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Chapter four: Integrals. 

        A great achievement of classical geometry was obtaining formulas 

for the areas and volumes of triangles, spheres, and cones. In this chapter 

we develop a method, called integration, to calculate the areas and volumes 

of more general shapes. The definite integral is the key tool in calculus for 

defining and calculating areas and volumes. We also use it to compute 

quantities such as the lengths of curved paths, probabilities, and averages. 

       We show that the process of computing these definite integrals is 

closely connected to finding antiderivatives. This is one of the most 

important relationships in calculus; it gives us an efficient way to compute 

definite integrals, providing a simple and powerful method that eliminates 

the difficulty of directly computing limits of approximations. This 

connection is captured in the Fundamental Theorem of Calculus. 

4.1 The Meaning of the Definite Integral: 

        The definite integral of the function 𝑓(𝑥) between 𝑥 = 𝑎 and 𝑥 = 𝑏 

is written:          ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 .  

Geometrically it equals area A between 

the curve 𝑦 = 𝑓(𝑥) and the x-axis 

between the vertical lines 𝑥 = 𝑎 and 

𝑥 = 𝑏. 
       More precisely, assuming 𝑎 <  𝑏, 

the definite integral is the net sum of the 

signed areas between the curve 𝑦 =

𝑓(𝑥) and the x-axis where areas below 

the x-axis (i.e. where 𝑓(𝑥) dips below 

the x-axis) are counted negatively. 

The notation used for definite integral, ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
, is elegant and intuitive. 

We are ∫  umming ( ∫𝑑𝐴) the (infinitesimally) small differential 

rectangular areas 𝑑𝐴 =  𝑓(𝑥)  ·  𝑑𝑥 of height 𝑓(𝑥) and width 𝑑𝑥 at each 

value x between 𝑥 = 𝑎 and 𝑥 = 𝑏. 
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Definition: 

      If  𝑦 = 𝑓(𝑥) is nonnegative and integrable over a closed interval [𝑎, 𝑏], 

then the area under the curve 𝑦 = 𝑓(𝑥) over [𝑎, 𝑏] is the integral of 𝑓 from 

a to b i.e.   𝐴 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
.                                           

Remark: 

      An easy way to evaluate definite integrals is due to the Fundamental 

Theorem of Calculus which relates the calculation of a definite integral 

with the evaluation of the antiderivative 𝐹(𝑥) of 𝑓(𝑥): 

Theorem (The Fundamental Theorem of Calculus): 

       If 𝒇 is continuous on [𝒂, 𝒃] and F is any antiderivative of ƒ on [𝒂, 𝒃] 

, then ∫ 𝒇(𝒙)𝒅𝒙
𝒃

𝒂
= 𝑭(𝒃) − 𝑭(𝒂) for any 𝑭 an antiderivative of 𝒇, i.e. 

𝑭′(𝒙) =  𝒇(𝒙). 

       Notational, we write 𝐹(𝑏) − 𝐹(𝑎) with shorthand 𝐹(𝑥)|𝑎
𝑏 , i.e. 

𝐹(𝑥)|𝑎
𝑏 = 𝐹(𝑏) − 𝐹(𝑎), where, unlike the integral sign, the bar is placed 

on the right. 

Table 1. Rules satisfied by definite integrals 

1. Order of Integration: ∫ 𝑓(𝑥)
𝑎

𝑏
𝑑𝑥 = −∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
  𝑨 definition, 𝒂 < 𝒃    

2. Zero Width Interval: ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 0                         𝑨 definition when                        

                                                                                                  𝒇(𝒙) exists (𝒂 = 𝒃)           

3. Constant Multiple: ∫ 𝑘𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 = 𝑘 ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
    Any constant k 

                                ∫ 𝑘
𝑏

𝑎
𝑑𝑥 = 𝑘(𝑏 − 𝑎)    

4. Sum and Difference: ∫ (𝑓(𝑥) ± 𝑔(𝑥)𝑑𝑥
𝑏

𝑎
= ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
± ∫ 𝑔(𝑥)𝑑𝑥

𝑏

𝑎
 

5. Additivity: ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= ∫ 𝑓(𝑥)𝑑𝑥

𝑐

𝑎
+ ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑐
 [𝒂, 𝒃] = [𝒂, 𝒄] ∪ 𝒄, 𝒃] 

6. Max-Min Inequality: If 𝑓 has maximum value max 𝑓 and minimum 

value min 𝑓 on [𝑎, 𝑏] , then 

        (𝑚𝑖𝑛 𝑓) ∙ (𝑏 −  𝑎) ≤  ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
≤ (𝑚𝑎𝑥𝑓 ) ∙ (𝑏 −  𝑎). 

7. Domination: If 𝑓(𝑥)  ≥  𝑔(𝑥) on [𝑎, 𝑏] then ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
≥ ∫ 𝑔(𝑥)𝑑𝑥

𝑏

𝑎
 

If 𝑓(𝑥)  ≥  0 on [𝑎, 𝑏] then ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
≥ 0.                      Special case 
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4.2 indefinite integrals and the Substitution method: 

       Because of the intimate relationship between the antiderivative and 

the definite integral, we define the indefinite integral of 𝑓(𝑥) (with no 

limits 𝑎 or 𝑏) to just be the antiderivative, i.e. 

                                        ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝐶, 

where 𝐹(𝑥) is an antiderivate of 𝑓(𝑥) (so 𝐹′(𝑥) = 𝑓(𝑥)) and C is an 

arbitrary constant. The latter is required since the antiderivative of a 

function is not unique as 𝑑
𝑑𝑥
 𝐶 = 0 implies we can always add a constant to 

an antiderivative to get another antiderivative of the same function. 

      If u is a differentiable function of x and n is any number different from 

-1, then ∫𝑢𝑛𝑑𝑢 = 𝑢𝑛+1

𝑛+1
+ 𝐶. 

Example: 

       Find the integral ∫(𝑥3 + 𝑥)5(3𝑥2 + 1)𝑑𝑥 

Solution:    

     We set 𝑢 = 𝑥3 + 𝑥. Then 𝑑𝑢 = 𝑑𝑢

𝑑𝑥
𝑑𝑥 =  (3𝑥2 + 1) 𝑑𝑥, so that by 

substitution we have 

∫(𝑥3 + 𝑥)5(3𝑥2 + 1)𝑑𝑥 = ∫𝑢5𝑑𝑢     Let 𝒖 = 𝒙𝟑 + 𝒙, 𝒅𝒖 =  (𝟑𝒙𝟐 + 𝟏 ) 𝒅𝒙. 

                                         = 𝑢6

6
+ 𝐶            Integrate with respect to u. 

                                         = (𝑥3+𝑥)6

6
+ 𝐶      Substitute 𝒙𝟑 + 𝒙 for u. ■ 

Example: 

       Find the integral ∫√2𝑥 + 1𝑑𝑥 

Solution:    

     The integral does not fit the formula ∫𝑢𝑛𝑑𝑢 with 𝑢 = 2𝑥 +  1 and 

𝑛 = 1/2, because 𝑑𝑢 = 𝑑𝑢

𝑑𝑥
𝑑𝑥 =  2 𝑑𝑥. 

which is not precisely 𝑑𝑥. The constant factor 2 is missing from the 

integral. However, we can introduce this factor after the integral sign if we 

compensate for it by introducing a factor of 1/2 in front of the integral 

sign. So, we write  
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∫√2𝑥 + 1𝑑𝑥 = 1

2
∫√2𝑥 + 1⏟  

𝒖

∙ 2𝑑𝑥⏟
𝒅𝒖

      

                       = 1

2
∫𝑢1/2𝑑𝑢                       Let 𝒖 = 𝟐𝒙 + 𝟏, 𝒅𝒖 =  𝟐 𝒅𝒙. 

                       = 1

2

𝑢3/2

3/2
+ 𝐶                          Integrate with respect to u. 

                       = 1

2

(2𝑥+1)3/2

3/2
+ 𝐶                    Substitute 𝟐𝒙 +  𝟏 for u. ■ 

Remark: 

     The substitutions in previous Examples are instances of the following 

general rule. 

Theorem (The Substitution rule): 

     If 𝒖 = 𝒈(𝒙) is a differentiable function whose range is an interval I, 

and 𝒇 is continuous on I, then 

                      ∫ 𝒇(𝒈(𝒙)) ∙ 𝒈′(𝒙)𝒅𝒙 = ∫𝒇(𝒖)𝒅𝒖. 

Remark (The Substitution method to evaluate ∫ 𝒇(𝒈(𝒙)) ∙ 𝒈′(𝒙)𝒅𝒙): 

1. Substitute 𝑢 =  𝑔(𝑥) and 𝑑𝑢 = 𝑑𝑢

𝑑𝑥
𝑑𝑥 = 𝑔′(𝑥)𝑑𝑥 to obtain ∫𝑓(𝑢)𝑑𝑢. 

2. Integrate with respect to u. 

3. Replace u by 𝑔(𝑥). 

Example: 

       Evaluate ∫ 𝑥√2𝑥 + 1𝑑𝑥 

Solution:    

     The substitution 𝑢 = 2𝑥 + 1 with 𝑑𝑢 = 2 𝑑𝑥. Then 

√2𝑥 + 1𝑑𝑥 = 1

2√𝑢𝑑𝑢. 

However, in this example the integrand contains an extra factor of x that 

multiplies the term √2𝑥 + 1. To adjust for this, we solve the substitution 

equation 𝑢 = 2𝑥 +  1 for x to obtain 𝑥 = 𝑢 −  1)/2, and find that 

                      𝑥√2𝑥 + 1𝑑𝑥 = 1

2
(𝑢 − 1). 1

2
 √𝑢 𝑑𝑢. 

The integration now becomes 
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∫𝑥√2𝑥 + 1𝑑𝑥 = 1

4
 ∫(𝑢 − 1) √𝑢 𝑑𝑢 = 1

4
 ∫(𝑢 − 1) 𝑢

1

2 𝑑𝑢       Substitute. 

                         = 1

4
 ∫ (𝑢

3

2 − 𝑢
1

2)  𝑑𝑢                                  Multiply terms.  

                         = 1

4
 (2
5
𝑢
5

2 − 2

3
𝑢
3

2) + 𝐶                                          Integrate.  

                         = 1

4
 (2
5
(2𝑥 + 1)

5

2 − 2

3
(2𝑥 + 1)

3

2) + 𝐶 Replace 𝒖 by 𝟐𝒙 +  𝟏. ■ 

Example: 

       Evaluate ∫ 2 𝑧 𝑑𝑧

√𝑧2+1
3  

Solution:    

      We will use the substitution method of integration as an exploratory 

tool: We substitute for the most troublesome part of the integrand and see 

how things work out. For the integral here, we might try 𝑢 = 𝑧2 + 1 or we 

might even press our luck and take u to be the entire cube root. In this 

example both substitutions turn out to be successful, but that is not always 

the case. If one substitution does not help, a different substitution may 

work instead. 

Method 1: Substitute 𝑢 = 𝑧2 + 1. 

                          ∫ 2 𝑧 𝑑𝑧

√𝑧2+1
3 = ∫ 𝑑𝑢

𝑢
1
3

                        Let 𝒖 = 𝒛𝟐 + 𝟏, 𝒅𝒖 = 𝟐𝒛 𝒅𝒛. 

                                       = ∫𝑢
−
1

3 𝑑𝑢                            In the form ∫𝒖𝒏 𝒅𝒖 

                                       = 𝑢2/3

2/3
+ 𝐶                              Integrate. 

                                       = 3

2
𝑢2/3 + 𝐶 

                                       = 3

2
(𝑧2 + 1)2/3 + 𝐶             Replace 𝒖 by 𝒛𝟐 + 𝟏. 

Method 2: Substitute 𝑢 = √𝑧2 + 1
3

 

      ∫ 2 𝑧 𝑑𝑧

√𝑧2+1
3 = ∫ 3 𝑢2𝑑𝑢

𝑢
           Let 𝒖 = √𝒛𝟐 + 𝟏

𝟑
, 𝒖𝟑 = 𝒛𝟐 + 𝟏, 𝟑𝒖𝟐 𝒅𝒖 = 𝟐𝒛 𝒅𝒛. 

                   = 3∫𝑢 𝑑𝑢                             

                   = 3𝑢
2

2
+ 𝐶                              Integrate. 

                   = 3

2
(𝑧2 + 1)2/3 + 𝐶               Replace 𝒖 by (𝒛𝟐 + 𝟏)𝟏/𝟑. ■ 
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      Using our notation for indefinite integrals and our knowledge of 

derivatives gives the following. 

Table of Indefinite Integrals for trigonometric functions  

1. ∫ 𝑠𝑖𝑛 𝑎𝑥 = −1

𝑎
 𝑐𝑜𝑠 𝑎𝑥 + 𝐶 2. ∫ 𝑐𝑜𝑠 𝑎𝑥 =

1

𝑎
𝑠𝑖𝑛 𝑎𝑥 + 𝐶 

3. ∫ 𝑠𝑒𝑐2 𝑎𝑥 =
1

𝑎
𝑡𝑎𝑛 𝑎𝑥 + 𝐶 4. ∫ 𝑐𝑠𝑐2 𝑎𝑥 =

−1

𝑎
𝑐𝑜𝑡 𝑎𝑥 + 𝐶 

5. ∫ 𝑠𝑒𝑐 𝑎𝑥 tan 𝑎𝑥 =
1

𝑎
𝑠𝑒𝑐 𝑎𝑥 + 𝐶 6. ∫ 𝑐𝑠𝑐 𝑎𝑥 cot 𝑎𝑥 =

−1

𝑎
𝑐𝑠𝑐 𝑎𝑥 + 𝐶 

Example: 

       Find ∫ 𝑠𝑒𝑐2(5𝑥 + 1) ∙ 5𝑑𝑥 

Solution:    

We substitute 𝑢 = 5𝑥 +  1 and 𝑑𝑢 = 5 𝑑𝑥. Then, 

∫ 𝑠𝑒𝑐2(5𝑥 + 1) ∙ 5𝑑𝑥 = ∫ 𝑠𝑒𝑐2𝑢 𝑑𝑢                Let 𝒖 =  𝟓𝒙 +  𝟏, 𝒅𝒖 =  𝟓 𝒅𝒙. 

                               = tan 𝑢 + 𝐶                  𝒅
𝒅𝒖
𝐭𝐚𝐧𝒖 = 𝒔𝒆𝒄𝟐𝒖  

                                    = tan(5𝑥 +  1) + 𝐶     Substitute 𝟓𝒙 +  𝟏 for 𝒖. ■ 

Example: 

       Find ∫ 𝑐𝑜𝑠(7𝜃 + 3)𝑑𝜃 

Solution:    

     We let 𝑢 =  7𝜃 + 3 so that 𝑑𝑢 =  7 𝑑𝜃. The constant factor 7 is 

missing from the 𝑑𝑢 term in the integral. We can compensate for it by 

multiplying and dividing by 7, 

∫ 𝑐𝑜𝑠(7𝜃 + 3)𝑑𝜃 = 1

7
∫ 𝑐𝑜𝑠(7𝜃 + 3) ∙ 7𝑑𝜃      Place factor 𝟏

𝟕
 in front of integral. 

                              = 1

7
∫ cos 𝑢  𝑑𝑢                     Let 𝒖 = 𝟕𝒖 +  𝟑, 𝒅𝒖 = 𝟕 𝒅𝜽.  

                              = 1

7
sin 𝑢 + 𝐶                        Integrate. 

                                  = 1

7
sin(7𝜃 + 3) + 𝐶            Substitute 𝟕𝜽 + 𝟑 for 𝒖. 

        There is another approach to this problem. With 𝑢 = 7𝜃 + 3 and 

𝑑𝑢 =  7 𝑑𝜃 as before, we solve for 𝑑𝑢 to obtain 𝑑𝜃 =  (1/7) 𝑑𝑢. Then 

the integral becomes 
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∫ 𝑐𝑜𝑠(7𝜃 + 3)𝑑𝜃 = ∫ 𝑐𝑜𝑠𝑢 ∙
1

7
𝑑𝑢      Let 𝒖 = 𝟕𝜽 + 𝟑, 𝒅𝒖 =  𝟕 𝒅𝜽, and 

                                                                                  𝒅𝜽 =  
𝟏

𝟕
 𝒅𝒖. 

                              = 1

7
sin 𝑢 + 𝐶                        Integrate. 

                                  = 1

7
sin(7𝜃 + 3) + 𝐶            Substitute 𝟕𝜽 + 𝟑 for 𝒖. 

We can verify this solution by differentiating and checking that we obtain 

the original function 𝑐𝑜𝑠(7𝜃 + 3). ■ 

Remark: 

      Sometimes we observe that a power of x appears in the integrand that is 

one less than the power of x appearing in the argument of a function we want 

to integrate. This observation immediately suggests we try a substitution for 

the higher power of x. This situation occurs in the following integration. 

∫𝑥2𝑐𝑜𝑠 𝑥3𝑑𝑥 = ∫ 𝑐𝑜𝑠 𝑥3 ∙ 𝑥2 𝑑𝑥     

                        = ∫𝑐𝑜𝑠 𝑢 ∙ 1
3
𝑑𝑢  Let 𝒖 =  𝒙𝟑, 𝒅𝒖 =  𝟑𝒙𝟐 𝒅𝒙, 

(𝟏/𝟑) 𝒅𝒖 =  𝒙𝟐 𝒅𝒙. 

                        =
1

3
∫ 𝑐𝑜𝑠 𝑢 𝑑𝑢   

                        =
1

3
sin 𝑢 + 𝐶 Integrate with respect to u. 

