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Chapter Three 

 Connected and Compact Spaces 

3.1 Connected Sets 

3.1.1 Definition: 

      Two subsets A and B form a separation or partition of a set E in a topological 

space (𝑋, 𝜏) denote by 𝐸 = 𝐴|𝐵  iff they satisfy the followings: 

1) 𝐴 ≠ ∅ , B≠∅. 

2) 𝐸 = 𝐴 ∪ 𝐵. 

3) 𝐴 ∩ 𝐵 = ∅. 

4) �̅� ∩ 𝐵 = ∅  𝑎𝑛𝑑 𝐴 ∩ �̅� = ∅. 

 

 

 

           

3.1.2 Remark: 

      We can replace condition 4) by (�̅� ∩ 𝐵) ∪ (𝐴 ∩ �̅�) = ∅. 

3.1.3 Example: 

     Let  (𝑋, 𝜏) be   a topological   space where 𝑋 = {𝑎,b,c,d,e} , τ={X,∅,{c},{a,b,c}, 

{c,d,e}} , 𝐸 = {a,d,e},F={b,c,e},A={a},B={d,e},C={b} and 𝐷 = {𝑐,e}.Show that 

𝐸 = 𝐴|𝐵 and  𝐹 = 𝐶 ∤ 𝐷. 

Solution: 

1. 𝐴 ≠ ∅ , B≠∅ , 2. 𝐸 = 𝐴 ∪ 𝐵, 3. 𝐴 ∩ 𝐵 = ∅ , 4. �̅� ∩ 𝐵 = {𝑎,𝑏} ∩ {𝑑,𝑒} = ∅ , 𝐴 ∩

�̅� = {𝑎} ∩ {𝑑,𝑒} = ∅, so 𝐸 = 𝐴|𝐵 but 𝐶 ∩ �̅� = {b}∩X={b} ≠ ∅  i.e. 𝐹 = 𝐶 ∤ 𝐷.   

3.1.4 Example: 

       Let  (ℝ, 𝐷) be the usual topology on ℝ . If 𝐴 = (1,2),B=(2,3)&C=[3,4) then 

the sets A,B are separation since �̅�=[1,2], B̅=[2,3] then �̅� ∩ 𝐵 = ∅ and 𝐴 ∩ �̅� = ∅ but 

C,B are not separation since 3 ∈ 𝐶 and 3 is a limit point of B i.e. �̅� ∩ 𝐶 =  

[2,3]∩[3,4) = {3} ≠ ∅. 

A B 
E 

(𝑋,

 𝜏) 
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3.1.5 Definition: 

       Let E be a subset of topological (𝑋, 𝜏) is connected set if there does not exist 

a separation for E and E is disconnected set if there exist a separation for E. 

3.1.6 Example: 

       Consider the two topologies 𝜏1 = {{b},{a,b},{b,c},X,∅}, 𝜏2 = {{b},{c},{a,b},{b,c},X,∅} 

On the set 𝑋 = {𝑎,b,c} then X is connected in 𝜏1 and X is disconnected in 𝜏2since 

there is 𝑈 = {a,b},V={𝑐} s.t. 𝑋 = 𝑈|𝑉. 

3.1.7 Example: 

       If a set X consists of more than one point and it has a discrete topology, then 

it is disconnected. 

Solution: 

        If A is any nonempty proper subset of X then the pair of sets A and X/A is a 

separation of X. 

3.1.8 Example: 

         If 𝑝 ∈ ℝ then ℝ/{𝑝} is a disconnected topological space. 

Solution: 

       The pair 𝑈 = (-∞,p) and  V=(p,∞) is a separation of ℝ/{𝑝}. 

                         
3.1.9 Example: 

       Consider the following subsets of the plane ℝ2is connected 

                  𝐴 = {(0,𝑦): 1

2
≤ 𝑦 ≤ 1} , 𝐵 = {(x,y):y=sin(1

x
),0 < 𝑥 ≤ 1} 
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 Solution: 

      Each point in A is a limit point of B then A and B are not separation i.e. they 

are connected.          

3.1.10 Example: 

       Assume 𝑋 = (-1,0)∪(0,1) is disconnected then there exists ℝ is disconnected 

since the pair of sets (-1,0) and (0,1) is a separation of X. 

                                
3.1.11 Theorem: 

       If E is a subset of a subspace (𝑌,𝜏𝑌) of a topological space (𝑋, 𝜏) then E is 

𝜏𝑌 − connected  iff it is 𝜏 − connected. 

Proof: 

      In order to have a separation of E with respect to either topology, we must be 

able to write E as the union of two nonempty, disjoint sets. If A and B are two 

nonempty, disjoint sets whose union is E  then 𝐴,𝐵 ⊆ 𝐸 ⊆ 𝑌 ⊆ 𝑋. 

   (𝐴 ∩ �̅�)⋃(�̅� ∩ 𝐵) = ((𝐴 ∩ 𝑌) ∩ �̅�) ∪ (�̅� ∩ (𝑌 ∩ 𝐵)) = (𝐴 ∩ 𝐵𝑌
̅̅̅̅ ) ∪ (𝐴𝑌

̅̅̅̅ ∩ 𝐵) 

       Thus if the condition is satisfied with respect to one topology, it is satisfied 

with respect to the other. □ 

3.1.12 Theorem: 

       Let (𝑋, 𝜏) be a topological space . X is disconnected iff there exists a non-

empty proper subset of X which is both open and closed. 

Proof: 

         ⇒ 

      Suppose 𝑋 = 𝐺 ∪ 𝐻   where G and H are non-empty and open then G is a non-

empty proper subset of X and since 𝐺 = 𝐻𝑐, G is both open and closed. 

        ⇐ 

      Suppose A is a non-empty proper subset of X which is both open and closed. 

Then 𝐴𝑐  is also non-empty and open and 𝑋 = 𝐴 ∪ 𝐴𝑐. Accordingly, X is 

disconnected.□ 

3.1.13 Example: 

       The indiscrete topology (𝑋, 𝜏) is connected topology since 𝑋 and ∅ are only 

subsets of 𝑋 which are both open and closed. 
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2.1.14 Example: 

      Let  (𝑋, 𝜏) be a co-finite topology  where X is infinite is connected space.  

