,d,e} ,t = {X,0,{a},{a,b},{a,c,d}
{ab,c,d},{ab,e}}
a) List the closed subsets of X.




b) Determine the closure of the sets {a},{b} and {c}.
c) Which sets in b) are dense in X.
. Let 7 be the topology on N which consists of @ and all subsets of N of the form
E, ={n,n+1,n+2,...}weren € N.
a) Determine the closed subsets of (N,7).
b) Determine the closure of the sets {7,24,47,85} and {3,6,9,12,...}.
c) Determine those subsets of N which are dense in N.
. Let 7 be the topological R consists of of @,IR, and all open infinite intervals E,, =
(a,©),a € R.
a) Determine the closed subsets of (IR,7).
b) Determine the closure of the sets [3,7),{7,24,47,85},{3,6,9,12,...}.
4. Prove: If Fis a closed contain any set A, then A c F.
IfANB # @provethat ANB =ANB.
If F is a closed set ,prove that VA € X;FNA S F n A.
If U is an open set, prove that VA S X; UNA € U N A.
If U is an open set and A is dense in X prove that U € U n A.
Prove that, A is dense in X iff A° n (A")¢ =
10 Show that every non-finite subset of an |nf|n|te cofinite spae X is dense in X.

1.5 The Interior,Exterior and Boundary points of a Set
1.5.1 Definition:-
Let A be a subset of a topological space (X, ) the interior of A ,denote by A°
is the union of all open subsets of X contained in A, i.e.
A° =U;G;, G; € A,G; is an open set.

1.5.2 Example:-

Let X = {a,b,c,d,e} and T = {@,{a},{c,d},{a,c,d},{b,c,d,e}, X} then {a,b,e}° =
{a} = {a} and{a,c,d}° = @ U {a} U {c,d} U {a,c,d}={a,c,d}.
1.5.3 Theorem:-

Let A be a subset of a topological space (X, 7) then A° = Ac.
1.5.4 Theorem (Interior Axioms):-

If A and B are subsets of a topological space(X, t) then

a) X°=X.

b) A°the largest open set contained in A.

c) A°isopeniff A° = A.

d) A°C A

) A°° = A°.

f) ANB) =A°NB°




Notice that(4 U B)° # A° U B” as the following example:
1.5.5 Example:-
In example 1.5.2 A UB = {a)b,e}u{a,cd}={a,b,c,d,e} then A"UB’ = {a} U
{a,c,d}={a,c,d}and (AU B) = {ab,cde} ie. (AUB) A UB".

1.5.6 Definition:-
Let A be a subset of a topological space (X, t) the exterior of A ,denote by A® is
the set of all points interior to the complement, i.e. A® = AC
1.5.7 Theorem (Exterior Axioms):-
If A and B are subsets of a topological space(X, ) then
a) X¢=0,0°=X.
b) A¢ C A€
c) A¢ = A°°°,
d) (AU B)® = A° N B*¢
1.5.8 Definition:-
Let A be a subset of a topological space (X, t) the boundary of A ,denote by

b(A) is the set of all points interior to neither A nor A°, i.e. b(4) = (4" U A°")".

1.5.9 Example:-

Let X = {a,b,c,d,e} ,t = {@,X,{a},{c,d},{a,c,d},{b,c,d,e}} and let A = {b,c,d} then
A° ={cd}, A° = {a}, b(A) = {b,e}.

1.5.10 Example:-

Let A be a non-empty proper subset of an indiscrete space X. Then A° = @,
A° =0 ,b(A) =X.

1.5.11 Example:-

Let A be a non-empty proper subset of discrete space X. Then A° = A, A® = A°
,b(A4) = Q.

1.5.12 Example:-

Let (R,7) be the usual topology then
1) [a,b]'=[a,b) '=(a,b]’=(a,b)’=(a,b) , Q" = @.

2) [a,b]¢=[a,b)¢=(a,b]®=(a,b)*=(-x,a)U(b, x) , Q¢ = @.
3) b([ab])=b([a,b))=b((a,b])=b((ab))={ab}, b(Q) = R.
1.5.13 Example:-

The function f which assigns to each set its interior ,i.e. f(4) = A°,does not
commute with the function g which assigns to each set to its closure ,i.e. g(4) = 4
,since if we take Q the set of rational numbers as a subset of R with the usual
topology. Then




(9N =g(f(@)=9(Q@)=g(@® =0=0.
Fe@=fg(@)=f@=fR =R =R
1.5.14 Example:-
Let (N,7) be a topological space, T = {@,N,A,={1,2,...n}, N the
set of natural numbers then
1) {1,2,4,6)°'={1,2},{1,2,4,6)°=0,b({1,2,4,6}={3,4,5,...} .
2) {5,7,9,20} =0, {5,7,9,20}°={1,2,3,4},b(5,7,9,20})={5,6,7,...}.
1.5.15 Example:-

Let A be a subset of a co-finite topological space (X, t)then

a) If A is finite then 4" = @, A° = A¢, b(4) = A.

b) If A is infinite then
either ACis finite, i.e. A is open setthen A" = A, A° = @, b(4) = A°.
nor A is infinite then 4° = @, 4° = @, b(4) = X.