                        =
1

3
sin 𝑥3 + 𝐶 Replace u by 𝒙𝟑. ■ 

Example: 

      Sometimes we can use trigonometric identities to transform integrals 

we do not know how to evaluate into ones we can evaluate using the 

Substitution Rule. 

a) ∫ 𝑠𝑖𝑛2 𝑥 𝑑𝑥 = ∫ 1−cos 2𝑥

2
 𝑑𝑥                                    𝒔𝒊𝒏𝟐 𝒙 = 𝟏−𝐜𝐨𝐬 𝟐𝒙

𝟐
 

                    = 1

2
∫(1 − cos 2𝑥) 𝑑𝑥 

                         =
1

2
𝑥 −

1

2
 sin 2𝑥

2
+ 𝐶 = 𝑥

2
− sin 2𝑥

4
 + 𝐶. 

b) ∫ 𝑐𝑜𝑠2 𝑥 𝑑𝑥 = ∫ 1+cos2𝑥

2
 𝑑𝑥 = 𝑥

2
− sin 2𝑥

4
 + 𝐶.                   𝒄𝒐𝒔𝟐 𝒙 =

𝟏+𝐜𝐨𝐬 𝟐𝒙

𝟐
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c) ∫(1 − 2 𝑠𝑖𝑛2 𝑥)𝑠𝑖𝑛 2𝑥 𝑑𝑥 = ∫( 𝑐𝑜𝑠2 𝑥 − 𝑠𝑖𝑛2 𝑥)𝑠𝑖𝑛 2𝑥 𝑑𝑥  
                         = ∫ cos 2𝑥 𝑠𝑖𝑛 2𝑥 𝑑𝑥          𝐜𝐨𝐬𝟐𝒙 = 𝒄𝒐𝒔𝟐 𝒙 − 𝒔𝒊𝒏𝟐 𝒙 

                             = ∫ 1

2
𝑠𝑖𝑛 4𝑥 𝑑𝑥 = ∫ 1

8
𝑠𝑖𝑛 𝑢 𝑑𝑢   𝒖 = 𝟒𝒙, 𝒅𝒖 = 𝟒𝒙 𝒅𝒙 

                                         = − cos 4𝑥 + 𝐶. ■ 

Exercises: 

1. Evaluate the indefinite integrals in following by using the given 

substitutions to reduce the integrals to standard form. 

a) ∫2(2𝑥 + 4)5𝑑𝑥 , 𝑢 = 2𝑥 + 4 b) ∫7(7𝑥 − 1)5𝑑𝑥 , 𝑢 = 7𝑥 − 1 

c) ∫2𝑥(𝑥2 + 5)−4𝑑𝑥 , 𝑢 = 𝑥2 + 5 d) ∫ 4𝑥3

(𝑥4+1)2
𝑑𝑥 , 𝑢 = 𝑥4 + 1 

e) ∫(3𝑥 + 2)(3𝑥2 + 4𝑥)4𝑑𝑥 , 𝑢 = 3𝑥2 + 4𝑥 

f) ∫ (1+√𝑥)1 3⁄

√𝑥
𝑑𝑥 , 𝑢 = 1 + √𝑥 g) ∫ sin 3𝑥 𝑑𝑥 , 𝑢 = 3𝑥 

h) ∫𝑥 sin(2𝑥2) 𝑑𝑥 , 𝑢 = 2𝑥2 i) ∫ sec 2𝑡 𝑑𝑡 , 𝑢 = 2𝑡 

j) ∫ (1 − cos
𝑡

2
) sin 𝑡

2
𝑑𝑡 , 𝑢 = 1 − cos

𝑡

2
 k) ∫ 9𝑟2

√1−𝑟3
𝑑𝑥 , 𝑢 = 1 − 𝑟3 

l) ∫12(𝑦4 + 4𝑦2 + 1)2(𝑦3 + 2𝑦)𝑑𝑥 , 𝑢 = 𝑦4 + 4𝑦2 + 1 

m) ∫√𝑥 sin2(𝑥3/2 − 1) 𝑑𝑥 , 𝑢 = 𝑥3/2 − 1 n) ∫ 1

𝑥2
 cos2(

1

𝑥
) 𝑑𝑥 , 𝑢 = −

1

𝑥
 

o) ∫ csc2 2𝜃 cot 2𝜃 𝑑𝜃 

I. Using 𝑢 =  𝑐𝑜𝑡 2𝜃 

II. Using 𝑢 =  𝑐𝑠𝑐 2𝜃 

p) ∫ 1

√5𝑥+8
𝑑𝑥 

I. Using 𝑢 =  5𝑥+ 8 

II. Using 𝑢 =  √5𝑥 + 8   
2. Evaluate the integrals in following Exercises 

1. ∫√3 − 2𝑠 𝑑𝑠 2. ∫ 1

√5𝑠+4
𝑑𝑠 3. ∫ 𝜃√1 − 𝜃2

4
𝑑𝜃 

4. ∫3𝑦√7 − 3𝑦2 𝑑𝑦 5. ∫ 1

√𝑥(1+√𝑥)2
𝑑𝑥 6. ∫√sin 𝑥 cos3 𝑥 𝑑𝑥 

7. ∫ sec2(3𝑥 + 2) 𝑑𝑥 8. ∫ tan2 𝑥 sec2 𝑥 𝑑𝑥 9. ∫ sin5
𝑥

3
cos

𝑥

3
𝑑𝑥  

10. ∫ tan7
𝑥

2
sec2

𝑥

2
𝑑𝑥 11. 𝑟2(𝑟

3

18
− 1)

5 
𝑑𝑟 12. 𝑟4(7 − 𝑟5

10
)
3 
𝑑𝑟 

13. ∫𝑥1/2 sin(𝑥3/2 + 1) 𝑑𝑥 14. ∫ csc(𝑣−𝜋
2
) cot(

𝑣−𝜋

2
) 𝑑𝑣 

15. ∫ sin(2𝑡+1)

cos2(2𝑡+1)
𝑑𝑡 16. ∫ sec 𝑧 tan𝑧

√sec 𝑧
𝑑𝑧 17. ∫ 1

𝑡2
cos(1

𝑡
− 1) 𝑑𝑡 

18. ∫ 1

√𝑡
cos(√𝑡 + 3)𝑑𝑡 19. ∫ 1

𝜃2
sin 1

𝜃
cos 1

𝜃
𝑑𝜃 20. ∫ cos√𝜃

√𝜃sin2 √𝜃
𝑑𝜃 
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21. ∫ 𝑥

√1+𝑥
𝑑𝑥 

22. ∫√𝑥−1

𝑥5
𝑑𝑥 23. ∫ 1

𝑥2
√2 − 1

𝑥
𝑑𝑥 

24. ∫ 1

𝑥3
√𝑥2−1

𝑥2
𝑑𝑥 25. ∫√𝑥3−3

𝑥11
𝑑𝑥 26. ∫√ 𝑥4

𝑥3−1
𝑑𝑥 

27. ∫𝑥(𝑥 − 1)10 𝑑𝑥 28. ∫𝑥√4 − 𝑥 𝑑𝑥 29. ∫(𝑥 + 1)2(1 − 𝑥)5𝑑𝑥 

30. ∫(𝑥 + 5)(𝑥 − 5)1/3𝑑𝑥 31. ∫𝑥3√𝑥2 + 1𝑑𝑥 32. ∫ 3𝑥5√𝑥3 + 1𝑑𝑥 

33. ∫ 𝑥

(𝑥2−4)3
𝑑𝑥 34. ∫ 𝑥

(2𝑥−1)2/3
𝑑𝑥  

3. If you do not know what substitution to make, try reducing the integral 

step by step, using a trial substitution to simplify the integral a bit and 

then another to simplify it some more. You will see what we mean if 

you try the sequences of substitutions in the following Exercises 

a) ∫ 18 tan2 𝑥 sec2 𝑥

(2+tan3 𝑥)2
𝑑𝑥 I. 𝑢 = 𝑡𝑎𝑛 𝑥, followed by 𝑣 = 𝑢3, then by 𝑤 =

 2 +  𝑣 

II. 𝑢 = tan3 𝑥, followed by 𝑣 = 2 + 𝑢 

III. 𝑢 = 2 + tan3 𝑥 

b) ∫√1 + sin2(𝑥 − 1) sin(𝑥 − 1) cos(𝑥 − 1) 𝑑𝑥 

 I. 𝑢 =  𝑥 − 1, followed by 𝑣 = 𝑠𝑖𝑛 𝑢, then by 

𝑤 = 1 + 𝑣2 

II. 𝑢 = 𝑠𝑖𝑛 (𝑥 − 1), followed by 𝑣 = 1 +  𝑢2 

III. 𝑢 = 1 + sin2(𝑥 − 1) 
4. Evaluate the integrals in following Exercises 

a) ∫
(𝟐𝒓−𝟏)∙ 𝒄𝒐𝒔 √𝟑(𝟐𝒓−𝟏)𝟐+𝟔

√𝟑(𝟐𝒓−𝟏)𝟐+𝟔

𝑑𝑟 

b) ∫ sin√𝜃

√𝜃cos3 √𝜃
𝑑𝜃 
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4.3 Definite integral Substitutions and the Area Between Curves: 

     There are two methods for evaluating a definite integral by substitution. 

One method is to find an antiderivative using substitution and then to 

evaluate the definite integral by applying the Evaluation Theorem. The 

other method extends the process of substitution directly to definite 

integrals by changing the limits of integration. We will use the new 

formula that we introduce here to compute the area between two curves . 

4.3.1 The Substitution Formula: 

     The following formula shows how the limits of integration change 

when we apply a substitution to an integral. 

Theorem (Substitution in Definite integrals): 

     If 𝒈′ is continuous on the interval [𝒂, 𝒃] and 𝒇 is continuous on the 

range of 𝒈(𝒙) = 𝒖, then 

                     ∫ 𝒇(𝒈(𝒙)) ∙ 𝒈′(𝒙)𝒅𝒙
𝒃

𝒂
= ∫ 𝒇(𝒖)𝒅𝒖

𝒈(𝒃)

𝒈(𝒂)
 

Remark: 

    To use Theorem, make the same u-substitution 𝑢 = 𝑔(𝑥) and 𝑑𝑢 =

 𝑔′(𝑥) 𝑑𝑥 that you would use to evaluate the corresponding indefinite 

integral. Then integrate the transformed integral with respect to u from the 

value 𝑔(𝑎) (the value of u at 𝑥 = 𝑎) to the value 𝑔(𝑏) (the value of u at 

𝑥 = 𝑏). 

Example  (*): 

       Evaluate   ∫ 3𝑥2√𝑥3 + 1
1

−1
𝑑𝑥. 

Solution:    

     We will show how to evaluate the integral using Theorem (Substitution 

in Definite integrals), and how to evaluate it using the original limits of 

integration. 

Method 1: Transform the integral and evaluate the transformed integral 

with the transformed limits given in Theorem. 
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∫ 3𝑥2√𝑥3 + 1
1

−1
𝑑𝑥                            Let 𝒖 = 𝒙𝟑 + 𝟏, 𝒅𝒖 = 𝟑𝒙𝟐 𝒅𝒙. 

                                                           When 𝒙 = −𝟏, 𝒖 = (−𝟏)𝟑  +  𝟏 =  𝟎. 

                                                           When 𝒙 = 𝟏, 𝒖 =  (𝟏)𝟑  +  𝟏 =  𝟐. 

                    = ∫ √𝑢𝑑𝑢
2

0
                             

                    = 2

3
𝑢3/2]

0

2
                       Evaluate the new definite integral 

                    = 2

3
[2

3

2 − 0
3

2] = 2

3
[2√2] = 4√2

3
. 

Method 2: Transform the integral as an indefinite integral, integrate, 

change back to x, and use the original x-limits. 

        ∫3𝑥2√𝑥3 + 1 = ∫√𝑢𝑑𝑢                           Let 𝒖 = 𝒙𝟑 + 𝟏, 𝒅𝒖 = 𝟑𝒙𝟐 𝒅𝒙. 

                                = 2

3
 𝑢3/2 + 𝐶                     Integrate with respect to u.             

                                = 2

3
 (𝑥3 + 1)3/2 + 𝐶         Replace u by 𝒙𝟑 + 𝟏.                          

∫ 3𝑥2√𝑥3 + 1
1

−1
𝑑𝑥 = 2

3
 (𝑥3 + 1)3/2]

−1

1
       Use the integral just found, with 

                                                                                 limits of integration for x. 

                                =
2

3
[((1)3 + 1)3/2 − ((−1)3 + 1)3/2] 

                                = 2

3
[2

3

2 − 0
3

2] = 2

3
[2√2] = 4√2

3
 . ■ 

Remark: 

     Which method is better - evaluating the transformed definite integral 

with transformed limits using Theorem, or transforming the integral, 

integrating, and transforming back to use the original limits of integration? 

In Example (*), the first method seems easier, but that is not always the 

case. Generally, it is best to know both methods and to use Whichever one 

seems better at the time. 

Example: 

     We use the method of transforming the limits of integration 

a)  ∫ cot 𝜃 𝑐𝑠𝑐2 𝜃 𝑑𝜃
𝜋/2

𝜋/4
= ∫ 𝑢 ∙ (−𝑑𝑢)

0

1
  Let 𝒖 = 𝒄𝒐𝒕 𝜽, 𝒅𝒖 =  −𝒄𝒔𝒄𝟐 𝜽 𝒅𝜽, 

                      −𝒅𝒖 = 𝒄𝒔𝒄𝟐 𝒖 𝒅𝒖. 

When 𝜽 =
𝝅

𝟒
, 𝒖 = 𝒄𝒐𝒕 (

𝝅

𝟒
)  =  𝟏. 

When 𝜽 =
𝝅

𝟐
, 𝒖 = 𝒄𝒐𝒕 (

𝝅

𝟐
)  =  𝟎. 
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                                  = −∫ 𝑢 𝑑𝑢
0

1
  

                                  = −[𝑢
2

2
]1
0  

                                  = − [
(0)2

2
−
(1)2

2
] = 1

2
 

b)  ∫ 2sin𝑥 cos𝑥

(1+sin2 𝑥)3

𝜋/2

0
𝑑𝑥 = ∫ 1

𝑢3
 

1

0
𝑑𝑢  Let 𝒖 = 𝟏 + 𝐬𝐢𝐧𝟐 𝒙 , 𝒅𝒖 =

 𝟐 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 𝒅𝒙. 

When 𝒙 =  𝟎, 𝒖 =  𝟏. 

When 𝒙 = 𝝅/𝟐, 𝒖 =  𝟐. 

                       = 1

2𝑢2
]
1

2
= −1

8
− (−1

2
) = 3

8
 . ■ 

4.3.2 Definite Integrals of Symmetric Functions: 

      The Substitution Formula in Theorem (Substitution in Definite 

integrals) simplifies the calculation of definite integrals of even and odd 

functions over a symmetric interval [−𝑎, 𝑎]. 

  
For 𝑓 an even function, the integral 

from −𝑎 to a is twice the integral 

from 0 to 𝑎. 

For 𝑓 an odd function, the integral 

from −𝑎 to 𝑎 equal 0. 

Theorem: 

      Let 𝒇 be continuous on the symmetric interval [−𝒂, 𝒂]. 

a) If 𝒇 is even, then ∫ 𝒇(𝒙)𝒅𝒙
𝒂

−𝒂
= 𝟐∫ 𝒇(𝒙)𝒅𝒙

𝒂

𝟎
. 

b) If 𝒇 is odd, then∫ 𝒇(𝒙)𝒅𝒙
𝒂

−𝒂
= 𝟎. 

Example: 

       Evaluate   ∫ (𝑥4 − 4𝑥2 + 6)
2

−2
𝑑𝑥. 

Solution:    
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      Since 𝑓(𝑥) = 𝑥4 − 4𝑥2 + 6 satisfies 𝑓(−𝑥) = 𝑓(𝑥), it is even on the 

symmetric interval [−2, 2], so 

∫ (𝑥4 − 4𝑥2 + 6)
2

−2
𝑑𝑥 = 2∫ (𝑥4 − 4𝑥2 + 6)

2

0
𝑑𝑥  

                                   = 2[𝑥
5

5
− 4

3
𝑥3 + 6𝑥]

0

2
 

                                     = 2(32
5
− 32

3
+ 12) 

                                     = 232

15
. ■ 

4.3.3 Areas Between Curves: 

Definition: 

     If 𝑓 and 𝑔 are continuous with 𝑓(𝑥) ≥

𝑔(𝑥) throughout [𝑎, 𝑏], then the area of the 

region between the curves 𝑦 =  𝑓 (𝑥) and 

𝑦 =  𝑔(𝑥) from 𝑎 to 𝑏 is the integral of (𝑓 −

𝑔) from 𝑎 to 𝑏: 

                                     𝐴 = ∫ [𝑓(𝑥) − 𝑔(𝑥)]
𝑏

𝑎
𝑑𝑥. 

Remark: 

      When applying this definition, it is usually helpful to graph the curves. 

The graph reveals which curve is the upper curve ƒ and which is the lower 

curve g. It also helps you find the limits of integration if they are not given. 

You may need to find where the curves intersect to determine the limits of 

integration, and this may involve solving the equation 𝑓(𝑥)  =  𝑔(𝑥) for 

values of x. Then you can integrate the function 𝑓 −  𝑔 for the area between 

the intersections. 

Example: 

       Find the area of the region enclosed by the 

parabola 𝑦 = 2 − 𝑥2 and the line 𝑦 = −𝑥. 

Solution:    

      First, we sketch the two curves. The limits of 

integration are found by solving 𝑦 = 2 − 𝑥2 and 

𝑦 = −𝑥 simultaneously for x. 

 

 

 

 

 

 

 

The region between the curves 𝒚 =

 𝒇(𝒙) and 𝒚 =  𝒈(𝒙) and the lines 

𝒙 =  𝒂 and 𝒙 =  𝒃. 
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2 − 𝑥2 = −𝑥 Equate 𝒇(𝒙) and 𝒈(𝒙). 

𝑥2 − 𝑥 − 2 = 0  Rewrite. 

(𝑥 + 1)(𝑥 − 2) = 0  Factor. 

𝑥 = −1, 𝑥 = 2  Solve. 

The region runs from 𝑥 = −1 to 𝑥 = 2. The limits of integration are 𝑎 =

 −1, 𝑏 =  2. The area between the curves is 

𝐴 = ∫ [𝑓(𝑥) − 𝑔(𝑥)]
𝑏

𝑎
𝑑𝑥 = ∫ [(2 − 𝑥2) − (−𝑥)]

2

−1
𝑑𝑥  

                                          = ∫ (2 + 𝑥 − 𝑥2)𝑑𝑥
2

−1
= [2𝑥 + 𝑥2

2
− 𝑥3

3
]−1
2    

                                          = (4 + 4

2
− 8

3
) − (−2 + 1

2
+ 1

3
) = 9

2
 . ■ 

Remark: 

      If the formula for a bounding curve change at one or more points, we 

subdivide the region into subregions that correspond to the formula 

changes and apply the formula for the area between curves to each 

subregion. 

Example (**): 

    Find the area of the region in the first 

quadrant that is bounded above by 𝑦 = √𝑥 

and  below  by  the  x - axis  and the line 

𝑦 = 𝑥 −  2. 

Solution:    

      The sketch shows that the region’s 

upper boundary is the graph of 𝑓(𝑥) =

√𝑥. The lower boundary changes from 

 𝑔(𝑥) = 0 for 0 ≤  𝑥 ≤  2 to 𝑔(𝑥) =  𝑥 − 2 for 2 ≤  𝑥 ≤  4 (both 

formulas agree at 𝑥 =  2). We subdivide the region at 𝑥 =  2 into 

subregions A and B. 

     The limits of integration for region A are 𝑎 =  0 and 𝑏 =  2. The left-

hand limit for region B is 𝑎 =  2. To find the right-hand limit, we solve 

the equations 𝑦 = √𝑥 and 𝑦 =  𝑥 −  2 simultaneously for x: 

√𝑥 = 𝑥 − 2 Equate 𝒇(𝒙) and 𝒈(𝒙). 

𝑥 = (𝑥 − 2)2 = 𝑥2 − 4𝑥 + 4  Square both sides. 
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𝑥2 − 5𝑥 + 4 = 0  Rewrite. 

(𝑥 − 1)(𝑥 − 4) = 0  Factor. 

𝑥 = 1, 𝑥 = 4  Solve. 

        Only the value 𝑥 = 4 satisfies the equation √𝑥 =  𝑥 − 2. The value 

𝑥 =  1 is an extraneous root introduced by squaring. The right-hand limit 

is 𝑏 =  4. 

      For 0 ≤ 𝑥 ≤ 2:      𝑓(𝑥)  −  𝑔(𝑥)  = √𝑥  −  0 = √𝑥 

      For 2 ≤ 𝑥 ≤ 4:     𝑓(𝑥)  −  𝑔(𝑥)  = √𝑥 − (𝑥 −  2)  = √𝑥 −  𝑥 +  2 

We add the areas of subregions A and B to find the total area: 

       Total area = ∫ √𝑥𝑑𝑥
2

0⏟    
𝒂𝒓𝒆𝒂 𝒐𝒇 𝑨

+ ∫ (√𝑥 −  𝑥 +  2)
4

2
𝑑𝑥⏟            

𝒂𝒓𝒆𝒂 𝒐𝒇 𝑩

 

                         = [2
3
𝑥3/2]

0

2
+ [2

3
𝑥3/2 − 𝑥2

2
+ 2𝑥]

2

4
 

                         = 2

3
(2)3/2 − 0 + (2

3
(4)

3

2 − 8 + 8) − (2
3
(2)

3

2 − 2 + 4)  

                          = 2

3
(8) − 2 = 10

3
. ■ 

4.3.4 integration with respect to y: 

      If a region’s bounding curves are described by functions of y, the 

approximating rectangles are horizontal instead of vertical and the basic 

formula has y in place of x. For regions like these: 

                      

use the formula 𝐴 = ∫ [𝑓(𝑥) − 𝑔(𝑥)]
𝑏

𝑎
𝑑𝑥. In this equation 𝑓 always 

denotes the right-hand curve and 𝑔 the left-hand curve, so 𝑓(𝑦) − 𝑔(𝑦) is 

nonnegative. 
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Example(***): 

    Find the area of the region in 

Example (**) by integrating with 

respect to y. 