Solution: 

       Assume X is disconnected then there exists  𝐴,𝐵 are nonempty open subset of 

X and 𝐴 ∩ 𝐵 = ∅ separation for X then 𝐴𝑐 ,𝐵𝑐 are finite sets and 𝐴𝑐 ∪ 𝐵𝑐 = 𝑋 this 

implies that X is finite and this is contradiction since X is infinite ,so X is connected. 

2.1.15 Exercise: 

     Let (X, τ) be a co-finite topology where X is finite is disconnected space. 

2.1.16 Example: 

      In ℝ with the lower limit topology then ℝ is disconnected since every intervals 

[a,b) are open and closed sets. 

3.1.17 Theorem: 

      If C is a connected subset of a topological space (X, τ) which has a separation 

𝑋 = 𝐴|𝐵  then either 𝐶 ⊆ 𝐴 or 𝐶 ⊆ 𝐵.  

Proof: 

      Suppose that 𝑋 = 𝐴|𝐵 then 

                𝐶 = 𝐶 ∩ 𝑋 = 𝐶 ∩ (𝐴 ∪ 𝐵) = (𝐶 ∩ 𝐴) ∪ (𝐶 ∩ 𝐵) 

                (𝐶 ∩ 𝐴) ∩ (𝐶 ∩ 𝐵) = 𝐶 ∩ (𝐴 ∩ 𝐵) = 𝐶 ∩ ∅ = ∅ 

       ((𝐶 ∩ 𝐴) ∩ (𝐶 ∩ 𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) ∪ ((𝐶 ∩ 𝐴̅̅ ̅̅ ̅̅ ̅) ∩ (𝐶 ∩ 𝐵)) ⊆ (𝐴 ∩ �̅�) ∪ (�̅� ∩ 𝐵) = ∅ 

      Thus we see that if we assume that both 𝐶 ∩ 𝐴 = ∅ and 𝐶 ∩ 𝐵 = ∅ we have 

a separation for 𝐶 = (𝐶 ∩ 𝐴)|(𝐶 ∩ 𝐵).Hence, either 𝐶 ∩ 𝐴 is empty so that 𝐶 ⊆

𝐵  or or 𝐶 ∩ 𝐵 is empty so that 𝐶 ⊆ 𝐴  .□   

3.1.18 Corollary(1): 

       If C is a connected set in a topological space (X, τ) and 𝐶 ⊆ 𝐸 ⊆ 𝐶̅ then E is 

a connected set. 

Proof: 

       If E is not a connected set, it must have a separation 𝐸 = 𝐴|𝐵 .By theorem  

3.1.17 must be contained in A or contained in B. Assume 𝐶 ⊆ 𝐴 it  follows  that 

𝐶̅ ⊆ �̅� and hence �̅� ∩ 𝐵 ⊆ �̅� ∩ 𝐵 = ∅. On the other hand,𝐵 ⊆ 𝐸 ⊆ 𝐶̅ and so 𝐵 ∩ 𝐶̅ =

𝐵,so that we must have 𝐵 = ∅,which contradicts our hypothesis that 𝐸 = 𝐴|𝐵.□ 



22 
 

3.1.19 Corollary(2): 

       If every two points of a set E are contained in some connected subset of E, 

then E is a connected set. 

Proof: 

      If E is not connected, it must have a separation 𝐸 = 𝐴|𝐵.Since A and B must 

be nonempty, let us choose points 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵.From the hypothesis we know 

that a and b must be contained in some connected subset C contained in E. By 

theorem 3.1.17 requires that C be either a subset of A or a subset of B. Since A 

and B are disjoint, this is a contradiction then E is connected. □ 

3.1.20 Corollary (3): 

      The union E of any family {𝐶𝜆} of connected sets having a nonempty 

intersection ( ⋂ 𝐶𝜆𝜆 ≠ ∅) is a connected set. 

Proof: 

       If E is not connected, it must have a separation 𝐸 = 𝐴|𝐵.By hypothesis, we 

may choose a point 𝑥 ∈ ⋂ 𝐶𝜆𝜆 . The point 𝑥 must belong to either A or B. Let us 

suppose 𝑥 ∈ 𝐴.Since 𝑥 belongs to 𝐶𝜆 for every 𝜆, 𝐶𝜆 ∩ 𝐴 ≠ ∅ for every 𝜆.By 

theorem 3.1.17, however, each 𝐶𝜆 must be either a subset of A or a subset of B. 

Since A and B are disjoint sets we must have 𝐶𝜆 ⊆ 𝐴 for all 𝜆 , and so𝐸 ⊆ 𝐴. 

From this we obtain the contradiction that 𝐵 = ∅.□ 

3.1.21 Remark: 

1. The structure of the connected subsets of the real line is deceptively simple.  

     For example, if the removal of a single point 𝑥 from a connected set C leaves  

     a disconnected set, then 𝐶/{𝑥} is the union of two disjoint connected sets. 

2. Another geometrically reasonable property of connected sets is given in the 

following theorem: 

3.1.22 Theorem: 

      If  a connected set C has a nonempty intersection with both a set E and the 

complement of E in a topological space (X, τ),then C has a nonempty intersection 

with the boundary of E (i.e. 𝐶 ∩ 𝑏(𝐸) ≠ ∅). 
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Proof: 

       We will show that if we assume that C is disjoint from 𝑏(𝐸) we obtain the 

contradiction  that 𝐶 = (𝐶 ∩ 𝐸)|(𝐶 ∩ 𝐸𝑐).  