1.5.16 Example:-

Consider the topological space (R, t), where 7 consists of @, R, and all open
intervals E, = (a,0), a € R then [7,00) =(7,0) , [7,00)€ = @, b([7,50)=(-0,7].
Exercises: -

1. Let A be a subset of a topological space (X, 7) then prove that:
a) b(A) = An A°.
b) b(A) is a closed set.
c) b(A) = b(A°).
d)b(A)=4A-4"
e)A=b(A)UA.
HbA)NA =0.
g)b(A)NA¢ =0
h) A" n A° = @.
i)A"UAUDb(A) = X.

2. Let A be a subset of a topological space (X, 7),show that A = A° U b(4).
3. Prove that A is closed and open iff b(A) = @.

4. Prove that in any topological space A subset A is closed iff b(A) € A and A
subset Ais open iff b(A) € X — A.

5. Give an example to show that b(A U B) # b(A) U b(B) for any A and B subsets
of a topological space (X, 7).




6. Let 7; and t,be topologies on X with t,coarser than 7, ,i.e.7; c 7, and let A c
X.Then
a) The 7, —interior of A is subset of the - interior of A.
b) The 7, —boundary of A is subset of the t,- boundary of A.

1.6 Bases and subbases

1.6.1 Definition:-

Let (X,t) be a topological space. A class B of open subsets of X, i.e. Bc t ,isa
base for the topology 7 iff every open set Get is the union of members of B,
(equivalently for any point p belonging to an open set G there exists B € B withp €
B c (.

1.6.2 Example:-

The class of open intervals B = {(a,b): a,b€R} is a base for the usual topology
(R, 7).Similarly, the class of open discs form a base for the usual topology (R?, 7).
1.6.3 Example:-

The class B = {{a}: aeX} of all singleton subsets of X is a base for the discrete
topology T on X.

1.6.4 Example:-

Let (X, T) be a topological space where X={a,b,c,d} ,7={X,?.{a,b}, {c,d}} then
B, = {{a,b},[c,d}}, B, = {X,{a,b},{c,d}} are bases for the topology t while B; =
{X,{a,b}} is not a base for the topology t ,since {c,d}is an open set but it is not a
union of members of B;.

Note that it is not necessary to include the empty set in a base for a topology,
since @ = U{B;: A € @} ,also it is not every family of subsets of a set X is a base for
a topology for X for example let X={a,b,c} then the class B={{a,b},{b,c}} is not a
base for any topology on X ,since {a,b},{b,c} are open sets and their intersection
{a,b}N{b,c}={b} is also an open set but {b}is not a union of members of B.

The following theorem gives the necessary and sufficient conditions for a family
of subsets to be a base for a topology.

1.6.5 Theorem:-
Let B be a class of subsets of a non- empty set X. Then B is a base for some
topology on X iff it possesses the following two properties :
1) X =U {B: B € B}.
2) For any B4,B, € B,B; N B, is a union of members of B or equivalently , if
p € B; N B, then 3B, € B suchthat p € B, € B; N By.




1.6.6 Example:-

LetB be a class of open —closed intervals in the real line R, i.e.
B={(a,b]:a,bER ,a<b} then B is a base for a topology = on R .This topology T is
called the upper limit topology on R (this topology is not equals to the usual
topology). Similarly, the class of closed — open intervals , B*={[a,b):a,bER ,a<b} is
a base for a topology 7 on R called lower limit topology on R.

1.6.7 Example:-

{n} if nisodd
fn—1nn+1} if niseven

CHoNoNoNoRoROoNo

—7 —6 -5 —4 -3 -2 —1

.The collection

For each n € Z ,define B(n) = {

The collection B = {B(n):n € Z} is a basis for a topology on Z this topology IS
called the digital line topology ,also Z with this topology is the digital line.
1.6.8 Definition:-

Let (X, ) be a topological space,A class ¥ of open subsets of X, i.e. ¥ c tisa
subbase for the topology t on X iff finite intersection of members of ¥ form a base
for 7.

1.6.9 Example:-

Let X = {a,b,c,d},r = {0,X,{a},{a,c},{a,d},{a,c,d}} and let S = {{a,c},{a,d}}
so finite intersection of members of S is # = {{a},{a,c},{a,d},X} which is a base
for t therefore, S is a subbase for .