Solution:    

    We first sketch the region and a 

typical horizontal rectangle based on a  

partition of an interval of y-values. The region’s right-hand boundary is 

the line 𝑥 =  𝑦 +  2, so 𝑓(𝑦)  =  𝑦 +  2. The left-hand boundary is the 

curve 𝑥 =  𝑦2, so 𝑔(𝑦)  = 𝑦2. The lower limit of integration is 𝑦 =  0. 

We find the upper limit by solving 𝑥 =  𝑦 +  2 and 𝑥 = 𝑦2 

simultaneously for y: 

𝑦 + 2 = 𝑦2 Equate 𝒇(𝒙) = 𝒚 + 𝟐 and 𝒈(𝒙) = 𝒚𝟐. 

𝑦2 − 𝑦 − 2 = 0  Rewrite. 

(𝑦 + 1)(𝑦 − 2) = 0  Factor. 

𝑦 = −1, 𝑦 = 2  Solve. 

The upper limit of integration is 𝑏 =  2. (The value 𝑦 = −1 gives a point 

of intersection below the x-axis.). The area of the region is 

𝐴 = ∫ [𝑓(𝑦) − 𝑔(𝑦)]
𝑑

𝑐
𝑑𝑥 = ∫ [𝑦 + 2 − 𝑦2]

2

0
𝑑𝑦  

                                          = ∫ [2 + 𝑦 − 𝑦2]
2

0
𝑑𝑦 = [2𝑦 + 𝑦2

2
− 𝑦3

3
]0
2   

                                          = (4 + 4

2
− 8

3
) = 10

3
 .  

This is the result of Example (*), found with less work. ■ 

Remark: 

      Although it was easier to find the 

area in Example (**) by integrating with 

respect to y rather than x (just as we did 

in Example (***)), there is an easier way 

yet. The area we want is the area 

between the curve 𝑦 = √𝑥 and the x-

axis for 0 ≤ 𝑥 ≤  4, minus the area of  
 

The area of the blue region is the area under 

the parabola 𝑦 = √𝑥 minus the area of the 

triangle. 
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an isosceles triangle of base and height equal to 2. So by combining 

calculus with some geometry, we find 

      Area = ∫ √𝑥
4

0
𝑑𝑥 − 1

2
(2)(2) = 2

3
𝑥
3

2]
0

4

− 4 =
2

3
(8) − 0 − 2 =

10

3
 . 

Example: 

      Find the area of the region bounded 

below by the line 𝑦 =  2 −  𝑥 and above 

by the curve 𝑦 = √ 2𝑥 − 𝑥2. 

Solution:    

       A sketch of the region is displayed in  

Figure, and we see that the line and curve intersect at the points (1, 1) and 

(2, 0). Using vertical rectangles, the area of the region is given by 

                        𝐴 = ∫ (√ 2𝑥 − 𝑥2 + 𝑥 − 2)
2

1
𝑑𝑥. 

However, we don’t know how to find an antiderivative for the term 

involving the radical, and no simple substitution is apparent. 

      To use horizontal rectangles, we first need to express each bounding 

curve as a function of the variable y. The line on the left is easily found 

to be 𝑥 = 2 −  𝑦. For the curve 𝑦 = √ 2𝑥 − 𝑥2 on the right-hand side we 

have 

             𝑦2 = 2𝑥 − 𝑥2  

                  = −(𝑥2 − 2𝑥 + 1) + 1 Complete the square. 

                  = −(𝑥 − 1)2 + 1  

Solving for x,  

   (𝑥 − 1)2 = 1 − 𝑦2   

               𝑥 = 1 + √1 − 𝑦2 𝒙 ≥  𝟏, 𝟎 ≤  𝒚 ≤  𝟏  

The area of the region is then given by 

   𝐴 = ∫ [(1 + √1 − 𝑦2) − (2 − 𝑦)]
1

0
𝑑𝑥 = ∫ (√1 − 𝑦2 + 𝑦 − 1)

1

0
𝑑𝑥 

Again, we don’t know yet how to integrate the radical term. We conclude 

that neither vertical nor horizontal rectangles lead to an integral we 

currently can evaluate. 
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        Nevertheless, as we found with Example (***), sometimes a little 

observation proves to be helpful. If we look again at the algebra for 

expressing the right-hand side curve 𝑦 = √ 2𝑥 − 𝑥2 as a function of y, we 

see that (𝑥 − 1)2 + 𝑦2 = 1, which is the equation of the unit circle with 

center shifted to the point (1, 0). From Figure, we can then see that the area 

of the region we want is the area of the upper right quarter of the unit circle 

minus the area of the triangle with vertices (1, 1), (1, 0), and (2, 0). That 

is, the area is given by 

                                  𝐴 =  
𝜋

4
−
1

2
=
𝜋−2

4
≈ 0.285. ■ 

Exercises: 

1. Use the Substitution Formula in Theorem (Substitution in Definite 

integrals) to evaluate the integrals in following Exercises 

1)  a) ∫ √𝑦 + 1𝑑𝑦
3

0
 2)  a) ∫ 𝑟√1 − 𝑟2𝑑𝑟

1

0
 

b) ∫ √𝑦 + 1𝑑𝑦
0

−1
 b) ∫ 𝑟√1 − 𝑟2𝑑𝑟

1

−1
 

3) a) ∫ 𝑡𝑎𝑛 𝑥
𝜋/4

0
 𝑠𝑒𝑐2 𝑥 𝑑𝑥 4) a) ∫ 3

𝜋

0
 𝑐𝑜𝑠2 𝑥 sin 𝑥 𝑑𝑥 

b) ∫ 𝑡𝑎𝑛 𝑥
0

−𝜋/4
 𝑠𝑒𝑐2 𝑥 𝑑𝑥 b) ∫ 3

3𝜋

2𝜋
 𝑐𝑜𝑠2 𝑥 sin 𝑥 𝑑𝑥 

5) a) ∫ 𝑡3(1 + 𝑡4)3
1

0
𝑑𝑡 6) 

a) ∫ 𝑡(𝑡2 + 1)1 3⁄√7

0
𝑑𝑡 

b) ∫ 𝑡3(1 + 𝑡4)3
1

−1
𝑑𝑡 b) ∫ 𝑡(𝑡2 + 1)1 3⁄0

−√7
𝑑𝑡 

7) a) ∫ 5𝑟

(4+𝑟2)2
 𝑑𝑟

1

−1
 8) a) ∫ 10√𝑣

(1+𝑣3 2⁄ )2

1

0
𝑑𝑣 

b) ∫ 5𝑟

(4+𝑟2)2
 𝑑𝑟

1

0
 b) ∫ 10√𝑣

(1+𝑣3 2⁄ )2

4

1
𝑑𝑣 

9) 
a) ∫ 4𝑥

√𝑥2+1

√3

0
𝑑𝑥 

10) a) ∫ 𝑥3

√𝑥4+9
 

1

0
𝑑𝑥 

b) ∫ 4𝑥

√𝑥2+1

√3

−√3
𝑑𝑥 b) ∫ 𝑥3

√𝑥4+9
 

0

−1
𝑑𝑥 

11) a) ∫ 𝑡√4 + 5𝑡𝑑𝑡
1

0
 12) a) ∫ (1 − 𝑐𝑜𝑠 3𝑡

𝜋 6⁄

0
)𝑠𝑖𝑛 3𝑡dt 

b) ∫ 𝑡√4 + 5𝑡𝑑𝑡
9

1
 b) ∫ (1 − 𝑐𝑜𝑠 3𝑡

𝜋 3⁄

𝜋 6⁄
)𝑠𝑖𝑛 3𝑡dt 

13) a) ∫ 𝑐𝑜𝑠 𝑧

√4+3𝑠𝑖𝑛 𝑧

2𝜋

0
𝑑𝑧 14) a) ∫ (2 + 𝑡𝑎𝑛 𝑡

2
)𝑠𝑒𝑐2 𝑡

2

0

−𝜋 2⁄
𝑑𝑡 
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b) ∫ 𝑐𝑜𝑠 𝑧

√4+3𝑠𝑖𝑛 𝑧

𝜋

−𝜋
𝑑𝑧 b) ∫ (2 + 𝑡𝑎𝑛 𝑡

2
)𝑠𝑒𝑐2 𝑡

2

𝜋 2⁄

−𝜋 2⁄
𝑑𝑡 

15) ∫ √𝑡5 + 2𝑡(4𝑡4 + 2)𝑑𝑡
1

0
  16) ∫ 𝑑𝑦

2√𝑦(1+√𝑦)2

4

1
  

17) ∫ cos−3 2𝜃 sin 2𝜃 𝑑𝜃
𝜋 6⁄

0
  18) ∫ cot5(𝜃

6
) sec2(𝜃

6
) 𝑑𝜃

3𝜋 2⁄

𝜋
  

19) ∫ 5(5 − 4 cot 𝑡)1 4⁄ sin 𝑡 𝑑𝑡
𝜋

0
  20) ∫ (1 − sin 2𝑡)3 2⁄ cos 2𝑡  𝑑𝑡

𝜋/4

0
  

21) ∫ (4𝑦 − 𝑦2 + 4𝑦3 + 1)−2 3⁄ (12𝑦2 − 2𝑦 + 4)𝑑𝑦
1

0
  

23) ∫ (𝑦3 + 6𝑦2 − 12𝑦 + 9)−1 2⁄ (𝑦2 + 4𝑦 − 4)𝑑𝑦
1

0
  

23) 
∫ √𝜃 cos2(𝜃3 2⁄ ) 𝑑𝜃
√𝜋2
3

0
  

24) ∫ 𝑡−2 sin2(1 + 1

𝑡
) 𝑑𝑡

−1 2⁄

−1
  

2. Find the total areas of the shaded regions in the following Exercises: 

a)  

 

b)  

 

c)  

 

d)  

 
e)  

 

f)  
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g)  

 

h)  

 

i)  

 

j)  

 
k)  

 

l)  

 

m)  

 

n)  
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o)  

 

p)  

 

3. Find the areas of the regions enclosed by the lines and curves in the 

following Exercises: 

1) 𝑦 = 𝑥2 − 2 and 𝑦 = 2. 2) 𝑦 = 2𝑥 − 𝑥2 and 𝑦 = −3. 

3) 𝑦 = 𝑥4 and 𝑦 = 8𝑥. 4) 𝑦 = 𝑥2 − 2𝑥 and 𝑦 = 𝑥. 

5) 𝑦 = 𝑥2 and 𝑦 = −𝑥2 + 4𝑥. 6) 𝑦 = 7 − 2𝑥2 and 𝑦 = 𝑥2 + 4. 

7) 𝑦 = 𝑥4 − 4𝑥2 + 4 and 𝑦 = 𝑥2. 8) 𝑦 = 𝑥√𝑎2 − 𝑥2, 𝑎 > 0 and 𝑦 = 0. 

9) 𝑦 = √|𝑥| and 5𝑦 = 𝑥 + 6 (How many intersection points are there?) 

10) 𝑦 = |𝑥2 − 4|  and 𝑦 = (𝑥2 2⁄ )  +  4 

11) 𝑥 = 2𝑦2, 𝑥 = 0 and 𝑦 = 3. 12) 𝑥 = 𝑦2 and 𝑥 = 𝑦 + 2. 

13) 𝑦2 − 4𝑥 = 4 and 4𝑥 − 𝑦 = 16. 14) 𝑥 − 𝑦2 = 0 and 𝑥 + 2𝑦2 = 3. 

15) 𝑥 + 𝑦2 = 0 and 𝑥 + 3𝑦2 = 2. 16) 𝑥 − 𝑦2 3⁄ = 0 and 𝑥 + 𝑦4 = 2. 

17) 𝑥 = 𝑦2 − 1 and 𝑥 = |𝑦|√1 − 𝑦2. 18) 𝑥 = 𝑦3 − 𝑦2 and 𝑥 = 2𝑦. 

19) 4𝑥2 + 𝑦 = 4 and 𝑥4 − 𝑦 = 1. 20) 𝑥3 − 𝑦 = 0 and 3𝑥2 − 𝑦 = 4. 
21) 𝑥 + 4𝑦2 = 4 and 𝑥 + 𝑦4 = 1 for 𝑥 ≥ 0. 22) 𝑥 + 𝑦2 = 3 and 4𝑥 + 𝑦2 = 0. 

23) 𝑦 =  2 𝑠𝑖𝑛 𝑥 and 𝑦 =  𝑠𝑖𝑛 2𝑥, 0 ≤  𝑥 ≤ 𝜋. 

24) 𝑦 =  8 𝑐𝑜𝑠 𝑥 and 𝑦 =  𝑠𝑒𝑐2 𝑥, −𝜋 3⁄  ≤  𝑥 ≤  𝜋 3⁄ . 

25) 𝑦 = 𝑐𝑜𝑠 (𝜋𝑥 2⁄ ) and 𝑦 = 1 −  𝑥2 26) 𝑦 = 𝑠𝑖𝑛 (𝜋𝑥 2⁄ ) and 𝑦 = 𝑥 

27) 𝑦 =  𝑠𝑒𝑐2 𝑥, 𝑦 =  𝑡𝑎𝑛2 𝑥, 𝑥 =  −𝜋 4⁄ , and 𝑥 =  𝜋 4⁄  

28) 𝑥 =  𝑡𝑎𝑛2 𝑦, 𝑥 = − 𝑡𝑎𝑛2 𝑦, − 𝜋 4⁄ ≤ 𝑦 ≤ 𝜋 4⁄ .  

29) 𝑥 =  3 𝑠𝑖𝑛 𝑦√ 𝑐𝑜𝑠 𝑦 and 𝑥 =  0, 0 ≤  𝑦 ≤ 𝜋 2⁄  

30) 𝑦 =  𝑠𝑒𝑐2 (𝜋𝑥 3⁄ ) and 𝑦 =  𝑥1 3⁄ , −1 ≤  𝑥 ≤  1. 

4. Find the area of the propeller-shaped region enclosed by the curve 𝑥 −

 𝑦3  =  0 and the line 𝑥 −  𝑦 =  0. 
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5. Find the area of the propeller-shaped region enclosed by the curves 𝑥 −

 𝑦1 3⁄ = 0 and 𝑥 − 𝑦1 5⁄ =  0. 

6. Find the area of the region in the first quadrant bounded by the line 𝑦 =

 𝑥, the line 𝑥 =  2, the curve 𝑦 =  1 𝑥2⁄ , and the x-axis. 

7. Find the area of the “triangular” region in the first quadrant bounded on 

the left by the y-axis and on the right by the curves 𝑦 = 𝑠𝑖𝑛 𝑥 and 𝑦 =

 𝑐𝑜𝑠 𝑥. 

8. The region bounded below by the parabola 𝑦 =  𝑥2 and above by the 

line 𝑦 =  4 is to be partitioned into two subsections of equal area by 

cutting across it with the horizontal line 𝑦 =  𝑐. 

a) Sketch the region and draw a line 𝑦 =  𝑐 across it that looks about right. 

In terms of c, what are the coordinates of the points where the line and 

parabola intersect? Add them to your figure. 

b) Find c by integrating with respect to y. (This puts c in the limits of 

integration.) 

c) Find c by integrating with respect to x. (This puts c into the integrand 

as well.) 

9. Find the area of the region between the curve 𝑦 =  3 −  𝑥2 and the line 

𝑦 =  −1 by integrating with respect to a)  x,    b)  y. 

10. Find the area of the region in the first quadrant bounded on the left by 

the y-axis, below by the line 𝑦 =  𝑥 4⁄ , above left by the curve 𝑦 =

 1 + √𝑥, and above right by the curve 𝑦 =  2 √𝑥⁄ . 

11. Find the area of the region in the first 

quadrant bounded on the left by the y-

axis, below by the curve 𝑥 = 2√𝑦, 

above left by the curve 𝑥 =  (𝑦 −  1)2, 

and above right by the line 𝑥 =  3 −  𝑦. 
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12. The figure here shows triangle AOC 

inscribed in the region cut from the 

parabola 𝑦 =  𝑥2 by the line 𝑦 =  𝑎2. 

Find the limit of the ratio of the area of the 

triangle to the area of the parabolic region 

as 𝑎 approaches zero. 

 
13. Suppose the area of the region between the graph of a positive 

continuous function 𝑓 and the x-axis from 𝑥 = 𝑎 to 𝑥 =  𝑏 is 4 square 

units. Find the area between the curves 𝑦 = 𝑓(𝑥) and 𝑦 = 2𝑓(𝑥) from 

𝑥 =  𝑎 to 𝑥 =  𝑏. 

14. Which of the following integrals, if either, 

calculates the area of the shaded region 

shown here? Give reasons for your answer. 

a) ∫ (𝑥 − (−𝑥))𝑑𝑥
1

−1
= ∫ 2𝑥 𝑑𝑥

1

−1
. 

b) ∫ (−𝑥 − (𝑥))𝑑𝑥
1

−1
= ∫ −2𝑥 𝑑𝑥

1

−1
. 

 
15. True, sometimes true, or never true? The area of the region between the 

graphs of the continuous functions 𝑦 = 𝑓(𝑥) and 𝑦 = 𝑔(𝑥) and the 

vertical lines 𝑥 =  𝑎 and 𝑥 =  𝑏 (𝑎 <  𝑏) is    

                                      ∫ [𝑓(𝑥) − 𝑔(𝑥)]
𝑏

𝑎
𝑑𝑥. 

Give reasons for your answer. 
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4.4 Integrals and Transcendental Functions: 

      Our treatment of the logarithmic and exponential functions has been 

rather informal. In this chapter, we give a rigorous analytic approach to the 

definitions and properties of these functions. We also introduce hyperbolic 

functions and their inverses. Like trigonometric functions, these functions 

belong to the class of transcendental functions. 

4.4.1 The Logarithm Defined as an Integral: 

     In section 1.4, we introduced the natural logarithm function 𝑙𝑛 𝑥 as the 

inverse of the exponential function 𝑒𝑥. The function 𝑒𝑥 was chosen as that 

function in the family of general exponential functions 𝑎𝑥  , 𝑎 >  0, whose 

graph has slope 1 as it crosses the y-axis. The function 𝑎𝑥 was presented 

intuitively, however, based on its graph at rational values of x. 

      In this section we recreate the theory of logarithmic and exponential 

functions from an entirely different point of view. Here we define these 

functions analytically and derive their behaviors. To begin, we use the 

Fundamental Theorem of Calculus to define the natural logarithm function 

𝑙𝑛 𝑥 as an integral. We quickly develop its properties, including the 

algebraic, geometric, and analytic properties with which we are already 

familiar. Next, we introduce the function 𝑒𝑥 as the inverse function of 𝑙𝑛 𝑥, 

and establish its properties. 

       Defining 𝑙𝑛 𝑥 as an integral and 𝑒𝑥 as its inverse is an indirect 

approach that gives an elegant and powerful way to obtain and validate the 

key properties of logarithmic and exponential functions. 

Definition: 

        The natural logarithm is the function given by 

                                     ln 𝑥 = ∫ 1
𝑡
 𝑑𝑡

𝑥

1
 ,    𝑥 > 0. 

       From the Fundamental Theorem of Calculus, 

𝑙𝑛 𝑥 is a continuous function. Geometrically, if 

𝑥 >  1, then  𝑙𝑛 𝑥  is  the  area  under the curve 
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𝑦 = 1/𝑡 from 𝑡 = 1 to 𝑡 = 𝑥. For 0 <  𝑥 <  1, 𝑙𝑛 𝑥 gives the negative of 

the area under the curve from x to 1, and the function is not defined for 

𝑥 ≤ 0. From the Zero Width Interval Rule for definite integrals, we also 

have ln 1 = ∫ 1
𝑡
 𝑑𝑡

1

1
= 0. 