        From  the  equation  𝐶 = 𝐶 ∩ 𝑋 = 𝐶 ∩ (𝐸 ∪ 𝐸𝑐) = (𝐶 ∩ 𝐸) ∪ (𝐶 ∩ 𝐸𝑐) we 

see that C is the union of the two sets. These two sets are nonempty by 

hypothesis. If we calculate  

              (𝐶 ∩ 𝐸) ∩ (𝐶 ∩ 𝐸𝑐)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊆ (𝐶 ∩ 𝐸) ∩ 𝐸𝑐̅̅ ̅ = 𝐶 ∩ (𝐸 ∩ 𝐸𝑐̅̅ ̅) = 𝐶 ∩ 𝑏(𝐸), 

we see that the assumption that 𝐶 ∩ 𝑏(𝐸) = ∅  leads to the conclusion that 

(𝐶 ∩ 𝐸) ∩ (𝐶 ∩ 𝐸𝑐)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ∅ . In the same way we may show that(𝐶 ∩ 𝐸)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∩ (𝐶 ∩ 𝐸𝑐) = ∅     

, and we have a separation of C.□ 

3.1.23 Definition: 

       Let (𝑋, 𝜏) be a connected topological space . A cutset of X is a subset of X 

such that X/S is disconnected . A  cutpoint of X is a point 𝑝 ∈ 𝑋 such that {𝑝} is a 

cutset of X. A cutset or cutpoint of X  is said to separate X. 

3.1.24 Example: 

       The plane ℝ2 is connected . If we remove the circle 𝑆1, we are left with two 

disjoint nonempty open sets. 

                         

3.1.25 Theorem: 

      Let 𝑋1 , ⋯  , 𝑋𝑛be connected spaces. Then the product space 𝑋1 × ⋯  × 𝑋𝑛 is 

connected. 

Proof: 

     We shall prove the product of two spaces. The general result can then be shown 

by induction. Assume  that X and  Y  are  connected  topological  spaces. For every 
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 𝑥 ∈  𝑋, the subspace {𝑥} × 𝑌 of 𝑋 × 𝑌  

is homeomorphic to Y and  is  therefore 

connected. Similarly, for every 𝑦 ∈  𝑌,  

the  subspace 𝑋 ×   {𝑦}  of   𝑋 ×  𝑌  is  

connected. Thus, by  Corollary  3.1.20, 

for  every  𝑥 ∈  𝑋 and  𝑦 ∈  𝑌  the  set  

({𝑥}  ×  𝑌) 𝑈 (𝑋 ×  {𝑦}) is connected 

in 𝑋 ×  𝑌.  

       Now  fix 𝑥0  ∈ 𝑋  and  let  y  vary. 

Each  set  ({𝑥0}  ×   𝑌)  𝑈  (𝑋 ×  {𝑦} ) 

Contains  the  set  {𝑥0 }  ×  𝑌.  It   then 

follows by Corollary  3.1.20 that ⋃ (({𝑥0}  ×   𝑌) ∪ (𝑋 ×  {𝑦} ))𝑦 ∈ 𝑌  is connected 

in 𝑋 ×  𝑌. Furthermore, ⋃ (({𝑥0}  ×   𝑌) ∪ (𝑋 ×  {𝑦} ))𝑦 ∈ 𝑌 = 𝑋 ×  𝑌, implying 

that 𝑋 ×  𝑌 is connected.□ 
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3.2 Components 

3.2.1 Definition: 

       A component E of a topological space (𝑋, 𝜏) is a maximal connected subset 

of X i.e. E is connected and E is not A proper subset of any connected subset of X.  

3.2.2 Example: 

      If X is connected then X has one component X itself . Also (ℝ,𝜏) the usual 

topology has one component ℝ itself. 

3.2.3 Example: 

       Consider the following topology on 𝑋 = {𝑎,b,c,d,𝑒} , 𝜏 = {𝑋,∅,{a},{c,d},{a,c,d}, 

{b,c,d,e}} then the components of X are {a} and {b,c,d,e}.Any other connected 

subset of X such that {𝑏,d,𝑒} is a subset of one of the components. 

3.2.4 Theorem: 

       The components of a topological space(𝑋, 𝜏)  are closed subsets of X. 

Proof: 

       If C is a component of X, choose a point 𝑥 ∈ 𝐶 and suppose that 𝑦 ∈ 𝐶̅. Since 

𝐶̅ is a connected set by Corollary 1,𝑦 is in a connected subset of X which contains 

𝑥. Hence𝐶̅ ⊆ 𝐶 , and so C must be closed.□ 

3.2.5 Theorem: 

        Every connected subset of a topological space (𝑋, 𝜏)  is contained in a 

connected component. 

Proof: 

        Assume A is a connected subset of a topological space (𝑋, 𝜏)  . If {𝐴𝑖: 𝑖 ∈ 𝐼} is 

a family of connected contained A i.e. 𝐴𝑖 ⊆ 𝐴; ∀𝑖 ∈ ℕ then 𝐴 ≠ ∅ ,so ⋂ 𝐴𝑖 ≠ ∅𝑖  

by Corollary (3) we get 𝐶 = ⋃ 𝐴𝑖𝑖  is a connected contain A .If E is connected 

contain C then E also contain A , so E=C then C is a component contain A. 

3.2.6 Corollary: 

        Every point in a topological space (𝑋, 𝜏)  is contained in a connected 

component. 
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Proof: 

        Since for every 𝑝 ∈ 𝑋 the set {𝑝} is connected then by theorem 3.2.5 Every 

point in a topological space (𝑋, 𝜏)  is contained in a connected component.□ 

3.2.7 Theorem: 

        The component of a topological space (𝑋, 𝜏)  forms a partition of X.  

Proof: 

        Let {𝐶𝑖}𝑖∈ℕ be a family of connected component in a topological space 

(𝑋, 𝜏)  then  

1. 𝐶𝑖 ∩ 𝐶𝑗 = ∅,∀𝑖 ≠ 𝑗 since if 𝐶𝑖 ∩ 𝐶𝑗 ≠ ∅ then by corollary (3) we get 𝐶𝑖 ∪ 𝐶𝑗  is 

connected contain the sets 𝐶𝑖 ,𝐶𝑗  and since 𝐶𝑖,𝐶𝑗  are connected component 

then 𝐶𝑖 = 𝐶𝑖 ∩ 𝐶𝑗 = 𝐶𝑗  and this is contradiction. 

2. It’s clear that 𝑋 = ⋃ 𝐶𝑖𝑖∈ℕ .□ 
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3.3 Locally Connected Spaces 

3.3.1 Definition: 

      A topological space (𝑋, 𝜏) is locally connected at 𝑝 ∈ 𝑋 iff every open set G 

containing p, there exists a connected open set 𝐺∗containing 𝑝 and contained in G. 