1.6.10 Example:-

Every open interval (a,b) in the real line R is the intersection of two infinite open
intervals (a,) and (—oo,b) ,i.e. (a,b)=(a,0)N(-o0,b). But the open intervals form
a base for the usual topology on R , hence the class of all infinite open intervals (
S ={(a,) , (—oo,b):a,beR} ) is a subbase for R.

1.6.11 Example:-

Let (X,7) be the discrete topology then the family S = {{a,b}}: a,beX}

IS a subbase for the discrete topology.
1.6.12 Example:-

The family S of all infinite open strips is a subbase for R?.

1.6.13 Remark:-




Let S be any family of subsets of a non-empty set X. S may not be a
base for a topology on X. However S is always generates a topology on
X in the following sense:

1.6.14 Theorem:-

Any family S of subsets of a non-empty set X is the subbase for a
unique topology = on X. That is, finite intersection of members of S form
a base for topology 7 on X.

1.6.15 Example:-

Let X = {a,b,c,d} then the family S={{a,b},{b,c},{d}} is a subbase for
a topology on X.

1.6.16 Theorem:-

Let S be a class of subsets of a non — empty set X. Then the topology
T on X generated by S is the intersection of all topologies on X which
contain S.

1.6.17 Definition:-
Let p be any arbitrary point in a topological space (X,7). A class B,

of open sets containing p is called a local base at p iff for each open set U

contained p , 3B, € B, with the propertyp € B, c U .

X

1.6.18 Example:-
Let X = {a,b,c.d} and T = {X,0,{a},{a,b},{a,b,c}} then

By = {{a}} (or B, = {{a}{ab}{ab,chX}),
Bp = {{a,b}} (or B, = {{a,b}.{ab,c}X}),
B, = {{ab,c}} (or B = {{ab.c}X})
B, = {X}.
1.6.19 Example:-

Consider the topological space (R, t) ,where 7 is the usual topology of
open intervals on R. Consider the point 0 € R. The local base of 0 is the




By = {(a,b):a, bER,a<0 < b}. Now if we take any x € R then the local
base of x is B,, = {(a,b):a, bER,a<x < b}.
1.6.20 Example:-

Consider the topological space (R 2, t) where 7 is the usual topology
on R?. Consider the pointp € R?. Then the class B, of all open discs
centered at p is a local base at p.

1.6.21 Theorem:-

Let B be a base for a topology 7 on X and let p € X,. Then the
members of the base B which contain p from a local base at the point p.
1.6.22 Theorem:-

A point p in a topological space X is a limit point of A c X iff each
members of some local base B,, at p contains a point of A different from
p.

1.6.23 Example:-

Consider the lower limit topology t on the real line R which has as a
base the class of closed-open intervals [a,b) , and let A = (0,1). Note that
G = {1,2) is a T- open set containing 1 € R for which GNA = @ hence 1
Is not a limit point of A. On the other hand , 0 € R is a limit point of A
since any open base set [a,b) containing O ,i.e. for which a <0< b
contains points of A other than 0.

1.6.24 Example:-

Every point p in a discrete topology has a finite local base.

Exercises: -

1.Let B = {(a,)b):a,b € Q} be the class of open intervals in R with rational
endpoints . Show that

(1) B is a basis for some topology on R.

(2) The topology generated by Bis the usual Euclidean topology on R.

2.Let B = {[a,b]:a,b € R} be the class of all closed intervals in R. Can B be
a basis of some (not necessarily standard) topology on R? Why or why
not?

3.Show that the class of closed intervals [a,b], where a and b are rational

and a<b is not a base for a topology on the real line R.
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4. Show that the class of closed intervals [a,b],where a is rational and b
Is irrational and a<b is a base for a topology on the real line R.

5. Let B,B’ be two bases for X, satisfy the following conditions:

(1) For every B c B and every x € B,there exists a B’ € B's.t. x € B’ c B.
(2) For everyB’ c B'and every x € B’ there existsa B c Bs.t. x e B c B,
Show that B and B’generate the same topology on X.

6. Let Band B* be bases , respectively ,for topologies T and t* on a set X.
Suppose that B € B is the union of members of B* .Show that 7 is
coarser than t*, i.e. 7 c 7*,

7. Show that the usual topology 7 on the real line R is coarser than the
upper limit topology * on R which has as a base the class of open —
closed intervals (a,b].

8. Determine which of the following collection of subsets of R are bases:

D7y ={(nn+2) cR:n € Z}
(2)t, ={[a,b) € R:a < b}.
(3) 73 = {(—x,x) c R:x € R}.

@1, = {(ab)U{b+1} cR:a < b}.