      Notice that the graph shows 𝑦 = 1/ 𝑥 but use 𝑦 = 1/ 𝑡 in the integral. 

Using x for everything would have us writing  ln 𝑥 = ∫ 1
𝑥

 𝑑𝑥
𝑥

1
,   with x 

meaning two different things. So, we change the variable of integration to t. 

Definition: 

      The number 𝑒 is the number in the domain of the natural logarithm 

that satisfies    ln(𝑒) = ∫ 1
𝑡
 𝑑𝑡

𝑒

1
= 1. 

Remark: 

If u is a differentiable function that is never zero, then 

                                           ∫ 1

𝑢
 𝑑𝑢 = ln|𝑢| + 𝐶. 

This equation applies anywhere on the domain of 
1

𝑢
, which is the set of 

points where 𝑢 ≠  0. It says that integrals that have the form ∫ 𝑑𝑢

𝑢
  lead to 

logarithms. Whenever 𝑢 =  𝑓 (𝑥) is a differentiable function that is never 

zero, we have that 𝑑𝑢 =  𝑓′(𝑥) 𝑑𝑥 and 

                                       ∫ 𝑓′(𝑥)

𝑓(𝑥)
 𝑑𝑢 = ln|𝑓(𝑥)| + 𝐶.  

Example: 

      We rewrite an integral in the form ∫ 𝑑𝑢

𝑢
 . 

∫ 4 cos 𝜃
3+2 sin 𝜃

𝜋/2

−𝜋/2
= ∫

2

𝑢
𝑑𝑢

5

1
   𝒖 = 𝟑 + 𝟐 𝒔𝒊𝒏 𝜽, 𝒅𝒖 =  𝟐 𝒄𝒐𝒔 𝜽 𝒅𝜽, 

𝒖(−𝝅/𝟐)  =  𝟏, 𝒖(𝝅/𝟐)  =  𝟓 

                       = 2 𝑙𝑛|𝑢|]1
5 = 2 𝑙𝑛|5| − 2 𝑙𝑛|5| = 2 𝑙𝑛 5  

Note that 𝑢 = 3 + 2 𝑠𝑖𝑛 𝜃  is always positive on [−𝜋/2, 𝜋/2]. ■ 

Remark: 

        If 𝑓(𝑥) = 𝑒𝑥, then ∫ 𝑒𝑥𝑑𝑥 = 𝑒𝑥 + 𝐶. 
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Example: 

a) ∫ 𝑒3𝑥𝑑𝑥
ln 2

0
= ∫ 𝑒𝑢1

3
 𝑑𝑢

ln 8

0
 𝑢 =  3𝑥,

1

3
 𝑑𝑢 = 𝑑𝑥, 𝑢(0) = 0, 

𝑢(ln 2) = 3 ln 2 = ln 23 = ln 8. 

                        =
1

3
∫ 𝑒𝑢 𝑑𝑢

ln 8

0
=

1

3
𝑒𝑢]

0

ln 8
=

1

3
(8 − 1) = 7

3
 

b) ∫ 𝑒sin 𝑥 cos 𝑥 𝑑𝑥
𝜋/2

0
= 𝑒sin 𝑥]

0

𝜋/2
= 𝑒1 − 𝑒0 = 𝑒 − 1. ■ 

Remark: 

        If 𝑓(𝑥) = 𝑎𝑥, then ∫ 𝑎𝑥𝑑𝑥 = 𝑎𝑥

ln 𝑎
+ 𝐶. 

Example: 

a) ∫ 2𝑥𝑑𝑥 = 2𝑥

ln 2
+ 𝐶. 

b) ∫ 2sin 𝑥 cos 𝑥 𝑑𝑥 = ∫ 2𝑢𝑑𝑢 = 2𝑢

ln 2
+ 𝐶           𝒖 =  𝒔𝒊𝒏 𝒙, 𝒅𝒖 =  𝒄𝒐𝒔 𝒙 𝒅𝒙, 

                           = 2sin 𝑥

ln 2
+ 𝐶 . ■ 

4.4.2 Derivatives and Integrals Involving 𝒍𝒐𝒈𝒂 𝒙: 

     To find derivatives or integrals involving base 𝑎 logarithm, we convert 

them to natural logarithms. If 𝑢 is a positive differentiable function of x, then 

                  𝑑

𝑑𝑥
(𝑙𝑜𝑔𝑎 𝑢) =

𝑑

𝑑𝑥
(ln 𝑢

ln 𝑎
) = 1

ln 𝑎

𝑑

𝑑𝑥
(ln 𝑢) =

1

ln 𝑎
∙

1

𝑢

𝑑𝑢

𝑑𝑥
. 

                                     𝒅

𝒅𝒙
(𝒍𝒐𝒈𝒂 𝒖) =

𝟏

𝐥𝐧 𝒂
∙

𝟏

𝒖

𝒅𝒖

𝒅𝒙
. 

Example: 

a) 𝑑

𝑑𝑥
𝑙𝑜𝑔10 (3𝑥 + 1) = 1

ln 10
∙

1

3𝑥+1
∙

𝑑

𝑑𝑥
(3𝑥 + 1) = 3

(ln 10)(3𝑥+1)
 

b) ∫ 𝑙𝑜𝑔2𝑥

𝑥
𝑑𝑥 =

1

ln 2
∫ ln 𝑥

𝑥
𝑑𝑥                 𝒍𝒐𝒈𝟐𝒙 =

𝐥𝐧 𝒙

𝐥𝐧 𝟐
            

                =
1

ln 2
∫ 𝑢 𝑑𝑢                    𝒖 = 𝐥𝐧 𝒙 , 𝒅𝒖 = 𝟏

𝒙
 𝒅𝒙     

                =
1

ln 2
∙ 𝑢2

2
+ 𝐶 =

1

ln 2
∙ (ln 𝑥)2

2
+ 𝐶 =

(ln 𝑥)2

2 ln 2
+ 𝐶. ■  

4.4.3 The Integrals of 𝒕𝒂𝒏 𝒙, 𝒄𝒐𝒕 𝒙, 𝒔𝒆𝒄 𝒙, and 𝒄𝒔𝒄 𝒙: 

       The integration of trigonometric functions is 

∫ 𝐭𝐚𝐧 𝒙 𝒅𝒙 = ∫ sin 𝑥

cos 𝑥
𝑑𝑥 = ∫ −𝑑𝑢

𝑢
  𝒖 = 𝒄𝒐𝒔 𝒙 >  𝟎 𝒐𝒏 (−𝝅/𝟐, 𝝅/𝟐),  

𝒅𝒖 =  −𝒔𝒊𝒏 𝒙 𝒅𝒙  

                    = − ln|𝑢| + 𝐶 = − ln|cos 𝑥| + 𝐶 

                    = ln| 1

𝐶𝑂𝑆 𝑥
| + 𝐶 = 𝐥𝐧|𝐬𝐞𝐜 𝒙| + 𝑪         Reciprocal Rule 
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For the cotangent, 

∫ 𝐜𝐨𝐭 𝒙 𝒅𝒙 = ∫ cos 𝑥

sin 𝑥
𝑑𝑥 = ∫ 𝑑𝑢

𝑢
  𝒖 = 𝒔𝒊𝒏 𝒙, 𝒅𝒖 =  𝒄𝒐𝒔 𝒙 𝒅𝒙 

                      = ln|𝑢| + 𝐶 = ln|sin 𝑥| + 𝐶 = − 𝐥𝐧|𝐜𝐬𝐜 𝒙| + 𝑪. 

To integrate 𝑠𝑒𝑐 𝑥, we multiply and divide by (𝑠𝑒𝑐 𝑥 + 𝑡𝑎𝑛 𝑥) as an 

algebraic form of 1. 

∫ 𝐬𝐞𝐜 𝒙 𝒅𝒙 = ∫ sec 𝑥 (sec 𝑥+tan 𝑥)

(sec 𝑥+tan 𝑥)
𝑑𝑥 = ∫ sec2 𝑥+sec 𝑥 tan 𝑥

sec 𝑥+tan 𝑥
 𝑑𝑥  

                 = ∫ 𝑑𝑢

𝑢
= ln|𝑢| + 𝐶 

                 = 𝒍𝒏 |𝐬𝐞𝐜 𝒙 + 𝐭𝐚𝐧 𝒙| + 𝑪  

𝒖 =  𝒔𝒆𝒄 𝒙 +  𝒕𝒂𝒏 𝒙,  
𝒅𝒖 = (𝒔𝒆𝒄 𝒙 𝒕𝒂𝒏 𝒙 +  𝒔𝒆𝒄𝟐 𝒙)𝒅𝒙  

For 𝑐𝑠𝑐 𝑥, we multiply and divide by (𝑐𝑠𝑐 𝑥 +  𝑐𝑜𝑡 𝑥). 

 ∫ 𝐜𝐬𝐜 𝒙 𝒅𝒙 = ∫ csc 𝑥 (csc 𝑥+cot 𝑥)

(csc 𝑥+cot 𝑥)
𝑑𝑥 = ∫ csc2 𝑥+csc 𝑥 cot 𝑥

csc 𝑥+cot 𝑥
 𝑑𝑥                  

                 = ∫ −𝑑𝑢

𝑢
= − ln|𝑢| + 𝐶 

                 = −𝒍𝒏 |𝐜𝐬𝐜 𝒙 + 𝐜𝐨𝐭 𝒙| + 𝑪  

𝒖 =  𝒄𝒔𝒄 𝒙 +  𝒄𝒐𝒕 𝒙,  
𝒅𝒖 = (−𝒄𝒔𝒄 𝒙 𝒄𝒐𝒕 𝒙 − 𝒄𝒔𝒄𝟐 𝒙)𝒅𝒙  

In summary, we have the following results. 

Integrals of the tangent, cotangent, secant, and cosecant functions 

∫ 𝐭𝐚𝐧 𝒖 𝒅𝒖 = 𝐥𝐧|𝐬𝐞𝐜 𝒖| + 𝑪 ∫ 𝐬𝐞𝐜 𝒖 𝒅𝒖 = 𝒍𝒏 |𝐬𝐞𝐜 𝒖 + 𝐭𝐚𝐧 𝒖| + 𝑪   

∫ 𝐜𝐨𝐭 𝒖 𝒅𝒖 = − 𝐥𝐧|𝐜𝐬𝐜 𝒖| + 𝑪  ∫ 𝐜𝐬𝐜 𝒖 𝒅𝒖 = −𝒍𝒏 |𝐜𝐬𝐜 𝒖 + 𝐜𝐨𝐭 𝒖| + 𝑪  

Example: 

∫ tan 2𝑥 𝑑𝑥 = ∫ tan 𝑢 𝑑𝑢

2
= 1

2
∫ tan 𝑢 𝑑𝑢

𝜋/3

0

𝜋/3

0

𝜋/6

0
  Substitute 𝒖 = 𝟐𝒙, 

𝒅𝒙 = 𝒅𝒖/𝟐, 𝒖(𝟎) =  𝟎, 

𝒖(𝝅/𝟔)  =  𝝅 > 𝟑  

                         = 1

2
ln|sec 𝑢|]0

𝜋/3
=

1

2
 (ln 2 − ln 1) =

1

2
ln 2. ■ 

4.5.4 The Integrals of 𝐢𝐧𝐯𝐞𝐫𝐬𝐞 𝐭𝐫𝐢𝐠𝐨𝐧𝐨𝐦𝐞𝐭𝐫𝐢𝐜 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧𝐬: 

       The derivative formulas in section 3.8.5 yield three useful integration 

formulas in Table 1. The formulas are readily verified by differentiating the 

functions on the right-hand sides. Since two notations are regularly used to 

represent the inverse sine function, we state these formulas using both 

notations, 𝑠𝑖𝑛−1 𝑥 as well as 𝑎𝑟𝑐𝑠𝑖𝑛 𝑥, and similarly for the other inverse 

trigonometric functions. 
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TABLE 1. Integrals evaluated with inverse trigonometric functions 

The following formulas hold for any constant 𝑎 >  0. 

1. ∫ 𝑑𝑢

√𝑎2−𝑢2
= sin−1

(
𝑢
𝑎

) + 𝐶  (Valid for 𝑢2 < 𝑎2) 

2. ∫ 𝑑𝑢

𝑎2+𝑢2 =
1

𝑎
tan−1

(
𝑢
𝑎

) + 𝐶   (Valid for all 𝑢) 

3. ∫ 𝑑𝑢

𝑢 √𝑢2−𝑎2
=

1

𝑎
sec−1|𝑢

𝑎
| + 𝐶  (Valid for |𝑢| > 𝑎 > 0) 

The derivative formulas in section 3.8.5 have 𝑎 = 1, but in most integrations 

𝑎 ≠ 1, and the formulas in Table 1. are more useful. 

Example: 

a) ∫ 𝑑𝑥

√1−𝑥2

√3/2

√2/2
= sin−1 𝑥]

√2/2

√3/2
 𝒂 = 𝟏, 𝒖 =  𝒙 in Table 1., Formula 1 

                       = sin−1(√3/2) − sin−1(√2/2) = 𝜋

3
− 𝜋

4
= 𝜋

12
 

b) ∫ 𝑑𝑥

√3−4𝑥2
= 1

2
∫ 𝑑𝑢

√𝑎2−𝑢2
 𝒂 = √𝟑, 𝒖 = 𝟐𝒙, and 𝒅𝒖/𝟐 =  𝒅𝒙 

                  =
1

2
  sin−1(

𝑢

𝑎
) + C Table 1., Formula 1 

                  =
1

2
 sin−1(

2𝑥

√3
) + C   

c) ∫ 𝑑𝑥

√𝑒2𝑥−6
= ∫ 𝑑𝑢

𝑢 √𝑢2−𝑎2
 𝒖 =  𝒆𝒙, 𝒅𝒖 =  𝒆𝒙, 

𝒅𝒙 = 𝒅𝒖/𝒆𝒙 = 𝒅𝒖/𝒖, 𝒂 = √𝟔 

                  = 1

𝑎
sec−1 |

𝑢

𝑎
| + 𝐶 Table 1., Formula 3 

                  = 1

√6
sec−1 |

𝑒𝑥

√6
| + 𝐶. ■   

Example: 

       Evaluate   a) ∫ 𝑑𝑥

√4𝑥−𝑥2
 ,       b) ∫ 𝑑𝑥

4𝑥2+4𝑥+2
. 

Solution:    

a) The expression √4𝑥 − 𝑥2 does not match any of the formulas in Table 1., 

so we first rewrite 4𝑥 − 𝑥2 by completing the square: 

     4𝑥 − 𝑥2 = −(𝑥2 − 4𝑥) = −(𝑥2 − 4𝑥 + 4) + 4 = 4 − (𝑥 − 2)2. 

                   ∫ 𝑑𝑥

√4𝑥−𝑥2
= ∫ 𝑑𝑥

√4−(𝑥−2)2
 

                                 = ∫ 𝑑𝑢

√𝑎2−𝑢2
                 𝒂 = 𝟐, 𝒖 = 𝒙 − 𝟐, and 𝒅𝒖 = 𝒅𝒙 

                                = sin−1
(

𝑢
𝑎

) + 𝐶          Table 1., Formula 1 

                                = sin−1
(

𝑥−2
2

) + 𝐶. 
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b) We complete the square on the binomial 4𝑥2 + 4𝑥: 

          4𝑥2 + 4𝑥 + 2 = 4(𝑥2 + 𝑥) + 2 = 4(𝑥2 + 𝑥 + 1

4
) + 2 − 4

4
 

                                  = 4(𝑥 + 1

2
)

2
+ 1 = (2𝑥 + 1)2 + 1. 

    Then, 

    ∫ 𝑑𝑥

4𝑥2+4𝑥+2
= ∫ 𝑑𝑥

(2𝑥+1)2+1
=

1

2
∫ 𝑑𝑢

𝑢2+𝑎2        𝒂 = 𝟏, 𝒖 = 𝟐𝒙 + 𝟏, and 𝒅𝒖/𝟐 = 𝒅𝒙 

                     =
1

2
∙

1

𝑎
tan−1

(
𝑢
𝑎

) + 𝐶             Table 1., Formula 2 

                     =
1

2
tan−1

(2𝑥+1) + 𝐶.             𝒂 =  𝟏, 𝒖 =  𝟐𝒙 +  𝟏. ■ 

Exercises: 

1. Evaluate the integrals in following Exercises 

a) ∫ 𝑑𝑥
𝑥

−2

−3
 b) ∫ 3𝑑𝑥

3𝑥−2

0

−1
 c) ∫ 2𝑦 𝑑𝑦

𝑦2−25
 

d) ∫ 8𝑟 𝑑𝑟

4𝑟2−5
 e) ∫ sin 𝑡

2−cos 𝑡

𝜋

0
𝑑𝑡 f) ∫ 4sin 𝜃

1−4cos 𝜃

𝜋/3

0
𝑑𝜃 

g) ∫ 2 ln 𝑥
𝑥

2

1
𝑑𝑥 h) ∫ 𝑑𝑥

𝑥 ln 𝑥

4

2
 i) ∫ 𝑑𝑥

𝑥(ln 𝑥)2

4

2
 

j) ∫ 𝑑𝑥

2𝑥√ln 𝑥

16

2
 k) ∫ 3 sec2 𝑡

6+3 tan 𝑡
𝑑𝑡 l) ∫ sec 𝑦∙tan 𝑦

2+sec 𝑦
𝑑𝑦 

m) ∫ tan 𝑥
2

𝜋/2

0
𝑑𝑥 n) ∫ cot 𝑡

𝜋/2

𝜋/4
𝑑𝑡 o) ∫ 2cot 𝜃

3

𝜋

𝜋/2
𝑑𝜃 

p) ∫ 6 tan 3𝑥
𝜋/12

0
𝑑𝑥 q) ∫ 𝑑𝑥

2√𝑥+2𝑥
 r) ∫ sec 𝑥 𝑑𝑥

√ln(sec 𝑥+tan 𝑥)
 

2. In the following Exercises, use logarithmic differentiation to find the 

derivative of y with respect to the given independent variable. 

a) 𝑦 = √𝑥(𝑥 + 1) b)  𝑦 =

√(𝑥2 + 1)(𝑥 − 1)2 
c) 𝑦 = √ 𝑡

𝑡+1
 

d) 𝑦 = √
1

𝑡(𝑡+1)
 

e) 𝑦 = √𝜃 + 3 sin 𝜃 f) 𝑦 = (tan 𝜃)√2𝜃 + 1 

g) 𝑦 = 𝑡(𝑡 + 1)(𝑡 +
2) 

h) 𝑦 = 1

𝑡(𝑡+1)(𝑡+2)
 i) 𝑦 = 𝜃+5

𝜃 cos 𝜃
 

j) 𝑦 = 𝜃 sin 𝜃

√sec 𝜃
 k) 𝑦 = 𝑥√𝑥2+1

(𝑥+1)2/3 l) 𝑦 = √(𝑥+1)10

(2𝑥+1)5 

m) 𝑦 = √𝑥(𝑥−2)

𝑥2+1

3
 n) 𝑦 = √

𝑥(𝑥+1)(𝑥−2)

(𝑥2+1)(2𝑥+3)