Thus a space is locally connected iff the family of all open connected sets is a base 

for the topology for the space.  

              

 

 

 

3.3.2 Remark: 

          A locally connected set need not be connected. For example, a set consisting 

of two disjoint open intervals is locally connected but not connected. The connected 

subsets of the real numbers are locally connected, but this implication need not hold 

in general i.e. in topological spaces The connected subsets need not be a locally 

connected set. 
      

 

 

 

 

3.3.3 Example 

          Every discrete topological space (𝑋, 𝜏) is locally connected. 

Solution: 

     If 𝑝 ∈ 𝑋 then {𝑝} is an open connected set containing 𝑝 which is contained in 

every open set containing 𝑝 ( Note that X is not connected if X contains more than 

one point).  

3.3.4 Example: 

      Let A and B be subsets of the plane ℝ2 of example 3.1.9 , 𝐴 ∪ 𝐵 is a connected 

set but 𝐴 ∪ 𝐵 is not locally connected at 𝑝 = (0,1). For example the open disc with 

center p and radius 1

4
 does not contain any connected open set contain 𝑝. 

(𝑋, 𝜏) 

G ●p 𝐺∗ 

locally connected set   ⇏     connected sets                

                                                                                                                   in topological spaces 

connected sets              ⇏      locally connected set 

connected sets              ⇒    locally connected set         in real numbers 
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3.3.5 Theorem: 

      Let E be a component in locally connected space (𝑋, 𝜏) then E is open. 

Proof: 

     Let 𝑝 ∈ 𝐸 . Since X is locally connected space then 𝑝 belongs to at least one 

connected set 𝐺𝑝 but E is the component of 𝑝 hence 𝑝 ∈ 𝐺𝑝 ⊂ 𝐸 and so 𝐸 =∪

{𝐺𝑝: 𝑝 ∈ 𝐸}. Therefore, E is open since it is the union of open sets. □ 

3.3.6 Theorem: 

      Let (𝑋, 𝜏) be a  locally connected space and let Y be an open subset of X then 

the subspace (𝑌, 𝜏𝑌) is locally connected. 

Proof: 

      Assume 𝑝 ∈ 𝑌, 𝑁 𝑖𝑠 𝑎𝑛 𝑜𝑝𝑒𝑛 set in (𝑌, 𝜏𝑌) contain 𝑝 so there exist an open set 

U in X such that 𝑌 ∩ 𝑈 = 𝑁 but Y is an open set in X ,so N is an open set in X 

contain 𝑝 and X is locally connected then there exists a connected set  W in X such 

that 𝑝 ∈ 𝑊 ⊆ 𝑈 . Now we have 𝑉 = 𝑊 ∩ 𝑌 ⊆ 𝑌 ∩ 𝑈 = 𝑁 where V is a connected 

set in Y contain 𝑝 so (𝑌, 𝜏𝑌) is locally connected.□  
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3.4 Compact Spaces 

3.4.1 Definition: 

    Let A be a subset of a topological space (𝑋, 𝜏) and let 𝒜 = {𝐺𝑖}𝑖 be a collection 

of subsets of X then: 

1. The collection 𝒜 is said to cover A or to be a cover of A is contained in the 

union of sets in 𝒜 ,(i.e. 𝐴 ⊆ ⋃ 𝐺𝑖𝑖 ). 

2. If 𝒜 covers and each set in 𝒜 is open then we call 𝒜 an open cover of A. 

3. If 𝒜 covers A ,and 𝒜′ is a subcollection of 𝒜 that also covers A, then 𝒜′ is 

called a subcover of 𝒜. 

            

 

 

 

3.4.2 Example: 

      Consider the class 𝒜 = {𝐷𝑝: 𝑝 ∈ ℤ × ℤ}, where 𝐷𝑝 is the open disc in the plane 

ℝ2with radius 1 and center 𝑝 = (𝑚,𝑛),𝑚 and 𝑛 integers.Then 𝒜 is a cover of ℝ2, 

i.e. every point in ℝ2 belongs to at least one member of 𝒜. 

                                   

3.4.3 Remark: 

       In example 3.4.2 if we take the collection of open discs ℬ = {𝐷𝑝
∗ :𝑝 ∈ ℤ × ℤ}, 

where 𝐷𝑝
∗  has center 𝑝 and radius 1

2
 , is not a cover of  ℝ2.For example the point 

(1

2
,1
2
) ∈ ℝ2 does not belong to any member of  ℬ.      

(𝑋, 𝜏) 

1𝐺𝑖 

 
𝐺3 

 

A 
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3.4.4 Definition: 

      A topological space (𝑋, 𝜏) is compact iff every open cover of X  has finite 

subcover,( i.e. if 𝒜 = {𝐺𝑖}𝑖 is an open cover for X (𝑋 ⊆ ⋃ 𝐺𝑖𝑖 ) then there exists 

{𝐺1,𝐺2, … ,𝐺𝑛} finite subcover s.t. 𝑋 ⊆ ⋃ 𝐺𝑖
𝑛
𝑖=1 . 

3.4.5 Example: 

     Let A be any finite subset of a topological space (𝑋, 𝜏) then A is compact. 

Solution:   

      Let 𝐴 = {𝑎1,𝑎2,…,𝑎𝑛} be a finite subset of a topological space (𝑋, 𝜏) and let 

𝒜 = {𝐺𝑖}𝑖 be an open cover for A, i.e. 𝐴 ⊆ ⋃ 𝐺𝑖𝑖  then 

       

 

 

 

 

Then 𝐴 = {𝑎1,𝑎2,…,𝑎𝑛} ⊆ {𝐺1,𝐺2, … ,𝐺𝑛} = ⋃ 𝐺𝑖
𝑛
𝑖=1  ,A is compact. 

3.4.6 Example: 

    The open interval 𝐴 = (0,1) on the real line ℝ with the usual topology is not 

compact. 

Solution:   

     Assume A is compact and let 𝒜 = {𝐺𝑛 = ( 1

𝑛+2
,1

𝑛
): 𝑛 ∈ ℕ} = {(1

3
,1),(1

4
,1
2
),(1

5
,1
3
),..} 

be an open cover for A such that 𝐴 ⊆ ⋃ 𝐺𝑛
∞
𝑛=1  then 𝒜 has finite subcover 𝒜′ =

{(𝑎1,𝑏1),(𝑎2,𝑏2),…,(𝑎𝑛,𝑏𝑛)} for A . 

      Let ∈= min {𝑎1,𝑎2,…, 𝑎𝑛} then ∈> 0 and (𝑎1,𝑏1)∪(𝑎2,𝑏2)∪…∪(𝑎𝑛,𝑏𝑛) ⊆ (∈ ,1).But 

(0, ∈] and (∈ ,1) are disjoint  hence 𝒜′is not a cover of A and A is not compact 

∵ 𝑎1 ∈ 𝐴 ⟶  ∃ 𝐺1  ∈  𝒜,  s.t. 𝑎1 ∈ 𝐺1 
∵ 𝑎2 ∈ 𝐴 ⟶  ∃ 𝐺2  ∈  𝒜,  s.t. 𝑎2 ∈ 𝐺2  

         . 
          . 
          . 
         

∵ 𝑎𝑛 ∈ 𝐴 ⟶  ∃ 𝐺𝑛  ∈  𝒜,  s.t. 𝑎𝑛 ∈ 𝐺𝑛  
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3.4.7 Example: 

     The subset 𝐴 = {0} ∪ {1

𝑛
: 𝑛 ∈ ℕ} is compact in ℝ with the usual topology. 

Solution:   

     Let 𝒜 be an open cover for A. Since  0 ∈ 𝐴 then there exists at least one open 

set  𝑈0 ∈ 𝒜 ,  0 ∈ 𝑈0.Let 𝜀 > 0 ,  s.t.   0∈(-ε,ε)⊆𝑈0. By  Archimedes  theorem 

∃𝑘 ∈ ℕ,  s.t. 1

𝑘
< ℰ ⟶ 1

𝑛
∈(-ε,ε)⊆U0,n>k .Now since 

1

𝑛
∈ 𝐴 ,1≤n≤k⟶∃𝑈𝑛 ∈

𝒜,  s.t. 1

𝑛
< 𝑈𝑛 ,1≤n≤k , so {U0,U1,U2,…,Uk} is a finite subcover of 𝒜 for A .Then 

A is compact. 

                         
3.4.8 Example: 

       Consider (0,1] as a subspace of ℝ then (0,1] is not compact , since 𝒜 =

{(1

𝑛
,2): 𝑛 ∈ ℤ+} is an open cover for (0,1] has no finite subcover of 𝒜 that cover 

(0,1]. 

3.4.9 Example: 

      The real line ℝ with the usual topology is not compact since 

𝒜={…,(-1,1),(0,2),(1,3),…} is an open cover has no finite subcover for. 

 
3.4.10 Example: 

     Let (𝑋, 𝜏) be the co-finite topology then X is compact. 

Solution:   

     Let 𝒜 = {𝐺𝑖} be an open cover of X .Choose 𝐺0 ∈ 𝒜. Since 𝜏 is the co-finite 

topology, 𝐺0
𝑐 is a finite set , i.e. 𝐺0

𝑐 = {𝑎1,𝑎2,…,𝑎𝑚}.Since 𝒜be an open cover of 

X, for each 𝑎𝑘 ∈ 𝐺0
𝑐  ∃𝐺𝑖𝑘

∈ 𝒜 such that 𝑎𝑘 ∈ 𝐺𝑖𝑘
.Hence 𝐺0

𝑐 ⊆ 𝐺𝑖1
∪ 𝐺𝑖2

∪ … ∪ 𝐺𝑖𝑚
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and 𝑋 = 𝐺0 ∪ 𝐺0
𝑐 = 𝐺0 ∪ 𝐺𝑖1

∪ 𝐺𝑖2
∪ … ∪ 𝐺𝑖𝑚

.Thus X is compact. 

3.4.11 Example: 

    Every infinite subset A of a discrete topological space (𝑋, 𝜏) is not compact. 

Solution: 

     Let 𝒜 = {{𝑎}: 𝑎 ∈ 𝐴} be a collection of singleton subsets of A,i.e. 𝐴 =∪ {{𝑎}: 𝑎 ∈ 𝐴}  

then 𝒜 is an open cover of A since every subsets of a discrete topology are open. 𝒜 

is infinite since A is infinite ,so 𝒜 has no finite subcover for A. 

3.4.12 Remark: 

     From examples 3.4.5 and 3.4.11we get a subset of a discrete topology is compact 

iff it is finite. 

3.4.13 Example: 

     The indiscrete topology (X, τ) is compact. 

Solution: 

     Since τ = {∅,X} then any open cover for X must be of the form 𝒜 = {𝑋} 

which is finite cover since it contain X only , X is compact. 

3.4.14 Theorem: 

      If A is a subset of a subspace (X∗, τ∗) of a topological space (X, τ) then A is 

τ∗-compact iff it is τ -compact.  

Proof: 

    ⟹ 

     Suppose A is τ∗-compact and {𝐺𝑖}  is some τ -open covering of A. The family 

of sets {𝑋∗ ∩ 𝐺𝑖} clearly forms a τ∗-open covering for  A since 𝐴 = 𝑋∗ ∩ 𝐴 ⊆ 𝑋∗ ∩

(⋃ 𝐺𝑖𝑖 ) = ⋃ (𝑖 𝑋∗ ∩ 𝐺𝑖). Since A is τ∗-compact, there is a finite subcovering 𝐴 ⊆

⋃ (𝑋∗ ∩ 𝐺𝑖)𝑛
𝑖=1 ⊆ ⋃ 𝐺𝑖

𝑛
𝑖=1  of A which yields a finite subcovering of A from {𝐺𝑖}. 

     ⟸ 

      Now suppose that A is τ -compact and {𝐺𝑖
∗} is some τ∗-open covering of A. 