3
 

3. Evaluate the integrals in the following Exercises: 

1) ∫(𝑒3𝑥 + 5𝑒−𝑥) 𝑑𝑥 2) ∫(2𝑒𝑥 − 3𝑒−2𝑥) 𝑑𝑥 3) ∫ 𝑒𝑥𝑑𝑥
ln 3

ln 2
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4) ∫ 𝑒−𝑥𝑑𝑥
0

−ln 2
 5) ∫ 8𝑒(𝑥+1)𝑑𝑥 6) ∫ 2𝑒(2𝑥−1)𝑑𝑥 

7) ∫ 𝑒𝑥/2𝑑𝑥
ln 9

ln 4
 8) ∫ 𝑒𝑥/4𝑑𝑥

ln 16

0
 9) ∫ 𝑒√𝑟

√𝑟
𝑑𝑟 

10) ∫ 𝑒−√𝑟

√𝑟
𝑑𝑟  11) ∫ 2𝑡𝑒−𝑡2

𝑑𝑡 12) ∫ 𝑡3𝑒(𝑡4)𝑑𝑡 

13) ∫ 𝑒1/𝑥

𝑥2 𝑑𝑥 14) ∫ 𝑒−1/𝑥2

𝑥3 𝑑𝑥 15) ∫ 𝑒𝑟

1+𝑒𝑟 𝑑𝑟 

16) ∫ (1 + 𝑒tan 𝜃) sec2 𝜃 𝑑𝜃
𝜋/4

0
 17) ∫ (1 + 𝑒cot 𝜃) csc2 𝜃 𝑑𝜃

𝜋/2

𝜋/4
 

18) ∫ 𝑒sec 𝜋𝑡 sec 𝜋𝑡 ∙ tan 𝜋𝑡  𝑑𝑡 19) ∫ 𝑒csc(𝜋+𝑡) csc(𝜋 + 𝑡) ∙ cot(𝜋 + 𝑡)  𝑑𝑡 

20) ∫ 2𝑒𝑣 cos 𝑒𝑣 𝑑𝑣
ln(

𝜋

2
)

ln(
𝜋

6
)

 21) ∫ 2𝑥𝑒𝑥2
cos(𝑒𝑥2

) 𝑑𝑥
√ln 𝜋

0
 22) ∫ 𝑑𝑥

1+𝑒𝑥 

23) ∫ 5𝑥𝑑𝑥 24) ∫ 3𝑥

3−3𝑥 𝑑𝑥 25) ∫ 2−𝜃1

0
𝑑𝜃 

26) ∫ 5−𝜃0

−2
𝑑𝜃 27) ∫ 𝑥2(𝑥2)√2

1
𝑑𝑥 28) ∫ 2√𝑥

√𝑥
 

4

1
𝑑𝑥 

29) ∫ 7cos 𝑡𝜋/2

0
sin 𝑡  𝑑𝑡 30) ∫ (1

3
)tan 𝑡𝜋/4

0
sec2 𝑡  𝑑𝑡 31) ∫ 𝑥2𝑥4

2
(1 + ln 𝑥)𝑑𝑥 

32) ∫ 𝑥2𝑥2

1+2𝑥2 𝑑𝑥 33) ∫ 3𝑥√3 𝑑𝑥 34) ∫ 𝑥√2−1 𝑑𝑥 

35) ∫ (√2 + 1)𝑥√23

0
𝑑𝑥 36) ∫ 𝑥(ln 2)−1𝑒

1
𝑑𝑥 37) ∫ 𝑙𝑜𝑔10𝑥

𝑥
𝑑𝑥 

38) ∫ 𝑙𝑜𝑔2𝑥
𝑥

4

1
𝑑𝑥 39) ∫ ln 2∙𝑙𝑜𝑔2𝑥

𝑥

4

1
𝑑𝑥 40) ∫ 2 ln 10∙𝑙𝑜𝑔10𝑥

𝑥

𝑒

1
𝑑𝑥 

41) ∫ 𝑙𝑜𝑔2(𝑥+2)
𝑥+2

2

0
𝑑𝑥 42) ∫

𝑙𝑜𝑔10(10𝑥)

𝑥

10

1/10
𝑑𝑥 43) ∫ 2 𝑙𝑜𝑔10(𝑥+1)

𝑥+1

9

0
𝑑𝑥 

44) ∫ 2 𝑙𝑜𝑔2(𝑥−1)
𝑥−1

3

2
𝑑𝑥 45) ∫ 𝑑𝑥

𝑥 𝑙𝑜𝑔10𝑥
 46) ∫ 𝑑𝑥

𝑥 (𝑙𝑜𝑔8𝑥)2 

47) ∫ 1
𝑡
 

ln 𝑥

1
𝑑𝑡, 𝑥 > 1 48) ∫ 1

𝑡
 

𝑒𝑥

1
𝑑𝑡 49) ∫ 1

𝑡
 

1/𝑥

1
𝑑𝑡, 𝑥 > 0 

50) 1

ln 𝑎
∫ 1

𝑡
 

𝑥

1
𝑑𝑡, 𝑥 > 0 51) ∫ 𝑑𝑥

√9−𝑥2
 52) ∫ 𝑑𝑥

√1−4𝑥2
 

53) ∫ 𝑑𝑥

17+𝑥2 54) ∫ 𝑑𝑥

9+3𝑥2 55) ∫ 𝑑𝑥

𝑥√25𝑥2−2
 

56) ∫ 𝑑𝑥

𝑥√5𝑥2−4
 57) ∫ 4 𝑑𝑠

√4−𝑠2

1

0
 58) ∫  𝑑𝑠

√9−4𝑠2

3√2/4

0
 

59) ∫  𝑑𝑡

8+2𝑡2

2

0
 60) ∫  𝑑𝑡

4+3𝑡2

2

−2
 61) ∫  𝑑𝑦

𝑦√4𝑦2−1

−√2/2

−1
 

62) ∫  𝑑𝑦

𝑦√9𝑦2−1

−√2/3

−2/3
  63) ∫ 3 𝑑𝑟

√1−4(𝑟−1)2
 64) ∫ 6 𝑑𝑟

√4−(𝑟+1)2
 

65) ∫  𝑑𝑥

2+(𝑥−1)2 66) ∫  𝑑𝑥

1+(3𝑥+1)2 67) ∫  𝑑𝑥

(2𝑥−1)√(2𝑥−1)2−4
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68) ∫  𝑑𝑥

(𝑥+3)√(𝑥+3)2−25

 69) ∫ 2 cos 𝜃𝑑𝜃

1+(sin 𝜃)2

𝜋/2

−𝜋/2
 70) ∫ csc2 𝑥𝑑𝑥

1+(cot 𝑥)2

𝜋/4

𝜋/6
 

71) ∫ 𝑒𝑥𝑑𝑥

1+𝑒2𝑥

ln √3

0
 72) ∫ 4 𝑑𝑡

𝑡(1+ln2 𝑡)

𝑒𝜋/4

1
 73) ∫ 𝑦 𝑑𝑦

√1−𝑦4
 

74) ∫ sec2 𝑦 𝑑𝑦

√1−tan2 𝑦

 75) ∫  𝑑𝑥

√−𝑥2+4𝑥−3
 76) ∫  𝑑𝑥

√2𝑥−𝑥2
 

77) ∫ 6 𝑑𝑡

√3−2𝑡−𝑡2

0

−1
 78) ∫ 6 𝑑𝑡

√3+4𝑡−4𝑡2

1

1/2
 79) ∫  𝑑𝑦

𝑦2−2𝑦+5
 

80) ∫  𝑑𝑦

𝑦2+6𝑦+10
 81) ∫ 8 𝑑𝑥

𝑥2−2𝑥+2

2

1
 82) ∫ 2 𝑑𝑥

𝑥2−6𝑥+10

4

2
 

83) ∫ 𝑥+4

𝑥2+4
𝑑𝑥 84) ∫ 𝑡−2

𝑡2−6𝑡+10
𝑑𝑡 85) ∫ 𝑥2+2𝑥−1

𝑥2+9
𝑑𝑥 

86) ∫ 𝑡3−2𝑡2+3𝑡−4

𝑡2+1
𝑑𝑡 87) ∫  𝑑𝑥

(𝑥+1)√𝑥2+2𝑥
 88) ∫  𝑑𝑥

(𝑥−2)√𝑥2−4𝑥+3
 

89) ∫ 𝑒sin−1 𝑥𝑑𝑥

√1−𝑥2
 90) ∫ 𝑒cos−1 𝑥𝑑𝑥

√1−𝑥2
 91) ∫ (sin−1 𝑥)2𝑑𝑥

√1−𝑥2
 

92) ∫
√tan−1 𝑥  𝑑𝑥

1+𝑥2  93) ∫ 𝑑𝑦

(tan−1 𝑦)(1+𝑦2)
 94) ∫ 𝑑𝑦

(sin−1 𝑦)√1−𝑦2
 

95) ∫ sec2(sec−1 𝑥) 𝑑𝑥

𝑥√𝑥2−1

2

√2
 96) ∫ cos(sec−1 𝑥) 𝑑𝑥

𝑥√𝑥2−1

2

2/√3
 97) ∫ 𝑒𝑥 sin−1 𝑒𝑥

√1−𝑒2𝑥
𝑑𝑥 

98) ∫
tan−1 𝑥

1+𝑥2

1

0
𝑑𝑥 99) ∫ cos (tan−1 3𝑥)

1+9𝑥2

1/√3

−√3
𝑑𝑥 100) ∫ 1

√𝑥(𝑥+1)((tan−1 √𝑥)
2

+9)
𝑑𝑥 
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4.5 Hyperbolic Functions: 

       The hyperbolic functions are formed by taking combinations of the 

two exponential functions 𝑒𝑥and 𝑒−𝑥. The hyperbolic functions simplify 

many mathematical expressions and occur frequently in mathematical 

and engineering applications. 

Definition: 

       The hyperbolic sine and hyperbolic cosine functions are defined by 

the equations 

                 sinh 𝑥 = 𝑒𝑥−𝑒−𝑥

2
     and   cosh 𝑥 = 𝑒𝑥+𝑒−𝑥

2
. 

We pronounce 𝑠𝑖𝑛ℎ 𝑥 as “cinch x,” rhyming with “pinch x,” and 𝑐𝑜𝑠ℎ 𝑥 

as “kosh x,” rhyming with “gosh x.” From this basic pair, we define the 

hyperbolic tangent, cotangent, secant, and cosecant functions. The 

defining equations and graphs of these functions are shown in Table 2. We 

will see that the hyperbolic functions bear many similarities to the 

trigonometric functions after which they are named. 

TABLE 2. The six basic hyperbolic functions 

 
   Hyperbolic sine: 

sinh 𝑥 =
𝑒𝑥−𝑒−𝑥

2
 

 
   Hyperbolic cosine: 

cosh 𝑥 =
𝑒𝑥+𝑒−𝑥

2
 

 
Hyperbolic tangent: 

𝑡𝑎𝑛ℎ 𝑥 =  
𝑠𝑖𝑛ℎ 𝑥

cosh x
=

𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 

Hyperbolic cotangent: 

𝑐𝑜𝑡ℎ 𝑥 =  
𝑐𝑜𝑠ℎ 𝑥

𝑠𝑖𝑛h x
=

𝑒𝑥+𝑒−𝑥

𝑒𝑥−𝑒−𝑥 
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Hyperbolic secant: 

𝑠𝑒𝑐ℎ 𝑥 =  
1

𝑐𝑜𝑠ℎ 𝑥
 

           = 2

𝑒𝑥+𝑒−𝑥 

 
Hyperbolic cosecant: 

𝑐𝑠𝑐ℎ 𝑥 =  
1

𝑠𝑖𝑛ℎ 𝑥
 

             = 2

𝑒𝑥−𝑒−𝑥  

 

Remark: 

       Hyperbolic functions satisfy the following identities in Table 3. 

TABLE 3. Identities for hyperbolic functions 

1. 𝑐𝑜𝑠ℎ2 𝑥 −  𝑠𝑖𝑛ℎ2 𝑥 =  1 5. 𝑠𝑖𝑛ℎ2 𝑥 =  𝑐𝑜𝑠ℎ 2𝑥− 1

2
 

2. 𝑠𝑖𝑛ℎ 2𝑥 =  2 𝑠𝑖𝑛ℎ 𝑥 𝑐𝑜𝑠ℎ 𝑥 6. 𝑡𝑎𝑛ℎ2 𝑥 =  1 −  𝑠𝑒𝑐ℎ2 𝑥 

3. 𝑐𝑜𝑠ℎ 2𝑥 = 𝑐𝑜𝑠ℎ2 𝑥 +  𝑠𝑖𝑛ℎ2 𝑥 7. 𝑐𝑜𝑡ℎ2 𝑥 =  1 +  𝑐𝑠𝑐ℎ2 𝑥 

4. 𝑐𝑜𝑠ℎ2 𝑥 =  𝑐𝑜𝑠ℎ 2𝑥 + 1

2
  

      These identities are proved directly from the definitions, as we show 

here for the second one: 

𝟐 𝒔𝒊𝒏𝒉 𝒙 𝒄𝒐𝒔𝒉 𝒙 = 2 (
𝑒𝑥−𝑒−𝑥

2
) (

𝑒𝑥+𝑒−𝑥

2
) = 2 (

𝑒2𝑥−𝑒−2𝑥

4
) =

𝑒2𝑥−𝑒−2𝑥

2
= 𝒔𝒊𝒏𝒉 𝟐𝒙.  

      The other identities are obtained similarly, by substituting in the 

definitions of the hyperbolic functions and using algebra. 

Remark: 

      For any real number u, we know the point with coordinates 

(𝑐𝑜𝑠 𝑢, 𝑠𝑖𝑛 𝑢) lies on the unit circle 𝑥2  +  𝑦2  =  1. So, the trigonometric 

functions are sometimes called circular functions. Because of the first 

identity  𝑐𝑜𝑠ℎ2 𝑥 −  𝑠𝑖𝑛ℎ2 𝑥 =  1, with u substituted for x in Table 3, the 

point having coordinates (𝑐𝑜𝑠ℎ 𝑢, 𝑠𝑖𝑛ℎ 𝑢) lies on the right-hand branch of 

the hyperbola 𝑥2 −  𝑦2  =  1. This is where hyperbolic functions get their 

names. 
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4.5.1 Derivatives and Integrals of Hyperbolic Functions: 

     The six hyperbolic functions, being rational combinations of the 

differentiable functions 𝑒𝑥 and 𝑒−𝑥, have derivatives at every point at 

which they are defined (Table 4.). Again, there are similarities with 

trigonometric functions. 

TABLE 4. Derivatives of hyperbolic functions 

1. 
𝑑

𝑑𝑥
(sinh 𝑢) = cosh 𝑢

𝑑𝑢

𝑑𝑥
 2. 

𝑑

𝑑𝑥
(𝑐𝑜𝑠h 𝑢) = sinh 𝑢

𝑑𝑢

𝑑𝑥
 

3. 
𝑑

𝑑𝑥
(tanh 𝑢) = sech2 𝑢

𝑑𝑢

𝑑𝑥
 4. 

𝑑

𝑑𝑥
(coth 𝑢) = − csch2 𝑢

𝑑𝑢

𝑑𝑥
 

5. 
𝑑

𝑑𝑥
(sech 𝑢) = − sech 𝑢 tanh 𝑢

𝑑𝑢

𝑑𝑥
  6. 

𝑑

𝑑𝑥
(csch 𝑢) = − csch 𝑢 coth 𝑢

𝑑𝑢

𝑑𝑥
 

The derivative formulas are derived from the derivative of 𝑒𝑢:       
𝑑

𝑑𝑥
(𝐬𝐢𝐧𝐡 𝒖) =

𝑑

𝑑𝑥
(

𝑒𝑢−𝑒−𝑢

2
)  Definition of 𝐬𝐢𝐧𝐡 𝒖 

                    =
𝑒𝑢𝑑𝑢

𝑑𝑥
−𝑒−𝑢𝑑𝑢

𝑑𝑥

2
   Derivative of 𝒆𝒖 

                    = 𝐜𝐨𝐬𝐡 𝒖
𝒅𝒖

𝒅𝒙
  Definition of 𝒄𝒐𝒔𝒉 𝒖 

This gives the first derivative formula. From the definition, we can 

calculate the derivative of the hyperbolic cosecant function, as follows: 
𝑑

𝑑𝑥
(𝐜𝐬𝐜𝐡 𝒖) =

𝑑

𝑑𝑥
(

1

sinh 𝑢
)  Definition of 𝐜𝐬𝐜𝐡 𝒖 

                    = −
cosh 𝑢𝑑𝑢

sinh2 𝑢𝑑𝑥
   Quotient Rule for derivatives 

                    = −
1

sinh 𝑢
∙ −

cosh 𝑢𝑑𝑢

sinh 𝑢𝑑𝑥
  Rearrange terms. 

                    = −𝐜𝐬𝐜𝐡 𝐮 𝐜𝐨𝐭𝐡 𝒖
𝒅𝒖

𝒅𝒙
  Definitions of 𝒄𝒔𝒄𝒉 𝒖 and 𝒄𝒐𝒕𝒉 𝒖 

The other formulas in Table 4. are obtained similarly. 

   The derivative formulas lead to the integral formulas in Table 5. 

TABLE 5. Integral formulas for hyperbolic functions 

1. ∫ sinh 𝑢 𝑑𝑢 = cosh 𝑢 + 𝐶 2. ∫ cosh 𝑢 𝑑𝑢 = sinh 𝑢 + 𝐶 

3. ∫ sech2 𝑢 𝑑𝑢 = tanh 𝑢 + 𝐶 4. ∫ csch2 𝑢 𝑑𝑢 = − coth 𝑢 + 𝐶 

5. ∫ sech 𝑢 tanh 𝑢 𝑑𝑢 = − sech 𝑢 + 𝐶  6. ∫ csch 𝑢 coth 𝑢 𝑑𝑢 = − csch 𝑢 + 𝐶  
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Example: 

      We illustrate the derivative and integral formulas 

a) 
𝑑

𝑑𝑡
(tanh √1 + 𝑡2) = sech2 √1 + 𝑡2 𝑑

𝑑𝑥
√1 + 𝑡2 = sech2 √1+𝑡2

√1+𝑡2
 

b) ∫ coth 5𝑥 𝑑𝑥 = ∫ cosh 5𝑥

sinh 5𝑥
𝑑𝑥 = 1

5
∫ 𝑑𝑢

𝑢
                        𝒖 = 𝐬𝐢𝐧𝐡 𝟓𝒙, 

                                                                                             𝒅𝒖 = 𝟓 𝐜𝐨𝐬𝐡 𝟓𝒙 𝒅𝒙 

                          = 1

5
𝑙𝑛|𝑢| + 𝐶 = 1

5
𝑙𝑛|sinh 5𝑥| + 𝐶  

c) ∫ sinh2 𝑥 𝑑𝑥
1

0
= ∫ cosh 2𝑥−1

2
𝑑𝑥

1

0
                                  Table 3. 

                           = 1

2
∫ (cosh 2𝑥 − 1)𝑑𝑥

1

0
= 1

2
[

sinh 2𝑥

2
− 𝑥]

0

1
 

                           =
sinh 2

4
−

1

2
≈ 0.40672           Evaluate with a calculator 

d) ∫ 4𝑒𝑥 sinh 𝑥 𝑑𝑥
ln 2

0
= ∫ 4𝑒𝑥 𝑒𝑥−𝑒−𝑥

2
𝑑𝑥

ln 2

0
= ∫ (2𝑒2𝑥 − 2)𝑑𝑥

ln 2

0
 

                               = [𝑒2𝑥 − 2𝑥]0
ln 2 = (𝑒2 ln 2 − 2 ln 2) − (1 − 0)    

                               = 4 − 2 ln 2 − 1 ≈ 1.6137. ■ 

4.5.2 Inverse Hyperbolic Functions: 

    The inverses of the six basic hyperbolic functions are very useful in 

integration. Since 
𝑑(𝑠𝑖𝑛ℎ 𝑥)

𝑑𝑥
=  𝑐𝑜𝑠ℎ 𝑥 >  0, the hyperbolic sine is an 

increasing function of x. We denote its inverse by 𝑦 = sinh−1 𝑥. For every 

value of x in the interval −∞ <  𝑥 <  ∞, the value of 𝑦 = sinh−1 𝑥 is the 

number whose hyperbolic sine is x.  

   

FIGURE. The graphs of the inverse hyperbolic sine, cosine, and secant 

of x. Notice the symmetry about the line 𝑦 =  𝑥. 
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Remark: 

        The function 𝑦 = 𝑐𝑜𝑠ℎ 𝑥 is not one-to-one because of its graph in 

Table 2. does not pass the horizontal line test. The restricted function 𝑦 =

 𝑐𝑜𝑠ℎ 𝑥, 𝑥 ≥  0, however, is one to - one and therefore has an inverse, 

denoted by 𝑦 =  𝑐𝑜𝑠ℎ−1 𝑥. For every value of 𝑥 ≥  1, 𝑦 = 𝑐𝑜𝑠ℎ−1 𝑥 is 

the number in the interval 0 ≤  𝑦 < ∞ whose hyperbolic cosine is x.  

         Like 𝑦 = 𝑐𝑜𝑠ℎ 𝑥, the function 𝑦 = 𝑠𝑒𝑐ℎ 𝑥 = 1/𝑐𝑜𝑠ℎ 𝑥 fails to be 

one-to-one, but its restriction to nonnegative values of x does have an 

inverse, denoted by 𝑦 = 𝑠𝑒𝑐ℎ−1 𝑥. For every value of x in the interval 

(0, 1], 𝑦 =  𝑠𝑒𝑐ℎ−1𝑥 is the nonnegative number whose hyperbolic secant 

is x. 

         The hyperbolic tangent, cotangent, and cosecant are one-to-one on 

their domains and therefore have inverses, denoted by 

                𝑦 = 𝑡𝑎𝑛ℎ−1 𝑥,     𝑦 = 𝑐𝑜𝑡ℎ−1 𝑥,      𝑦 = 𝑐𝑠𝑐ℎ−1 𝑥. 

   

FIGURE. The graphs of the inverse hyperbolic tangent, cotangent, and 

cosecant of x. 

TABLE 6. Identities for inverse hyperbolic functions 
1. 𝑠𝑒𝑐ℎ−1𝑥 = 𝑐𝑜𝑠ℎ−11

𝑥
 2. 𝑐𝑠𝑐ℎ−1𝑥 = 𝑠𝑖𝑛ℎ−11

𝑥
 3. 𝑐𝑜𝑡ℎ−1𝑥 = 𝑡𝑎𝑛ℎ−11

𝑥
 

 Remark:     

      We use the identities in Table 6. to calculate the values of 

𝑠𝑒𝑐ℎ−1𝑥,  𝑐𝑠𝑐ℎ−1 𝑥, and 𝑐𝑜𝑡ℎ−1𝑥 on calculators that give only 𝑐𝑜𝑠ℎ−1𝑥, 

𝑠𝑖𝑛ℎ−1𝑥, and 𝑡𝑎𝑛ℎ−1𝑥. These identities are direct consequences of the 

definitions. For example, if 0 < 𝑥 ≤ 1, then 
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                    sech(𝑐𝑜𝑠ℎ−1(1

𝑥
)) = 1

cosh(𝑐𝑜𝑠ℎ−1(
1
𝑥

))
= 1

(
1
𝑥

)
= 𝑥. 

We also know that 𝑠𝑒𝑐ℎ (𝑠𝑒𝑐ℎ−1 𝑥)  =  𝑥, so because the hyperbolic 

secant is one-to-one on (0, 1], we have 𝑐𝑜𝑠ℎ−11

𝑥
= 𝑠𝑒𝑐ℎ−1𝑥. 

4.5.3 Derivatives of Inverse Hyperbolic Functions: 

     An important use of inverse hyperbolic functions lies in antiderivatives 

that reverse the derivative formulas in Table 7. 

TABLE7. Derivatives of inverse hyperbolic functions 

1. 
𝑑(sinh−1 𝑢)

𝑑𝑥
= 1

√1+𝑢2

𝑑𝑢

𝑑𝑥
 2. 

𝑑(cosh−1 𝑢)

𝑑𝑥
= 1

√𝑢2−1

𝑑𝑢

𝑑𝑥
 ,     𝑢 > 1         

3. 
𝑑(tanh−1 𝑢)

𝑑𝑥
= 1

1−𝑢2

𝑑𝑢

𝑑𝑥
 ,    |𝑢| < 1 4. 

𝑑(coth−1 𝑢)

𝑑𝑥
= 1

1−𝑢2

𝑑𝑢

𝑑𝑥
 ,    |𝑢| > 1 

5. 
𝑑(sech−1 𝑢)

𝑑𝑥
= −

1

𝑢√1−𝑢2

𝑑𝑢

𝑑𝑥
, 0 < 𝑢 < 1  6. 

𝑑(csch−1 𝑢)

𝑑𝑥
= −

1

|𝑢|√1+𝑢2

𝑑𝑢

𝑑𝑥
, 𝑢 ≠ 0 

      The restrictions |𝑢| < 1 and |𝑢| > 1 on the derivative formulas for 

tanh−1 𝑢 and coth−1 𝑢 come from the natural restrictions on the values of 

these functions. The distinction between |𝑢| < 1 and |𝑢| > 1  becomes 

important when we convert the derivative formulas into integral formulas. 

     We illustrate how the derivatives of the inverse hyperbolic functions 

are found in following Example, where we calculate 
𝑑(cosh−1 𝑢)

𝑑𝑥
. The other 

derivatives are obtained by similar calculations. 

Example: 

      Show that if u is a differentiable function of x whose values are 

greater than 1, then 
𝑑

𝑑𝑥
(cosh−1 𝑢) = 1

√𝑢2−1

𝑑𝑢

𝑑𝑥
 

Solution: 

       First, we find the derivative of 𝑦 =  cosh−1 𝑥 for 𝑥 >  1 by applying 

Theorem (The Derivative Rule for Inverses) of Section 3.7.1 with 𝑓(𝑥)  =

 𝑐𝑜𝑠ℎ 𝑥 and 𝑓−1(𝑥)  =  𝑐𝑜𝑠ℎ−1 𝑥. Theorem (The Derivative Rule for 

Inverses) can be applied because the derivative of 𝑐𝑜𝑠ℎ 𝑥 is positive when 

𝑥 >  0. 
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( 𝑓−1)′(𝑥) = 1

𝑓′(𝑓−1(𝑥))
  Theorem (The Derivative Rule for 

Inverses) 

                  = 1

𝑠𝑖𝑛ℎ(𝑐𝑜𝑠ℎ−1(𝑥))
  𝒇′(𝒖) = 𝒔𝒊𝒏𝒉 𝒖     

                  =
1

√𝑐𝑜𝑠ℎ2(𝑐𝑜𝑠ℎ−1 𝑥)−1
  𝒄𝒐𝒔𝒉𝟐𝒖 − 𝒔𝒊𝒏𝒉𝟐𝒖 = 𝟏  

𝐬𝐢𝐧𝐡 𝒖 = √𝒄𝒐𝒔𝒉𝟐𝒖 − 𝟏  

                  =
1

√𝑥2−1
  𝒄𝒐𝒔𝒉(𝒄𝒐𝒔𝒉−𝟏 𝒙) = 𝒙  

The Chain Rule gives the final result: 

                               
𝑑

𝑑𝑥
(cosh−1 𝑢) = 1

√𝑢2−1

𝑑𝑢

𝑑𝑥
 . ■         

Remark:     

       With appropriate substitutions, the derivative formulas in Table 7. 

lead to the integration formulas in Table 8. Each of the formulas in Table 

8. can be verified by differentiating the expression on the right-hand side. 

TABLE 8. Integrals leading to inverse hyperbolic functions 

1. ∫ 𝑑𝑢

√𝑎2+𝑢2
= 𝑠𝑖𝑛ℎ−1( 𝑢

𝑎
) + 𝐶,      𝑎 > 0       

2. ∫ 𝑑𝑢

√𝑢2−𝑎2
= 𝑐𝑜𝑠ℎ−1( 𝑢

𝑎
) + 𝐶,     𝑢 > 𝑎 > 0 

3. ∫ 𝑑𝑢

𝑎2−𝑢2 = {

1

𝑎
𝑡𝑎𝑛ℎ−1( 𝑢

𝑎
) + 𝐶,   𝑢2 < 𝑎2

1

𝑎
𝑐𝑜𝑡ℎ−1( 𝑢

𝑎
) + 𝐶,   𝑢2 > 𝑎2

 

4. ∫ 𝑑𝑢

𝑢 √𝑎2−𝑢2
= −

1

𝑎
𝑠𝑒𝑐ℎ−1( 𝑢

𝑎
) + 𝐶, 0 < 𝑢 < 𝑎       

5. ∫ 𝑑𝑢

𝑢 √𝑎2+𝑢2
= −

1

𝑎
𝑐𝑠𝑐ℎ−1 |

𝑢

𝑎
| + 𝐶, 𝑢 ≠ 0  and 𝑎 > 0   

Example: 

      Evaluate  ∫ 2 𝑑𝑥

√3+4𝑥2

1

0
. 

Solution: 

      The indefinite integral is      

∫
2 𝑑𝑥

√3+4𝑥2
= ∫

𝑑𝑢

√𝑎2+𝑢2
   𝒖 =  𝟐𝒙, 𝒅𝒖 =  𝟐 𝒅𝒙, 𝒂 = √𝟑  

               = 𝑠𝑖𝑛ℎ−1( 𝑢
𝑎
) + 𝐶 Formula from Table 8. 

               = 𝑠𝑖𝑛ℎ−1( 2𝑥

√𝟑
) + 𝐶   

Therefore, ∫ 2 𝑑𝑥

√3+4𝑥2

1

0
= 𝑠𝑖𝑛ℎ−1( 2𝑥

√𝟑
)]

0

1
= 𝑠𝑖𝑛ℎ−1( 2

√𝟑
) − 𝑠𝑖𝑛ℎ−1( 0)  
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                                 = 𝑠𝑖𝑛ℎ−1( 2

√𝟑
) − 0 ≈ 0.98665. ■ 

Exercises: 

1. Each of following Exercises gives a value of 𝑠𝑖𝑛ℎ 𝑥 or 𝑐𝑜𝑠ℎ 𝑥. Use 

the definitions and the identity 𝑐𝑜𝑠ℎ2 𝑥 −  𝑠𝑖𝑛ℎ2 𝑥 =  1 to find the 

values of the remaining five hyperbolic functions. 

a) sinh 𝑥 = −3

4
. b) sinh 𝑥 = 4

3
 c) cosh 𝑥 = 17

15
, 𝑥 > 0 d) cosh 𝑥 = 13

5
, 𝑥 > 0 

2. Rewrite the expressions in following Exercises in terms of exponentials 

and simplify the results as much as you can. 

a) 2 cosh(ln 𝑥) b) sinh(2 ln 𝑥) c) cosh 5𝑥 + sinh 5𝑥 

d) cosh 3𝑥 + sinh 3𝑥 e) (sinh 𝑥 + cosh 𝑥)4  

f) ln(cosh 𝑥 + sinh 𝑥) + ln(cosh 𝑥 − sinh 𝑥) 

3. Prove the identities 

     
sinh(𝑥 + 𝑦) = sinh 𝑥 cosh 𝑦 + cosh 𝑥 sinh 𝑦 ,

cosh(𝑥 + 𝑦) = cosh 𝑥 cosh 𝑦 + sinh 𝑥 sinh 𝑦 .
 

Then use them to show that 

 

4. Use the definitions of 𝑐𝑜𝑠ℎ 𝑥 and 𝑠𝑖𝑛ℎ 𝑥 to show that 

                                   cosh2 𝑥 − sinh2 𝑥 = 1 

5. In following Exercises, find the derivative of y with respect to the 

appropriate variable. 

a) 𝑦 = 6 sinh 𝑥
3
 b) 𝑦 = 1

2
sinh(2𝑥 + 1) c) 𝑦 = 2√𝑡 tanh √𝑡 

d) 𝑦 = 𝑡2 tanh 1
𝑡
 e) 𝑦 = ln(sinh 𝑧) f) 𝑦 = ln(cosh 𝑧) 

g) 𝑦 = (sech 𝜃)(1 − ln sech 𝜃) h) 𝑦 = (csch 𝜃)(1 − ln csch 𝜃) 

i) 𝑦 = ln cosh 𝑣 − 1

2
tanh2 𝑣 j) 𝑦 = ln sinh 𝑣 − 1

2
coth2 𝑣 

k) 𝑦 = (𝑥2 + 1) sech(ln 𝑥) l) 𝑦 = (4𝑥2 − 1) csch(ln 2𝑥) 

m) sinh−1 √𝑥 n) 𝑦 = cosh−1 2√𝑥 + 1  

o) 𝑦 = (1 − 𝜃) tanh−1 𝜃 p) 𝑦 = (𝜃2 + 2𝜃) tanh−1(𝜃 + 1) 

q) 𝑦 = (1 − 𝑡) coth−1 √𝑡 r) 𝑦 = (1 − 𝑡2) coth−1 𝑡 

s) 𝑦 = cos−1 𝑥 − 𝑥 sech−1 𝑥 t) 𝑦 = ln 𝑥 + √1 − 𝑥2 sech−1 𝑥 

u) 𝑦 = csch−1(1

2
)𝜃 v) 𝑦 = csch−1 2𝜃 w) 𝑦 = sinh−1(tan 𝑥) 

a) sinh 2𝑥 = 2 sinh 𝑥 cosh 𝑥 

b) cosh 2𝑥 = cosh 2𝑥 sinh 2𝑥 
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x) 𝑦 =  𝑐𝑜𝑠ℎ−1(𝑠𝑒𝑐 𝑥), 0 <  𝑥 < 𝜋 2⁄  

6. Verify the integration formulas in following Exercises. 

a)  I) ∫ sech 𝑥  𝑑𝑥 = tan−1(sinh 𝑥) + 𝐶 

II) ∫ sech 𝑥  𝑑𝑥 = 𝑠𝑖𝑛−1 (tanh 𝑥) + 𝐶 

b) ∫ 𝑥 sech−1 𝑥  𝑑𝑥 = 𝑥2

2
sech−1 𝑥 − 1

2
√1 − 𝑥2 + 𝐶 

c) ∫ 𝑥 coth−1 𝑥  𝑑𝑥 = 𝑥2−1

2
coth−1 𝑥 +

𝑥

2
+ 𝐶 

d) ∫ tanh−1 𝑥  𝑑𝑥 = 𝑥 tahh−1 𝑥 + 1

2
ln(1 − 𝑥2) + 𝐶 

7. Evaluate the integrals in following Exercises 
a) ∫ sinh 2 𝑑𝑥 b) ∫ sinh 𝑥

5
𝑑𝑥 c) ∫ 6 cosh(𝑥

2
− ln 3) 𝑑𝑥 

d) ∫ 4 cosh(3𝑥 − ln 2) 𝑑𝑥 e) ∫ tanh 𝑥
7

𝑑𝑥 f) ∫ coth 𝜃

√3
𝑑𝜃 

g) ∫ sech2(𝑥 − 1

2
) 𝑑𝑥 h) ∫ csch2(5 − 𝑥) 𝑑𝑥 i) ∫ sech √𝑡 tanh √𝑡 𝑑𝑡

√𝑡
 

j) ∫ csch(ln 𝑡) coth(ln 𝑡) 𝑑𝑡

𝑡
 k) ∫ coth 𝑥  𝑑𝑥

ln 4

ln 2
 l) ∫ tanh 2𝑥  𝑑𝑥

ln 2

0
 

m) ∫ 2𝑒𝜃 cosh 𝜃  𝑑𝜃
− ln 2

− ln 4
 n) ∫ 4𝑒−𝜃 sinh 𝜃  𝑑𝜃

ln 2

0
 o) ∫ cosh(tan 𝜃) sec2 𝜃

𝜋 4⁄

−𝜋 4⁄
𝑑𝜃 

p) ∫ 2 sinh(sin 𝜃) cos 𝜃
𝜋 2⁄

0
𝑑𝜃 q) ∫ cosh(ln 𝑡)

𝑡

2

1
𝑑𝑡 r) ∫ 8 cosh √𝑥

√𝑥

4

1
𝑑𝑥 

s) ∫ cosh2(𝑥

2
) 𝑑𝑥

0

− ln 2
 t) ∫ 4 sinh2(𝑥

2
) 𝑑𝑥

ln 10

0
  

8. Since the hyperbolic functions can be written in terms of exponential 

functions, it is possible to express the inverse hyperbolic functions in 

terms of logarithms, as shown in the following table 

1. 𝑠𝑖𝑛ℎ−1𝑥 = ln(𝑥 + √𝑥2 + 1), − ∞ < 𝑥 < ∞  

2. 𝑐𝑜𝑠ℎ−1𝑥 = ln(𝑥 + √𝑥2 − 1),   𝑥 ≥ 1       

3. 𝑡𝑎𝑛ℎ−1𝑥 = 1

2
ln 1+𝑥

1−𝑥
  ,   |𝑥| < 1 

4. 𝑠𝑒𝑐ℎ−1𝑥 = ln (1+√1−𝑥2

𝑥
) ,   0 < 𝑥 ≤ 1 

5. 𝑐𝑠𝑐ℎ−1𝑥 = ln (1

𝑥
+  

√1+𝑥2

|𝑥|
) ,   𝑥 ≠ 0 

6. 𝑐𝑜𝑡ℎ−1𝑥 = 1

2
ln 𝑥+1

𝑥−1
  ,   |𝑥| > 1 

Use these formulas to express the numbers in following Exercises in 

terms of natural logarithms. 

a) sinh−1(−5 12⁄ ) b) cosh−1(5 3⁄ ) c) tanh−1(−1 2⁄ ) 

d) coth−1(5 4⁄ ) e) sech−1(3 5⁄ ) f) csch−1(−1 √3⁄ ) 

9. Evaluate the integrals in following Exercises in terms of  
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a)  inverse hyperbolic functions. 

b) natural logarithms. 

1)  ∫ 𝑑𝑥

√4+𝑥2

2√3

0
 2) ∫ 6𝑑𝑥

√1+9𝑥2

1 3⁄

0
 3) ∫ 𝑑𝑥

1−𝑥2

2

5 4⁄
 

4) ∫ 𝑑𝑥

1−𝑥2

1 2⁄

0
 5) ∫ 𝑑𝑥

𝑥 √1−16𝑥2

3 13⁄

1 5⁄
 6) ∫ 𝑑𝑥

𝑥 √4+𝑥2

2

1
 

7) ∫ cos 𝑥 𝑑𝑥

√1+sin2 𝑥

𝜋

0
 8) ∫ 𝑑𝑥

𝑥 √1+(ln 𝑥)2

𝑒

1
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Chapter five: Techniques of Integration. 

       The Fundamental Theorem tells us how to evaluate a definite integral 

once we have an antiderivative for the integrand function. However, 

finding anti-derivatives (or indefinite integrals) is not as straightforward as 

finding derivatives. In this chapter we study several important techniques 

that apply to finding integrals for specialized classes of functions such as 

trigonometric functions, products of certain functions, and rational 

functions. Since we cannot always find an antiderivative, we develop 

numerical methods for calculating definite integrals. We also study 

integrals whose domain or range are infinite, called improper integrals. 