From the definition of the induced topology, each 𝐺𝑖
∗ = 𝑋∗ ∩ 𝐺𝑖 for some τ - open 

set Gi. The family {𝐺𝑖}   is clearly a τ -open covering of A and so there must be 

some finite subcovering 𝐴 ⊆ ⋃ 𝐺𝑖
𝑛
𝑖=1 . But then we have 𝐴 = 𝑋∗ ∩ 𝐴 ⊆ 𝑋∗ ∩

(⋃ 𝐺𝑖
𝑛
𝑖=1 ) = ⋃ (𝑋∗ ∩ 𝐺𝑖) = ⋃ 𝐺𝑖

∗𝑛
𝑖=1 .𝑛

𝑖=1 and so a finite subcovering of A from 

{𝐺𝑖
∗}.□ 

(X, τ) 

(X∗, τ∗) 
A 
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3.5 Finite Intersection Property 

3.5.1 Definition: 

      A family {𝐴𝑖} of sets  will  be  said  to  have  the Finite Intersection Property 

( denote by F.I.P.) iff every finite subfamily {𝐴𝑖} 𝑖=1
𝑛 of the family has a nonempty 

intersection ⋂ 𝐴𝑖 ≠ ∅𝑛
𝑖=1 . 

3.5.2 Example: 

      𝑇ℎ𝑒 𝑓𝑎𝑚𝑖𝑙𝑦 𝒜 = {(0,1

𝑛
): 𝑛 ∈ ℕ} = {(0,1),(0,1

2
),(0,1

3
).(0,1

4
), … } ℎ𝑎𝑠 𝐹. 𝐼. 𝑃.  

Solution: 

      Let {(0,𝑎1) , (0,𝑎2) , (0,𝑎3) , … , (0,𝑎𝑛)}  be  a finite subfamily of 𝒜 and let 

𝑏 = min{𝑎1,a2,a3,…,an} > 0 then(0,𝑎1)∩(0,𝑎2)∩(0,𝑎3)∩…∩(0,𝑎𝑛) = (0,𝑏) ≠ ∅ 

,so 𝒜 has F.I.P. 

3.5.3 Remark: 

      In example 3.5.2 we have ⋂ (0,1

𝑛
)𝑛∈ℕ = ∅. 

3.5.4 Example: 

      The family 𝔅 = {(−∞,𝑛]: 𝑛 ∈ ℤ} = {… ,(-∞,-2],(-∞,-1],(-∞,0],(-∞,1],(-∞,2], … } has 

F.I.P. 

Solution: 

       Let {(-∞,𝑎1] , (-∞,a2] , (-∞,a3] , … , (-∞,𝑎𝑛]}  be  a finite subfamily of 𝔅 

and let 𝑏 = min{𝑎1,a2,a3,…,an} > 0 then (-∞,a1] ∩(-∞,a2]∩ (-∞,a3] ∩ …∩(-∞,an] =

(-∞,𝑏] ≠ ∅ ,so 𝔅 has F.I.P. Note that   ⋂ (-∞,𝑛]𝑛∈ℕ = ∅ .    

3.5.5 Theorem: 

        A topological space (X, τ)  is compact iff any family of closed sets having the 

finite intersection property has a nonempty intersection. 

Proof: 

         ⟹ 

       Let us suppose that (𝑋,𝜏) is compact and {𝐹𝑖} is a family of closed sets whose 

intersection is empty. Since⋂ 𝐹𝑖𝑖 = ∅ , we may take the complement of each side 

of the equation and, using DeMorgan's Law, obtain 𝑋 = ∅𝑐 = (⋂ 𝐹𝑖𝑖 )𝑐 = ⋃ 𝐹𝑖
𝑐

𝑖 . 

Thus the family {𝐹𝑖
𝑐} is an open covering of the compact space X, and so there 

must exist some finite subcovering. But if 𝑋 = ⋃ 𝐹𝑖
𝑐𝑛

𝑖=1 then ∅ = 𝑋𝑐 =

(⋃ 𝐹𝑖
𝑐𝑛

𝑖=1 )𝑐 = ⋂ 𝐹𝑖  𝑛
𝑖=1 so that the family {𝐹𝑖} cannot have the finite intersection 

property. 
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          ⟸ 

      Now suppose (𝑋,𝜏) is not compact. From the definition this means that there 

must be some open covering {𝐺𝑖} of X which has no finite subcovering. To say that 

there is no finite subcovering means that the complement of the union of any finite 

number of members of the cover is nonempty. By DeMorgan's Law, the family 

{𝐺𝑖
𝑐} is then a family of closed sets with the finite intersection property. Since {𝐺𝑖} 

is a covering of X, however, ⋂ 𝐺𝑖
𝑐 = ∅ 𝑖 since ∅ = 𝑋𝑐 = (⋃ 𝐺𝑖𝑖 )𝑐 = ⋂ 𝐺𝑖

𝑐
𝑖 . Thus 

this family of closed sets with the finite intersection property has an empty 

intersection. □ 

3.5.6 Theorem: 

       Every closed subset of a compact space is compact. 

Proof: 

       Let 𝒜 = {𝐺𝑖} be an open cover of F the closed subset of a compact space 

(𝑋,𝜏) , i.e. 𝐹 = ⋃ 𝐺𝑖𝑖 .Then 𝑋 = 𝐹 ∪ 𝐹𝑐 = (⋃ 𝐺𝑖) ∪ 𝐹𝑐
𝑖 , i.e. 𝒜∗ = {𝐺𝑖} ∪ {𝐹𝑐} is 

a cover of X . But 𝐹𝑐 is open since F is closed , so 𝒜∗is an open cover of X. By 

hypotheses, X is compact ; hence 𝒜∗has a finite subcover of X i.e. 

                   𝑋 = 𝐺1 ∪ 𝐺2 ∪ … ∪ 𝐺𝑛 ∪ 𝐹𝑐 ,  𝐺𝑖 ∈  𝒜, i=1,2,…,𝑛 

        But F and𝐹𝑐 are disjoint ; hence  

                   𝐹 ⊆ 𝐺1 ∪ 𝐺2 ∪ … ∪ 𝐺𝑛  , 𝐺𝑖 ∈  𝒜, i=1,2,…,𝑛. 