5.1 Using Basic Integration Formulas: 

    Table 1. summarizes the indefinite integrals of many of the functions 

we have studied so far are summarized in the following Table and the 

substitution method helps us use the table to evaluate more complicated 

functions involving these basic ones. In this section we combine the 

Substitution Rules with algebraic methods and trigonometric identities to 

help us use Table 

TABLE (1) Basic integration formulas 

1. ∫ 𝑘 𝑑𝑥 = 𝑘𝑥 + 𝐶 (any number k) 12. ∫ tan 𝑥 𝑑𝑥 = 𝑙𝑛|sec 𝑥| + 𝐶 

2. ∫ 𝑥𝑛 𝑑𝑥 = 𝑥𝑛+1

𝑛+1
+ 𝐶 (𝑛 ≠ −1) 13. ∫ cot 𝑥 𝑑𝑥 = 𝑙𝑛|sin 𝑥| + 𝐶 

3. ∫ 𝑑𝑥

𝑥
= 𝑙𝑛|𝑥| + 𝐶 14. ∫ sec 𝑥 𝑑𝑥 = 𝑙𝑛|sec 𝑥 + tan 𝑥| + 𝐶 

4. ∫ 𝑒𝑥  𝑑𝑥 = 𝑒𝑥 + 𝐶 15. ∫ csc 𝑥 𝑑𝑥 = −𝑙𝑛|csc 𝑥 + cot 𝑥| + 𝐶 

5. ∫ 𝑎𝑥  𝑑𝑥 = 𝑎𝑥

ln 𝑎
+ 𝐶(𝑎 > 0, 𝑎 ≠ 1) 16. ∫ sinh 𝑥  𝑑𝑥 = cosh 𝑥 + 𝐶 

6. ∫ sin 𝑥  𝑑𝑥 = − cos 𝑥 + 𝐶 17. ∫ cosh 𝑥  𝑑𝑥 = sinh 𝑥 + 𝐶 

7. ∫ cos 𝑥  𝑑𝑥 = sin 𝑥 + 𝐶 18. ∫ 𝑑𝑥

√𝑎2−𝑥2
= arcsin (𝑥

𝑎
) + 𝐶 

8. ∫ sec2 𝑥  𝑑𝑥 = tan 𝑥 + 𝐶 19. ∫ 𝑑𝑥

√𝑎2+𝑥2
= 1

𝑎
arctan (𝑥

𝑎
) + 𝐶 

9. ∫ csc2 𝑥  𝑑𝑥 = − cot 𝑥 + 𝐶 20. ∫ 𝑑𝑥

𝑥√𝑥2−𝑎2
= 1

𝑎
arcsec |

𝑥

𝑎
| + 𝐶 

10. ∫ sec 𝑥 ∙ tan 𝑥  𝑑𝑥 = sec 𝑥 + 𝐶 21. ∫ 𝑑𝑥

√𝑎2+𝑥2
= sinh−1 (𝑥

𝑎
) + 𝐶(𝑎 > 0) 

11. ∫ csc 𝑥 ∙ cot 𝑥  𝑑𝑥 = −csc 𝑥 + 𝐶 22. ∫ 𝑑𝑥

√𝑥2−𝑎2
= cosh−1 (𝑥

𝑎
) + 𝐶(x > 𝑎 > 0) 
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       Sometimes we must rewrite an integral to match it to a standard form 

of the type displayed in Table (1).  

Example: 

      Complete the square to evaluate ∫ 𝑑𝑥

√8𝑥−𝑥2
 . 

Solution: 

      We completed the square to simplify the denominator: 

8𝑥 − 𝑥2 = −𝑥2 + 8𝑥 + 16 − 16 = (−𝑥2 − 8𝑥 − 16) + 16 

              = −(𝑥2 − 8𝑥 + 16) + 16) = −(𝑥 − 4)2 + 16 

Then  

   

 

 

 

Example: 

      Evaluate the integral ∫(cos 𝑥 ∙ sin 2𝑥 + sin 𝑥 ∙ cos 2𝑥) 𝑑𝑥 . 

Solution: 

      We can replace the integrand with an equivalent trigonometric 

expression using the Sine Addition Formula to obtain a simple 

substitution: 

Example: 

      Find ∫ 𝑑𝑥
1−sin 𝑥

𝜋 4⁄

0
 . 

Solution: 

      We multiply the numerator and denominator of the integrand by 1 +

sin 𝑥.This procedure transforms the integral into one we can evaluate: 

∫ 𝑑𝑥

√8𝑥−𝑥2
= ∫ 𝑑𝑥

√16−(𝑥−4)2
   

             = ∫ 𝑑𝑥

√𝑎2−𝑢2
  𝒂 = 𝟒, 𝒖 = (𝒙 − 𝟒), 𝒅𝒖 = 𝒅𝒙 

               = arcsin(𝑢

𝑎
) + 𝐶      Table 1, Formula 18 

               = arcsin(𝑥−4

4
) + 𝐶.■   

∫(cos 𝑥 ∙ sin 2𝑥 + sin 𝑥 ∙ cos 2𝑥) 𝑑𝑥 = ∫(sin(𝑥 + 2𝑥)) 𝑑𝑥  

                                                                  = ∫ sin 3𝑥 𝑑𝑥  
                                                                = 1

3
∫ sin 𝑢 𝑑𝑢   𝒖 = 𝟑𝒙, 𝒅𝒖 = 𝟑𝒅𝒙 

                                                                  = −1

3
cos 3𝑥 + 𝐶.  Table 1, Formula 6. ■ 
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Example: 

      Evaluate the integral    ∫ 2𝑥−3

√𝑥2−3𝑥+1

5

3
𝑑𝑥 . 

Solution: 

      We rewrite the integral and apply the Substitution Rule for Definite 

Integrals, to find 

Example: 

      Evaluate  ∫ 3𝑥2−7𝑥

3𝑥+2
𝑑𝑥 . 

 Solution: 

      The integrand is an improper fraction 

since the degree of the numerator is greater 

than the degree of the denominator. To 

integrate it, we perform long division to obtain 

a quotient plus a remainder that is a proper 

fraction: 3𝑥2−7𝑥

3𝑥+2
= (𝑥−3) + 6

3𝑥+2
 . 

      Therefore, 

   ∫ 𝑑𝑥
1−sin 𝑥

𝜋 4⁄

0
= ∫ 1

1−sin 𝑥

𝜋 4⁄

0
∙ 1+sin 𝑥

1+sin 𝑥
𝑑𝑥 Multiply and divide 

by conjugate. 

                        = ∫ 1+sin 𝑥

1−sin2 𝑥

𝜋 4⁄

0
𝑑𝑥  Simplify 

                      = ∫ 1+sin 𝑥

cos2 𝑥

𝜋 4⁄

0
𝑑𝑥  𝟏 − 𝐬𝐢𝐧𝟐 𝒙 = 𝐜𝐨𝐬𝟐 𝒙  

                      = ∫ (
1

cos2 𝑥
+

sin 𝑥

cos2 𝑥
)𝑑𝑥

𝜋 4⁄

0
   

                      = ∫ (sec2 𝑥 + sec 𝑥 ∙ tan 𝑥)𝑑𝑥
𝜋 4⁄

0
  Use Table 1, Formulas 8 and 10 

                      = [tan 𝑥 + sec 𝑥]0
𝜋 4⁄

= (1 + √2 − (0 + 1)) = √2. ■ 

 ∫ 2𝑥−3

√𝑥2−3𝑥+1

5

3
𝑑𝑥 = ∫ 𝑑𝑢

√𝑢

11

1
 𝒖 = 𝒙𝟐 − 𝟑𝒙 + 𝟏, 𝒅𝒖 =  (𝟐𝒙 −  𝟑) 𝒅𝒙; 

𝒖 = 𝟏 when 𝒙 = 𝟑, 𝒖 = 𝟏𝟏 when 𝒙 = 𝟓 

                            = ∫ 𝑢−1 2⁄11

1
𝑑𝑢   

                            = 2√𝑢]
1

11
= 2(√𝑢 − 1) ≈ 4.63.      Table 1, Formula 2. ■  

 𝑥 − 3  

3𝑥 + 2  3𝑥2 − 7𝑥  

 3𝑥2 + 2  

         −9𝑥  

        −9𝑥 − 6  

                  +6  
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     ∫ 3𝑥2−7𝑥

3𝑥+2
𝑑𝑥 = ∫((𝑥−3) + 6

3𝑥+2
) 𝑑𝑥 = 𝑥2

2
− 3𝑥 + 2 ln|3𝑥 + 2| + 𝐶. ■ 

Remark: 

       Reducing an improper fraction by long division does not always lead 

to an expression we can integrate directly. 

Example: 

      Evaluate   ∫ 3𝑥+2

√1−𝑥2
𝑑𝑥 . 

Solution: 

      We first separate the integrand to get 

                     ∫ 3𝑥+2

√1−𝑥2
𝑑𝑥 = 3 ∫ 𝑥 

√1−𝑥2
𝑑𝑥 + 2 ∫ 1

√1−𝑥2
𝑑𝑥. 

In the first of these new integrals, we substitute 𝑢 = 1 − 𝑥2, 𝑑𝑢 = −2𝑥𝑑𝑥, 

so 𝑥𝑑𝑥 = −1

2
 𝑑𝑢. Then we obtain 

  3 ∫ 𝑥  𝑑𝑥

√1−𝑥2
= 3 ∫ (−1 2⁄ )  𝑑𝑢

√𝑢
= −3

2 ∫ 𝑢−1 2⁄ 𝑑𝑢 = −3

2
∙ 𝑢1 2⁄

1 2⁄
+ 𝐶1 = −3√1 − 𝑥2 + 𝐶1.  

       The second of the new integrals is a standard form, 

                            2 ∫ 1

√1−𝑥2
𝑑𝑥 = 2 sin−1 𝑥 + 𝐶2.         Table 1, Formula 18 

Combining these results and renaming 𝐶1 + 𝐶2 as C gives 

                        ∫ 3𝑥+2

√1−𝑥2
𝑑𝑥 = −3√1 − 𝑥2 + 2 sin−1 𝑥 + 𝐶. ■ 

Remark: 

       The question of what to substitute for in an integrand is not always 

quite so clear. Sometimes we simply proceed by trial-and-error, and if 

nothing works out, we then try another method altogether. The next several 

sections of the text present some of these new methods, but substitution 

works in the following example. 

Example: 

      Evaluate   ∫ 𝑑𝑥

(1+√𝑥)
3 𝑑𝑥 . 

Solution: 

      We might try substituting for the term √𝑥, but the derivative factor 

1/√𝑥 is missing from the integrand, so this substitution will not help. The 

other possibility is to substitute for (1 + √𝑥), and it turns out this works: 
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∫ 𝑑𝑥

(1+√𝑥)
3 𝑑𝑥 =  ∫ 2(𝑢−1)

𝑢3 𝑑𝑢  𝒖 = 𝟏 + √𝒙, 𝒅𝒖 =
𝟏

𝟐√𝒙
𝒅𝒙; 

𝒅𝒙 = 𝟐√𝒙. 𝒅𝒖 = 𝟐(𝒖 − 𝟏)𝒅𝒖 

                    =  ∫( 2

𝑢2 − 2

𝑢3)𝑑𝑢   

                    = −2

𝑢
+ 1

𝑢2 + 𝐶  

                    = 1−2𝑢

𝑢2 + 𝐶  

                    = 1−2(1+√𝑥)

(1+√𝑥)2 + 𝐶  

                    = 𝐶 − 1+2√𝑥

(1+√𝑥)
2 . ■  

Remark: 

        When evaluating definite integrals, a property of the integrand may 

help us in calculating the result. 

Example: 

      Evaluate      ∫ 𝑥3𝑐𝑜𝑠 𝑥
𝜋 2⁄

−𝜋 2⁄
𝑑𝑥. 

Solution: 

      No substitution or algebraic manipulation is clearly helpful here. But 

we observe that the interval of integration is the symmetric interval 

[−
𝜋

2
,

𝜋

2
]. Moreover, the factor 𝑥3 is an odd function, and 𝑐𝑜𝑠 𝑥 is an even 

function, so their product is odd. Therefore, 

                                       ∫ 𝑥3𝑐𝑜𝑠 𝑥
𝜋 2⁄

−𝜋 2⁄
𝑑𝑥 = 0. ■ 

Exercises: 

       The integrals in following are in no particular order. Evaluate each 

integral using any algebraic method or trigonometric identity you think is 

appropriate. When necessary, use a substitution to reduce it to a standard 

form. 

1. ∫ 16𝑥

8𝑥2+2

1

0
𝑑𝑥 2. ∫

𝑥2

𝑥2+1
𝑑𝑥 3. ∫(sec 𝑥 − tan 𝑥)𝟐𝑑𝑥 

4. ∫ 1

cos2 𝑥∙tan 𝑥

𝜋 3⁄

𝜋 4⁄
𝑑𝑥 5. ∫

1−𝑥

√1−𝑥
𝑑𝑥 6. ∫

1

𝑥−√𝑥
𝑑𝑥 

7. ∫
𝑒− cot 𝑧

sin2 𝑧
𝑑𝑧 8. ∫

2ln 𝑧3

16 𝑧
𝑑𝑧 9. ∫

1

𝑒𝑧+𝑒−𝑧 𝑑𝑧 

10. ∫ 8

𝑥2−2𝑥+2

2

1
𝑑𝑥 11. ∫ 4

1+(2𝑥+1)2

0

−1
𝑑𝑥 12. ∫ 4𝑥2−7

2𝑥+3

3

−1
𝑑𝑥 
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13. ∫
1

1−sec 𝑡
𝑑𝑡 14. ∫ csc 𝑡 ∙ sin 3𝑡 𝑑𝑡 15. ∫ 1+sin 𝜃

cos2 𝜃

𝜋 4⁄

0
𝑑𝜃 

16. ∫
1

√2𝜃−𝜃2
𝑑𝜃 17. ∫

ln 𝑦

𝑦+4𝑦𝑙𝑛2 𝑦
𝑑𝑦 18. ∫

2√𝑦

2√𝑦
𝑑𝑦 

19. ∫
1

sec 𝜃+tan 𝜃
𝑑𝜃 20. ∫

1

𝑡√3+𝑡2
𝑑𝑡 21. ∫

4𝑡3−𝑡2+16𝑡

𝑡2+4
𝑑𝑡 

22. ∫
𝑥+2√𝑥−1

2𝑥√𝑥−1
𝑑𝑥 23. ∫ √1 − cos 𝜃

𝜋 2⁄

0
𝑑𝜃 24. ∫(sec 𝑡 + cot 𝑡)2 𝑑𝑡 

25. ∫
1

√𝑒2𝑦−1
𝑑𝑦 26. ∫

6

√𝑦(1+𝑦)
𝑑𝑦 27. ∫

2

𝑥√1−4 ln2 𝑥
𝑑𝑥 

28. ∫
1

(𝑥−2)√𝑥2−4𝑥+3
𝑑𝑥 29. ∫

tan 𝜃+3

sin 𝜃
𝑑𝜃 30. ∫ 3 sinh(𝑥

2
+ ln 5) 𝑑𝑥 

31. ∫ 2𝑥3

𝑥2−1

3

√2
𝑑𝑥 32. ∫ √1 + 𝑥21

−1
sin 𝑥 𝑑𝑥 33. ∫ √

1+𝑦

1−𝑦

0

−1
𝑑𝑦 

34. ∫ 𝑒𝑧+𝑒𝑧
𝑑𝑧 35. ∫

7

(𝑥−1)√𝑥2−2𝑥−48
𝑑𝑥 36. ∫

𝑑𝑥

(2𝑥+1)√4𝑥+4𝑥2
 

37. ∫
2𝜃3−7𝜃2+7𝜃

2𝜃−5
𝑑𝜃 38. ∫

𝑑𝜃

cos 𝜃−1
 39. ∫

1

1+𝑒𝑥 𝑑𝑥 

40. ∫
√𝑥

1+𝑥3 𝑑𝑥 41. ∫
𝑒3𝑥

𝑒𝑥+1
𝑑𝑥 42. ∫

2𝑥−1

3𝑥 𝑑𝑥 

43. ∫
1

√𝑥(1+𝑥)
𝑑𝑥 44. ∫(csc 𝑥 − sec 𝑥)(sin 𝑥 + cos 𝑥) 𝑑𝑥 
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5.2 Integration by Parts: 

      Integration by parts is a technique for simplifying integrals of the form   

∫ 𝑢(𝑥)𝑣′(𝑥)𝑑𝑥. It is useful when 𝑢 can be differentiated repeatedly and 𝑣′ 

can be integrated repeatedly without difficulty.  

     The integrals ∫ 𝑥 cos 𝑥 𝑑𝑥   and ∫ 𝑥2𝑒𝑥𝑑𝑥 are such integrals because 

𝑢(𝑥) =  𝑥 or 𝑢(𝑥) = 𝑥2 can be differentiated repeatedly to become zero, 

and 𝑣′(𝑥) = 𝑐𝑜𝑠 𝑥 or 𝑣′(𝑥) = 𝑒𝑥 can be integrated repeatedly without 

difficulty. 

     Integration by parts also applies to integrals like ∫ ln 𝑥 𝑑𝑥  and 

∫ 𝑒𝑥 cos 𝑥  𝑑𝑥. In the first case, the integrand ln x can be rewritten as 

(𝑙𝑛 𝑥)(1), and 𝑢(𝑥) = 𝑙𝑛 𝑥 is easy to differentiate while 𝑣′(𝑥) = 1 easily 

integrates to x. In the second case, each part of the integrand appears again 

after repeated differentiation or integration. 

5.2.1 Product Rule in Integral Form: 

       If 𝑢 and 𝑣 are differentiable functions of x, the Product Rule says that  
𝑑

𝑑𝑥
[𝑢(𝑥)𝑣(𝑥) = 𝑢′(𝑥)𝑣(𝑥) + 𝑢(𝑥)𝑣′(𝑥). In terms of indefinite integrals, 

this equation becomes 

           ∫ 𝑑

𝑑𝑥
[𝑢(𝑥)𝑣(𝑥) = ∫[𝑢′(𝑥)𝑣(𝑥) + 𝑢(𝑥)𝑣′(𝑥)]𝑑𝑥 

 or      ∫ 𝑑

𝑑𝑥
[𝑢(𝑥)𝑣(𝑥) = ∫ 𝑢′(𝑥)𝑣(𝑥)𝑑𝑥 + ∫ 𝑢(𝑥)𝑣′(𝑥) 𝑑𝑥.  

Rearranging the terms of this last equation, we get 

         ∫ 𝑢(𝑥)𝑣′(𝑥) 𝑑𝑥 = ∫ 𝑑

𝑑𝑥
[𝑢(𝑥)𝑣(𝑥) − ∫ 𝑣(𝑥)𝑢′(𝑥)𝑑𝑥,  

leading to the integration by parts formula. 

 

 

 

Integration by Parts Formula: 

                 ∫ 𝒖(𝒙)𝒗′(𝒙) 𝒅𝒙 = 𝒖(𝒙)𝒗(𝒙) − ∫ 𝒗(𝒙)𝒖′(𝒙)𝒅𝒙               (1) 
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    This formula allows us to exchange the problem of computing the 

integral ∫ 𝑢(𝑥)𝑣′(𝑥) 𝑑𝑥 with the problem of computing a different 

integral, ∫ 𝑣(𝑥)𝑢′(𝑥)𝑑𝑥. In many cases, we can choose the functions 𝑢 

and 𝑣 so that the second integral is easier to compute than the first. There 

can be many choices for 𝑢 and 𝑣, and it is not always clear which choice 

works best, so sometimes we need to try several. 

    The formula is often given in differential form. With 𝑣′(𝑥)𝑑𝑥 =  𝑑𝑣 

and 𝑢′(𝑥) 𝑑𝑥 =  𝑑𝑢, the integration by parts formula becomes 

 

 

 

Example: 

     Find      ∫ 𝑥 cos 𝑥 𝑑𝑥. 

Solution: 

     There is no obvious antiderivative of 𝑥 𝑐𝑜𝑠 𝑥, so we use the integration 

by parts formula ∫ 𝑢(𝑥)𝑣′(𝑥) 𝑑𝑥 = 𝑢(𝑥)𝑣(𝑥) − ∫ 𝑣(𝑥)𝑢′(𝑥)𝑑𝑥 to change 

this expression to one that is easier to integrate. We first decide how to 

choose the functions 𝑢(𝑥) and 𝑣(𝑥). In this case we factor the expression 

𝑥 𝑐𝑜𝑠 𝑥 into 

                            𝑢(𝑥) = 𝑥   and    𝑣′(𝑥) = cos 𝑥. 

Next, we differentiate 𝑢(𝑥) and find an antiderivative of 𝑣′(𝑥), 

                            𝑢′(𝑥) = 1   and    𝑣(𝑥) = 𝑠𝑖𝑛𝑥.                         

When finding an antiderivative for 𝑣′(𝑥) we have a choice of how to pick 

a constant of integration C. We choose the constant 𝐶 = 0, since that 

makes this antiderivative as simple as possible. We now apply the 

integration by parts formula: 

 

 

                             = 𝑥 sin 𝑥 + cos 𝑥 + 𝐶         Integrate and simplify. ■ 

Integration by Parts Formula - Differential Version: 

                                    ∫ 𝒖𝒅𝒗 = 𝒖𝒗 − ∫ 𝒗𝒅𝒖                                      (2) 

∫ 𝑥 cos 𝑥 𝑑𝑥 = 𝑥 sin 𝑥 − ∫ sin 𝑥 (1)𝑑𝑥    Integration by parts formula 

   𝒖(𝒙) 𝒗′(𝒙)      𝒖(𝒙)  𝒗(𝒙)      𝒗(𝒙)  𝒖′(𝒙) 
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Remark: 

      There are four apparent choices available for 𝑢(𝑥) and 𝑣′(𝑥) in 

previous Example: 

1. Let 𝑢(𝑥) = 1  and  𝑣′(𝑥) = 𝑥 cos 𝑥 

2. Let 𝑢(𝑥) = 𝑥   and    𝑣′(𝑥) = cos 𝑥 

3. Let 𝑢(𝑥) = 𝑥𝑐𝑜𝑠 𝑥   and    𝑣′(𝑥) = 1 

4. Let 𝑢(𝑥) = cos 𝑥   and    𝑣′(𝑥) = 𝑥 

     Choice 2 was used in previous Example. The other three choices lead 

to integrals we don’t know how to integrate. For instance, Choice 3, with 

𝑢′(𝑥) = −𝑥𝑠𝑖𝑛 𝑥 + cos 𝑥  , leads to the integral∫(𝑥 cos 𝑥 − 𝑥2𝑠𝑖𝑛 𝑥)𝑑𝑥. 

The goal of integration by parts is to go from an integral ∫ 𝑢(𝑥)𝑣′(𝑥) 𝑑𝑥 

that we don’t see how to evaluate to an integral ∫ 𝑣(𝑥)𝑢′(𝑥)𝑑𝑥 that we 

can evaluate. Generally, you choose 𝑣′(𝑥) first to be as much of the 

integrand as we can readily integrate; 𝑢(𝑥) is the leftover part. When 

finding 𝑣(𝑥) from 𝑣′(𝑥), any antiderivative will work, and we usually pick 

the simplest one; no arbitrary constant of integration is needed in 𝑣(𝑥) 

because it would simply cancel out of the right-hand side of Equation (2). 

Example: 

     Find      ∫ ln 𝑥 𝑑𝑥. 

Solution: 

     We have not yet seen how to find an antiderivative for 𝑙𝑛 𝑥. If we set 

𝑢(𝑥)  =  𝑙𝑛 𝑥, then 𝑢′(𝑥) is the simpler function 1/𝑥. It may not appear 

that a second function 𝑣′(𝑥) is multiplying ln x, but we can choose 𝑣′(𝑥) 

to be the constant function𝑣′(𝑥) = 1. We use the integration by parts 

formula Equation (1) with 

                            𝑢(𝑥) = ln 𝑥   and    𝑣′(𝑥) = 1. 

We differentiate 𝑢(𝑥) and find an antiderivative of 𝑣′(𝑥), 

                            𝑢′(𝑥) = 1

𝑥
   and    𝑣(𝑥) = 𝑥.    

Then    

                               

                                = 𝑥𝑙𝑛 𝑥 − 𝑥 + 𝐶         Simplify and integrate. ■ 

∫ ln 𝑥 ∙ 1𝑑𝑥 = (ln 𝑥)𝑥 − ∫ 𝑥
1

𝑥
𝑑𝑥    Integration by parts formula 

   𝒖(𝒙) 𝒗′(𝒙)      𝒖(𝒙)  𝒗(𝒙)   𝒗(𝒙)  𝒖′(𝒙) 
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Remark: 

       In the following examples we use the differential form to indicate the 

process of integration by parts. The computations are the same, with 𝑑𝑢 

and 𝑑𝑣 providing shorter expressions for 𝑢′(𝑥) 𝑑𝑥 and 𝑣′(𝑥) 𝑑𝑥. 

Sometimes we have to use integration by parts more than once, as in the 

next example. 

Example: 

     Evaluate      ∫ 𝑥2𝑒𝑥𝑑𝑥. 

Solution: 

    We use the integration by parts formula Equation (1) with 

                            𝑢(𝑥) = 𝑥2   and    𝑣′(𝑥) = 𝑒𝑥. 

We differentiate 𝑢(𝑥) and find an antiderivative of 𝑣′(𝑥), 

                            𝑢′(𝑥) = 2𝑥   and    𝑣(𝑥) = 𝑒𝑥.   

  

We summarize this choice by setting 𝑑𝑢 = 𝑢′(𝑥) 𝑑𝑥 and 𝑑𝑣 = 𝑣′(𝑥) 𝑑𝑥, 

so 𝑑𝑢 = 2𝑥 𝑑𝑥 and 𝑑𝑣 = 𝑒𝑥𝑑𝑥. We then have 

                               

                           

The new integral is less complicated than the original because the exponent 

on x is reduced by one. To evaluate the integral on the right, we integrate 

by parts again with 𝑢 = 𝑥, 𝑑𝑣 = 𝑒𝑥𝑑𝑥. Then 𝑑𝑢 = 𝑑𝑥, 𝑣 =  𝑒𝑥, and 

       

 

Using this last evaluation, we then obtain 

       ∫ 𝑥2𝑒𝑥𝑑𝑥 = 𝑥2𝑒𝑥 − 2 ∫ 𝑥𝑒𝑥𝑑𝑥 = 𝑥2𝑒𝑥 − 2𝑥𝑒𝑥 + 2𝑒𝑥 + 𝐶. 

where the constant of integration is renamed after substituting for the 

integral on the right. ■ 

 

 ∫ 𝑥2𝑒𝑥𝑑𝑥 = 𝑥2𝑒𝑥 − ∫ 𝑒𝑥2𝑥𝑑𝑥        Integration by parts formula 

    𝒖     𝒅𝒗           𝒖   𝒗           𝒗     𝒅𝒖 

 ∫ 𝑥𝑒𝑥𝑑𝑥 = 𝑥𝑒𝑥 − ∫ 𝑒𝑥𝑑𝑥 = 𝑥𝑒𝑥 − 𝑒𝑥 + 𝐶   Integration by parts Equation (2) 

    𝒖     𝒅𝒗        𝒖   𝒗          𝒗  𝒅𝒖 
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Remark: 

    The technique of previous Example works for any integral ∫ 𝑥𝑛𝑒𝑥𝑑𝑥 in 

which n is a positive integer, because differentiating 𝑥𝑛 will eventually 

lead to zero and integrating 𝑒𝑥 is easy. 

     Integrals like the one in the next example occur in electrical 

engineering. Their evaluation requires two integrations by parts, followed 

by solving for the unknown integral. 

Example: 

     Evaluate      ∫ 𝑒𝑥 cos 𝑥 𝑑𝑥. 

Solution: 

     Let 𝑢 = 𝑒𝑥 and 𝑑𝑣 = 𝑐𝑜𝑠 𝑥 𝑑𝑥. Then 𝑑𝑢 = 𝑒𝑥𝑑𝑥, 𝑣 = 𝑠𝑖𝑛 𝑥, and 

      ∫ 𝑒𝑥 cos 𝑥 𝑑𝑥 = 𝑒𝑥 sin 𝑥 − ∫ 𝑒𝑥 sin 𝑥 𝑑𝑥.        𝒖(𝒙) = 𝒆𝒙, 𝒗(𝒙) = 𝒔𝒊𝒏 𝒙 

The second integral is like the first except that it has 𝑠𝑖𝑛 𝑥 in place of 

𝑐𝑜𝑠 𝑥. To evaluate it, we use integration by parts with 

                   𝑢 = 𝑒𝑥 ,   𝑑𝑣 = 𝑠𝑖𝑛 𝑥 𝑑𝑥,    𝑣 = −𝑐𝑜𝑠 𝑥,   𝑑𝑢 = 𝑒𝑥  𝑑𝑥. 

Then  

      ∫ 𝑒𝑥 cos 𝑥 𝑑𝑥 = 𝑒𝑥 sin 𝑥 − (−𝑒𝑥 cos 𝑥 − ∫(− cos 𝑥)( 𝑒𝑥𝑑𝑥))  

                                                                               𝒖(𝒙) = 𝒆𝒙, 𝒗(𝒙) = −𝒄𝒐𝒔 𝒙 

                                 = 𝑒𝑥 sin 𝑥 + 𝑒𝑥 cos 𝑥 − ∫ 𝑒𝑥 cos 𝑥 𝑑𝑥. 

The unknown integral now appears on both sides of the equation, but with 

opposite signs. Adding the integral to both sides and adding the constant 

of integration give 

             2 ∫ 𝑒𝑥 cos 𝑥 𝑑𝑥 = 𝑒𝑥 sin 𝑥 + 𝑒𝑥 cos 𝑥 + 𝐶1. 

Dividing by 2 and renaming the constant of integration give 

                ∫ 𝑒𝑥 cos 𝑥 𝑑𝑥 =
𝑒𝑥 sin 𝑥+𝑒𝑥 cos 𝑥

2
+ 𝐶. ■ 
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Example: 

     Obtain a formula that expresses the integral   ∫ 𝑐𝑜𝑠𝑛𝑥𝑑𝑥 in terms of an 

integral of a lower power of 𝑐𝑜𝑠 𝑥. 

Solution: 

     We may think of 𝑐𝑜𝑠𝑛𝑥 as 𝑐𝑜𝑠𝑛−1𝑥 ∙  𝑐𝑜𝑠 𝑥. Then we let 

                     𝑢 = 𝑐𝑜𝑠𝑛−1𝑥 and 𝑑𝑣 = 𝑐𝑜𝑠 𝑥 𝑑𝑥, 

so that 𝑑𝑢 = (𝑛 −  1) 𝑐𝑜𝑠𝑛−2𝑥(−𝑠𝑖𝑛 𝑥 𝑑𝑥) and 𝑣 = 𝑠𝑖𝑛 𝑥. Integration 

by parts then gives 

 ∫ 𝑐𝑜𝑠𝑛𝑥𝑑𝑥 = 𝑐𝑜𝑠𝑛−1𝑥 sin 𝑥 + (𝑛 − 1) ∫ sin2 𝑥 𝑐𝑜𝑠𝑛−2𝑥𝑑𝑥 

                    = 𝑐𝑜𝑠𝑛−1𝑥 sin 𝑥 + (𝑛 − 1) ∫(1 − cos2 𝑥)𝑐𝑜𝑠𝑛−2𝑥𝑑𝑥 

                    = 𝑐𝑜𝑠𝑛−1𝑥 sin 𝑥 + (𝑛 − 1) ∫ 𝑐𝑜𝑠𝑛−2𝑥𝑑𝑥 − (𝑛 − 1) ∫ 𝑐𝑜𝑠𝑛𝑥𝑑𝑥. 

If we add (𝑛 − 1) ∫ 𝑐𝑜𝑠𝑛𝑥𝑑𝑥 to both sides of this equation, we obtain 

         𝑛 ∫ 𝑐𝑜𝑠𝑛𝑥𝑑𝑥 = 𝑐𝑜𝑠𝑛−1𝑥 sin 𝑥 + (𝑛 − 1) ∫ 𝑐𝑜𝑠𝑛−2𝑥𝑑𝑥. 

We then divide through by n, and the final result is 

         ∫ 𝑐𝑜𝑠𝑛𝑥𝑑𝑥 =
𝑐𝑜𝑠𝑛−1𝑥 sin 𝑥

𝑛
+

(𝑛−1)

𝑛
∫ 𝑐𝑜𝑠𝑛−2𝑥𝑑𝑥. ■ 

Remark: 

       The formula found in previous Example is called a reduction formula 

because it replaces an integral containing some power of a function with an 

integral of the same form having the power reduced. When n is a positive 

integer, we may apply the formula repeatedly until the remaining integral is 

easy to evaluate. For example, the result in previous Example tells us that 

        ∫ 𝑐𝑜𝑠3𝑥𝑑𝑥 =
𝑐𝑜𝑠2𝑥 sin 𝑥

3
+

2

3
∫ cos 𝑥 𝑑𝑥 =

𝑐𝑜𝑠2𝑥 sin 𝑥

3
+

2

3
sin 𝑥 + 𝐶. 

5.2.2 Evaluating Definite Integrals by Parts: 

       The integration by parts formula in Equation (1) can be combined with 

Part 2 of the Fundamental Theorem in order to evaluate definite integrals 

by parts. Assuming that both 𝑢′ and 𝑣′ are continuous over the interval 

[𝑎, 𝑏] , Part 2 of the Fundamental Theorem gives 
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Example: 

       Find the area of the region bounded by the curve 𝑦 = 𝑥𝑒−𝑥 and the 

x-axis from 𝑥 = 0 to 𝑥 = 4. 

Solution: 

      The region is shaded in Figure. Its area is 

                        ∫ 𝑥𝑒−𝑥𝑑𝑥
4

0
. 

Let 𝑢 = 𝑥, 𝑑𝑣 = 𝑒−𝑥𝑑𝑥, 𝑣 =  −𝑒−𝑥, and 𝑑𝑢 = 𝑑𝑥. 

Then, 

  ∫ 𝑥𝑒−𝑥𝑑𝑥
4

0
= −𝑥𝑒−𝑥]0

4 − ∫ (−𝑒−𝑥)𝑑𝑥
4

0
   Integration by parts Formula (3) 

                    = [−4𝑒−4 − (0𝑒−0)] + ∫ 𝑒−𝑥𝑑𝑥
4

0
 

                    = −4𝑒−4 − 𝑒−𝑥]0
4 

                    = −4𝑒−4 − (𝑒−4 − 𝑒0) = 1 − 5𝑒−4 ≈ 0.91. ■ 

Exercises: 

1. Evaluate the integrals in following using integration by parts. 

a) ∫ 𝑥 sin 𝑥
2

𝑑𝑥 b) ∫ 𝜃 cos 𝜋𝜃 𝑑𝜃 c) ∫ 𝑡2𝑐𝑜𝑠 𝑡 𝑑𝑡 

d) ∫ 𝑥2 sin 𝑥𝑑𝑥 e) ∫ 𝑥 ln 𝑥 𝑑𝑥
2

1
 f) ∫ 𝑥3 ln 𝑥 𝑑𝑥

𝑒

1
 

g) ∫ 𝑥𝑒𝑥𝑑𝑥 h) ∫ 𝑥𝑒3𝑥𝑑𝑥 i) ∫ 𝑥2𝑒−𝑥𝑑𝑥 

j) ∫(𝑥2 − 2𝑥 + 1)𝑒2𝑥𝑑𝑥 k) ∫ tan−1 𝑦 𝑑𝑦 l) ∫ sin−1 𝑦 𝑑𝑦 

m) ∫ 𝑥𝑠𝑒𝑐2 𝑥 𝑑𝑥 n) ∫ 4𝑥 ∙ 𝑠𝑒𝑐2 2𝑥 𝑑𝑥 o) ∫ 𝑥3𝑒𝑥𝑑𝑥 

p) ∫ 𝑝4𝑒−𝑞𝑑𝑝 q) ∫(𝑥2 − 5𝑥)𝑒𝑥𝑑𝑥 r) ∫(𝑟2 + 𝑟 + 1)𝑒𝑟𝑑𝑟 

s) ∫ 𝑥5𝑒𝑥𝑑𝑥 t) ∫ 𝑡2𝑒4𝑡𝑑𝑡 u) ∫ 𝑒𝜃 sin 𝜃 𝑑𝜃 

v) ∫ 𝑒−𝑦 cos 𝑦 𝑑𝑦 w) ∫ 𝑒2𝑥 cos 3𝑥 𝑑𝑥 x) ∫ 𝑒−2𝑥 sin 2𝑥 𝑑𝑥 

2. Evaluate the integrals in following by using a substitution prior to 

integration by parts. 

a) ∫ 𝑒√3𝑠+9𝑑𝑠 b) ∫ 𝑥√1 − 𝑥𝑑𝑥
1

0
 c) ∫ 𝑥 tan2 𝑥 𝑑𝑥

𝜋 3⁄

0
 

d) ∫ ln(𝑥 + 𝑥2) 𝑑𝑥 e) ∫ sin(ln 𝑥) 𝑑𝑥 f) ∫ 𝑧(ln 𝑧)2𝑑𝑧 

 

Integration by Parts Formula for Definite Integrals: 

           ∫ 𝒖(𝒙)𝒗′(𝒙)𝒅𝒙
𝒃

𝒂
= 𝒖(𝒙)𝒗(𝒙)]𝒂

𝒃 − ∫ 𝒗(𝒙)𝒖′(𝒙)𝒅𝒙
𝒃

𝒂
               (3)                                  
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3. Evaluate the integrals in the following. Some integrals do not require 

integration by parts. 

a) ∫ 𝑥 sec 𝑥2 𝑑𝑥 b) ∫ cos √𝑥

√𝑥
𝑑𝑥 c) ∫ 𝑥(ln 𝑥)2𝑑𝑥 

d) ∫ 1

𝑥(ln 𝑥)2𝑑𝑥 e) ∫ ln 𝑥

𝑥2 𝑑𝑥 f) ∫ (ln 𝑥)3

𝑥
𝑑𝑥 

g) ∫ 𝑥3𝑒𝑥4
𝑑𝑥 h) ∫ 𝑥5𝑒𝑥3

𝑑𝑥 i) ∫ 𝑥3√𝑥2 + 1 𝑑𝑥 

j) ∫ 𝑥2 sin 𝑥3 𝑑𝑥 k) ∫ sin 3𝑥 ∙ cos 2𝑥 𝑑𝑥 l) ∫ sin 2𝑥 ∙ cos 4𝑥 𝑑𝑥 

m) ∫ √𝑥 ln 𝑥 𝑑𝑥 n) ∫ 𝑒√𝑥

√𝑥
𝑑𝑥 o) ∫ cos √𝑥 𝑑𝑥 

p) ∫ √𝑥𝑒√𝑥 𝑑𝑥 q) ∫ 𝜃2 sin 2𝜃
𝜋 2⁄

0
𝑑𝜃 r) ∫ 𝑥3 cos 2𝑥

𝜋 2⁄

0
𝑑𝑥 

s) ∫ 𝑡 sec−1 𝑡
2

2 √3⁄
𝑑𝑡 t) ∫ 2𝑥 tan−1(𝑥2)

1 √2⁄

0
𝑑𝑥 u) ∫ 𝑥 tan−1 𝑥 𝑑𝑥 

v) ∫ 𝑥2 tan−1 𝑥
2

𝑑𝑥 w) ∫(1 + 2𝑥2)𝑒𝑥2
𝑑𝑥 x) ∫ 𝑥𝑒𝑥

(𝑥+1)2 𝑑𝑥 

y) ∫ √𝑥(𝑠𝑖𝑛−1√𝑥) 𝑑𝑥 z) ∫ (𝑠𝑖𝑛−1𝑥)2

√1−𝑥2
𝑑𝑥 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