WE have shown that any open cover 𝒜 = {𝐺𝑖} of F contains a finite subcover, i.e. 

F is compact.□ 
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3.6 Sequentially compact sets 

3.6.1 Definition: 

      A subset A of a topological space (𝑋,𝜏) is sequentially compact iff every 

sequence in A  contains a subsequence which converges to a point in A.  

3.6.2 Example: 

      Let A be a finite subset of a topological space (X,τ) then A is sequentially 

compact. 

Solution: 

     Let 〈𝑎1,a2,a3,…〉 be a sequence in A then at least one of the elements in A say 

𝑎0 must appears an infinite number of times in the sequence ,hence 〈a0,a0,a0, … 〉 

is a subsequence of 〈𝑎𝑛〉 it converges to 𝑎0 ∈ 𝐴. 

3.6.3 Example: 

       The open interval 𝐴 = (0,1) in ℝ with the usual topology is not sequentially 

compact. 

Solution: 

       Consider the sequence 〈𝑎𝑛〉 = 〈1

2
,1
3
,1
4
, … 〉 in A  which converge to 0 then every 

subsequence is also converge to 0. But 0 ∉ 𝐴, i.e. the sequence 〈𝑎𝑛〉 does not 

contain a subsequence converge to a point in A. So A is not sequentially compact. 

3.6.4 Remark: 

        In general, there exists compact sets which are not sequentially compact and 

vise versa although in metric spaces they are equivalent. 

3.6.5 Example: 

        Let 𝜏 = {∅,𝑈 ⊆ 𝑋: 𝑈𝑐is countable} be a topology on a non-empty set X  then 

every infinite subset of X  is not sequentially compact. 

Solution: 

         The sequence 〈𝑎𝑛〉 = 〈𝑎1,a2,a3,…〉 in X converge to 𝑏 ∈ 𝑋 iff THE sequence 

of the form 〈𝑎1,a2,a3,…,𝑎𝑛,b,b, … 〉, i.e.the set A consisting of the terms of 〈𝑎𝑛〉 
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different from b is finite. Now A is countable and so 𝐴𝑐is an open set containing b. 

Hence if 𝑎𝑛 ⟶ 𝑏 then 𝐴𝑐contain all except a finite number of the terms of the 

sequence and so A is finite .Hence  if A is an infinite subset of X , there exists a 

sequence 〈𝑏𝑛〉 in A with distinct terms. Thus 〈𝑏𝑛〉 does not contain any convergent 

subsequence and A is not sequentially compact. 

3.6.6 Theorem: 

     Let A be a sequentially compact subset of a topological space (𝑋,𝜏) then every 

countable open cover of A has a finite subcover. 

Proof: 

     Assume A is infinite for otherwise the proof is trivial and assume there exists  a 

countable open cover {𝐺𝑖: 𝑖𝜖ℕ} with no finite subcover .Let 𝑛1be the smallest 

integer such that 𝐴 ∩ 𝐺𝑛1
≠ ∅. Choose  

 

 

 

 

 

 

 

 

We claim that 〈𝑎𝑖〉 has no convergent subsequence in A . Let 𝑝 ∈ 𝐴 then  

                                         ∃𝐺𝑖0
∈ {𝐺𝑖} s.t. 𝑝 ∈ 𝐺𝑖0

. 

Now 𝐴 ∩ 𝐺𝑖0
≠ ∅ since 𝑝 ∈ 𝐴 ∩ 𝐺𝑖0

 , hence ∃𝑗0 ∈  ℕ s.t. 𝐺𝑗𝑛0
= 𝐺𝑖0

.But by the 

choice of the sequence 〈𝑎1,a2,a3,…〉,𝑖 > 𝑗0 ⟹ 𝑎𝑖 ∉ 𝐺𝑖0
.Accordingly since 𝐺𝑖0

 is 

an open set containing p, no subsequence of 〈𝑎𝑖〉 converge to p. But p was arbitrary, 

so A is not sequentially compact and this is contradiction then every countable open 

cover of A has a finite subcover. □ 

Let 𝑛1be the smallest integer s.t. 𝐴 ∩ 𝐺𝑛1
≠ ∅.Choose 𝑎1 ∈ 𝐴 ∩ 𝐺𝑛1

 

Let 𝑛2be the least positive integer larger than 𝑛1 s.t. 𝐴 ∩ 𝐺𝑛2
≠ ∅. Choose 𝑎2 ∈

(𝐴 ∩ 𝐺𝑛2
)\(𝐴 ∩ 𝐺𝑛1

). 

. 

. 

. 

We obtain the sequence 〈𝑎1,a2,a3,…〉with the property that , for every 𝑖 ∈ ℕ, 

                            𝑎𝑖 ∈ 𝐴 ∩ 𝐺𝑛𝑖  , 𝑎𝑖 ∉ ⋃ (𝐴 ∩ 𝐺𝑛𝑗  )
𝑛−1
𝑗=1  𝑎𝑛𝑑 𝑛𝑖 > 𝑛𝑖−1 
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3.7 Countable Compact Spaces 

3.7.1 Definition: 

      A subset A of a topological space (𝑋,𝜏) is countably compact iff every infinite 

subset B of A  has at least one limit point in A. 

3.7.2 Theorem (Bolzano-Weierstrass Theorem): 

      Every bounded infinite set of real numbers has a limit point. 

3.7.3 Example: 

       Every bounded closed interval 𝐴 = [𝑎,𝑏] is countably compact. 

Solution: 

       Assume B is an infinite subset of A .Since A is bounded and 𝐵 ⊆ 𝐴 then by  

Bolzano-Weierstrass Theorem B has a limit point p .Since A is closed and 𝑑(𝐵) ⊆

𝑑(𝐴) then the limit point of B belongs to A, i.e. A is locally compact. 

3.7.4 Example: 

       The open interval 𝐴 = (0,1) is not countably compact. 

Solution: 

       Consider the infinite subset 𝐵 = {1

2
,1
3
,1
4
,…} of A .Observe that B has exactly one 

limit point which is 0 but 0 ∉ 𝐴,hence A is not countably compact. 

3.7.5 Remark: 

       The general relationship between compact, sequentially compact and 

countably compact sets is given in the following diagram, theorems (3.7.6 , 3.7.7) 

and example  3.7.8. 

        

            

3.7.6 Theorem: 

      A compact subset of a topological space is countably compact.  

Proof: 

       Assume (𝑋,𝜏) is a compact topological space and let A be infinite subset of X 

with 𝑛𝑜 𝑙𝑖𝑚𝑖𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑋, i.e. for each point 𝑥 ∈ 𝑋 is not a limit point of A so 

there must 𝑒𝑥𝑖𝑠𝑡 𝑎𝑛 𝑜𝑝𝑒𝑛 𝐺𝑥  𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐺𝑥\{𝑥} ∩ 𝐴 =

  Compact       
⇒
⇍

      countably compact       
⇐
⇏

        sequentially  compact 
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∅. Clearly𝐺𝑥 ∩ 𝐴 contains, at most, the one point 𝑥 itself. Since the family {𝐺𝑥}𝑥∈𝑋 

forms an open covering of the compact space X, there must be some finite 

subcovering 𝑋 = ⋃ 𝐺𝑥𝑖

𝑛
𝑖=1 . From this it follows that 𝐴 = 𝐴 ∩ 𝑋 = 𝐴 ∩

(⋃ 𝐺𝑥𝑖

𝑛
𝑖=1 ) = ⋃ (𝐴 ∩ 𝐺𝑥𝑖

)𝑛
𝑖=1  is a finite union of sets, each containing, at most, one 

element, and so A is finite and this is contradiction. Thus every infinite subset of X 

must have at least one limit point. □ 

3.7.7 Theorem: 

       A sequentially compact subset of a topological space is countably compact. 

Proof: 

      Let A be any infinite subset of X. Then there exists a sequence 〈𝑎1,a2,a3,…〉 in 

A with distinct terms. Since X is sequentially compact then the sequence 〈𝑎𝑛〉 

contains a subsequence 〈𝑎𝑖1
,a𝑖2

,a𝑖3
,…〉 (also with distinct terms) which converges 

to a point 𝑝 ∈ 𝑋. Hence every open set 𝐺𝑝 contain 𝑝 contains an infinite number of 

points in A. Since 𝑝 ∈ 𝑋 is a limit point of A, i.e. X is countably compact.□ 

3.7.8 Example: 

       Let 𝜏 be the topology on ℕ, the set of positive integers generated by sets 

{{1,2},{3,4},{5,6},…} .Let A be a non – empty infinite subset of ℕ, say 𝑛0 ∈ 𝐴. If 

𝑛0 is odd then 𝑛0 + 1 is a limit point of A , and if 𝑛0 is even then 𝑛0 − 1 is a limit 

point of A. In either case A has a limit point, so (ℕ,𝜏) is countably compact. 

      On the other hand (ℕ,𝜏) is not compact since 𝒜 = {{1,2},{3,4},{5,6},…} is an 

open cover of ℕ with no finite subcove. Also (ℕ,𝜏) is not sequentially compact 

since the sequence 〈1,2,3, … 〉 contains no convergent subsequence. 

3.7.9 Theorem: 

       A closed subset of countably compact is countably compact. 

Proof: 

       Let F be a closed subset of countably compact space (𝑋,𝜏) and let A be any 

infinite subset of F. 

       Since 𝐴 ⊆ 𝐹 then 𝐴 ⊆ 𝑋 but X  is countably compact, so A has a limit point 

𝑝 ∈ 𝑋.Since 𝐴 ⊆ 𝐹 and F is closed set then F is countably compact.□ 
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3.8 Locally Compact Spaces 

3.8.1 Definition: 

      A topological(𝑋,𝜏) is locally compact iff each point of X is contained in a 

compact neighborhood. 

3.8.2 Remark: 

    Since 𝑎 compact space is a compact neighborhood of each of its points, it is 

clear that 𝑒𝑣𝑒𝑟𝑦 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 𝑙𝑜𝑐𝑎𝑙𝑙𝑦 𝑐𝑜𝑚𝑝𝑎𝑐𝑡, i.e. every compact space is 

locally compact but the converse is not true as the following example. 

3.8.3 Example: 

      Let (ℝ,𝜏) be the usual topology .For each point 𝑝 ∈ ℝ there exists a closed 

interval [𝑝 − ℰ,𝑝 + ℰ] contain  𝑝. Since every closed interval is closed and bounded 

then its compact by Heine-Borel Theorem (A subset of the real line is compact iff 

it is closed and bounded). Hence ℝ 𝑖𝑠 𝑎 𝑙𝑜𝑐𝑎𝑙𝑙𝑦 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝑠𝑝𝑎𝑐𝑒. On the other 

hand ℝ is not compact since the class 𝒜 = {..,(-3,-1),(-2,0),(-1,1),(0,2),(1,3),…} 

is an open cover of ℝ but contains no finite subcover. 

3.8.4 Example: 

       The discrete topology (𝑋,𝜏) is locally compact since ∀𝑝 ∈ 𝑋 ∃{𝑝} a compact 

neighborhood of 𝑝. 

3.8.5 Example: 

       The indiscrete topology (𝑋,𝜏) is locally compact since X is compact. 

3.8.6 Theorem: 

       A closed subset of a locally compact space is locally compact space. 

Proof: 

        Let A be a closed subset of locally compact space (𝑋,𝜏) and let 𝑝 ∈A then 

there exists a compact neighborhood H of 𝑝.Since A is closed then 𝐹 = 𝐴 ∩ 𝐻 is 

compact (by let (𝑋,𝜏) is a topological space and 𝐹 ⊆ 𝑋 be a closed set. If A is 

compact then 𝐴 ∩ 𝐹 is compact ) but 𝑝 ∈ 𝐻°then 𝑝 ∈ 𝐻° ∩ 𝐴 ⊆ 𝐹, where 𝐻° ∩ 𝐴 ∈

𝜏𝐴,so 𝑝 has compact neighborhood 𝐹 = 𝐴 ∩ 𝐻, i.e. A is locally compact. □ 


